搜档网
当前位置:搜档网 › FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统
FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统

汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。从1971年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。毫米波是指波长介于1~10mm之间的电磁波,其RF带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。

本文介绍了主动汽车防碰撞毫米波雷达的原理,报导了我们研制出的SAE-100型毫米波防碰撞雷达样机。

汽车防撞毫米波雷达系统原理

主动汽车防碰撞是以雷达测距、测速为基础的。防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。

毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。

毫米波FMCW雷达系统结构

FMCW汽车雷达系统如图1所示,包括天线、收发模块、信号处理模块和报警模块或汽车制动装置。

射频收发前端是雷达系统的核心部件。国内外已经对前端进行了大量深入研究,并取得了长足的进展。已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。国内研制的射频前端主要是波导结构前端。一个典型的射频前端主要包括线性VCO、环行器和平衡混频器三部分,如图2所示。前端混频输出的中频信号经过中频放大送至后级数据处理部分。数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

毫米波FMCW雷达测距、测速原理

雷达系统通过天线向外发射一列连续调频毫米波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。一般调制信号为三角波信号,发射信号与接收信号的频率变化如图3a所示。反射波与发射波的形状相同,只是在时间上有一个延迟(t,(t与目标距离R的关系可表示为

△t=2R/c(1)

式中c:光速发射信号与反射信号在某一时刻的频率差即为混频输出的中频信号频率(f (如图3b)。根据三角关系,由图3a可以得出目标距离R为

R=(cT/4△F)△f(2)

也就是说,目标距离与前端输出的中频频率成正比。

如果反射信号来自一个相对运动的目标,则反射信号中包括一个由目标的相对运动所引起的多谱勒频移fd(如图4)。在三角波的上升沿和下降沿输出中频频率可分别表示为

fb+=△f-fd(3)

fb-=△f+fd(4)

式中——(f:目标相对静止时的中频频率;fd:多谱勒频移,其符号与目标相对运动的方向有关。

根据多谱勒原理,目标的相对运动速度v为

v=c/4f0(fb--fb+)

=λ(fb--fb+)(5)

式中——f0:发射波中心频率;:发射波波长。

速度v的符号与目标相对运动的方向有关,目标靠近时v为正值,反之v为负。三角波上升沿和下降沿的中频信号频率由DSP进行FFT变换得到。

由公式(2)和(5)就可以计算出目标距离和目标相对运动速度。

SAE-100型毫米波防碰撞雷达系统的研制

上海汽车电子工程中心经过近一年的研究,已经研制出SAE-100型毫米波防碰撞雷达系统样机。该样机采用零差FMCW体制,系统结构如图所示,工作频率35GHz,测距范围>100m,测速范围>100km/h。系统采用了增益为26dB的小型喇叭天线,发射功率40mW 的波导结构前端,以及先进的DSP数据处理技术。上面部分包括天线、前端和中频放大模块,尺寸为19cm(15cm(16cm,输出信号为经过放大了的中频信号。下面部分为数据处理和显示报警模块,可以显示目标距离和相对运动速度。当目标距离小于100m时,根据距离的不同可以用三种不同的音调进行报警。

传感器课程设计--汽车倒车防撞雷达系统设计

汽车倒车防撞雷达系统设计 摘要:本文在查阅分析了现有的几种不同测距原理后,确定了使用超声波测距,并对基于超声波测距的倒车雷达报警系统的设计进行了深入分析和研究。该系统分为系统控制模块、超声波发射模块、超声波接受模块、温度采集模块和液晶显示及声光报警模块。在硬件电路中,详细阐述了运用单片机技术实现的倒车雷达报警系统的测距实现原理,分析了以ATMEGA16单片机为主控单元的硬件系统和软件设计,并分别对每个模块进行了分析,使我们对该系统由较好的认识和理解。 关键词:倒车雷达超声波测距 1 概述 在现代社会中,随着汽车的增多和停车位日趋紧张,泊车成为很多车主头痛的问题,这时汽车倒车防撞报警系统就成了汽车的好助手。 汽车倒车防撞报警系统是汽车泊车安全辅助装置,能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高了倒车的安全性。 本系统以ATMEGA16作为核心处理器,采用超声波原理测量出障碍物距车尾的垂直距离。系统硬件原理图如图1.1: 图1.1 倒车雷达报警系统框图

该系统整体设计思路如下: 警报系统装于汽车尾部,与汽车倒车闸相连,当汽车倒车时,该报警系统开始工作。 ATMEGA16单片机为主控模块,将各个子模块联系起来共同工作,当超声波模块发出脉冲信号时,主控模块内部计数器开始工作。超声波接收模块接到障碍物反射回来的声波后将信号传递给主控模块,主控模块内部的计数器计数停止,从而得到声波往返所用时间。 温度采集模块不断测试环境温度,并将此信息传递给主控模块。主控模块根据温度得出此时超声波速度,进而计算出此时汽车尾部与障碍物的距离。 主控模块距离信息传递给液晶显示模块和声光报警模块,使液晶显示屏显示当前车尾与障碍物的距离,同时控制声光报警模块,当距离小于设定值时发出声光警报,从而提醒司机注意,防止倒撞。 2 系统硬件电路设计 系统电路主要由三大部分组成:(1)超声波发射接收模块;(2)ATMEGA16单片机主控模块;(3)距离显示模块和声光报警模块。细分为六个小模块,各模块分析如下。2.1 主控和接口模块 主控和接口模块如图2.1所示。 Atmega16是基于AVRRISC结构的高性能、低功耗、高集成化的8位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,加上片内32 个通用工作寄存器都直接与算术逻辑单元(ALU) 相连接,使得一条指令可以在一个时钟周期内同时访问两个独立的寄存器,大大提高了代码效率,运行速度比AT89C51高出10倍。 Atmega16的端口PC与JTAG接口相连。JTAG接口用于边界扫描,可以对片上16 KB 闪存Flash在线编程和调试,非常方便软件的升级,内部集成了较大容量的存储器和丰富强大的硬件接口电路,如定时/计数器、实时时钟、快速PWM通道、A/D转换器、I2C 的串行接口、可编程的串行USART接口、SPI串行接口和带片内晶振的可编程看门狗定时器以及片内的模拟比较器等,除传感器外几乎可以不需要其他任何元件即可构成系统,从而为本设计提供了灵活而低成本的解决方案。 Atmega16的管脚19和管脚16分别与超声波发射模块和超声波接收模块0

毫米波雷达简介

毫米波雷达 地面通信或地面中继通信。利用毫米波天线的窄波毫米波雷达

在毫米波波段可提供兆瓦级的峰值功率。在低噪声混频器方面,肖特基二极管(见晶体二极管、肖特基结)混频器在毫米波段已得到应用,在100吉赫范围,低噪声混频器噪声温度可低至500K(未致冷)或100K(致冷)。此外,在高增益天线、集成电路和鳍线波导等方面的技术也有所发展。70年代后期以来,毫米波雷达已经应用于许多重要的民用和军用系统中,如近程高分辨力防空系统、导弹制导系统、目标测量系统等。 4应用 ①导弹制导:毫米波雷达的主要用途之一是战术导弹的末段制导。毫米波导引头具有体积小、电压低和全固态等特点,能满足弹载环境要求。当工作频率选在35吉赫或94吉赫时,天线口径一般为10~20厘米。此外,毫米波雷达还用于波束制导系统,作为对近程导弹的控制。②目标监视和截获:毫米波雷达适用于近程、高分辨力的目标监视和目标截获,用于对低空飞行目标、地面目标和外空目标进行监测。③炮火控制和跟踪:毫米波雷达可用于对低空目标的炮火控制和跟踪,已研制成94吉赫的单脉冲跟踪雷达。④雷达测量:高分辨力和高精度的毫米波雷达可用于测量目标与杂波特性。这种雷达一般有多个工作频率、多种接收和发射极化形式和可变的信号波形。目标的雷达截面积测量采用频率比例的方法。利用毫米波雷达,对于按比例缩小了的目标模型进行测量,可得到在较低频率上的雷达目标截面积。此外,毫米波雷达在地形跟踪、导弹引信、船用导航等方面也有应用。 5特点 与微波雷达相比,毫米波雷达的特点是: ①在天线口径相同的情况下,毫米波雷达有更窄的波束(一般为毫弧度量级),可提高雷达的角分辨能力和测角精度,并且有利于抗电子干扰、杂波干扰和多径反射干扰等。 ②由于工作频率高,可能得到大的信号带宽(如吉赫量级)和多普勒频移,有利于提高距离和速度的测量精度和分辨能力并能分析目标特征。 ③天线口径和元件、器件体积小,宜于飞机、卫星或导弹载用。 6传播特性 毫米波在大气中的传播损失主要来自水蒸汽和氧分子对电磁能量的谐振吸收。传播损失与工作频率有一定的关系(见图)。在各谐振点之间存在着损失较小的以35吉赫、94吉赫、140吉赫、220吉赫等频率为中心的窗口。各窗口宽度不等,约为几十吉赫。毫米波雷达的工作频率选在这些窗口之内。图中还表示出在有雨、有雾等条件下,传播损失与工作频率的关系。在毫米波波段,这种损失主要来源于雨和雾对电磁能量的吸收。在有雨、有雾等条件下,毫米波的传播损失比微波严重得多,而且频率“窗口”不复存在。与光波(红外、可见光、紫外光)相比,毫米波在云雾、烟、尘中传播的损失要小得多。以传播损失来说,毫米波雷达比激光雷达优越。

FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统 汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。从1971年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。毫米波是指波长介于1~10mm之间的电磁波,其RF带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。 本文介绍了主动汽车防碰撞毫米波雷达的原理,报导了我们研制出的SAE-100型毫米波防碰撞雷达样机。 汽车防撞毫米波雷达系统原理 主动汽车防碰撞是以雷达测距、测速为基础的。防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。 毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。 毫米波FMCW雷达系统结构 FMCW汽车雷达系统如图1所示,包括天线、收发模块、信号处理模块和报警模块或汽车制动装置。 射频收发前端是雷达系统的核心部件。国内外已经对前端进行了大量深入研究,并取得了长足的进展。已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。国内研制的射频前端主要是波导结构前端。一个典型的射频前端主要包括线性VCO、环行器和平衡混频器三部分,如图2所示。前端混频输出的中频信号经过中频放大送至后级数据处理部分。数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

24G毫米波雷达在机车测距及避撞应用的探索

24G毫米波雷达在机车测距及避撞应用的探索 最近接到一个项目,需要在机车上设计一款雷达产品,主要用于轨道交通 方面的机车测距和避撞。在网上搜寻了一段时间,可以选择的有激光雷达、超 声波雷达、红外雷达和毫米波雷达。对比了各个雷达的特点,激光雷达具有探 测距离远,探测精确的特点,但是容易受到雨雾,特别是下雪和粉尘的干扰, 这个在轨道交通行业中适应性不是很好。超声和红外雷达,具有价格低,设计 简单的优点,但是同样容易受到温度变化的影响,在南方和北方会有很大的差别,另外探测的距离也有限。毫米波雷达探测的介质是电磁波,具有探测距离远、穿透能力强、环境适应性强以及实时性好等优点,尤其是波长较短者。 俗话说万事开头难!在搜寻了各大厂商的方案之后,最终选择了UMS 的 24G 雷达方案,选择这个方案有几点好处: 1)方案比较灵活,可以选择集成度高、设计相对简单的单发双收的雷达芯片。也可利用分立器件自由组合出多个收发结合的方案,这样可以探测更加精 准和扩展更广阔的探测范围。 2)拥有业界唯一的GaAs 工艺,工作温度范围为-40 度125 度,适用于机车工作环境。 3)开发工具和参考资料比较齐全。 在笔者的项目中,选择的是集成度较高的单芯片方案CHC2442-QPG。从图1 CHC2442-QPG 的内部架构,可以看出其内部集成了低噪声的VCO、Tx PA、混频器、接收LNA 和中频放大器等核心功能。只需加上DSP 处理单元就可以 完成雷达的功能设计。如图2 UMS 机车24G 雷达模块原理框图所示,雷达模块支持单发双收和一路视频,与车载控制单元之间通过CAN 总线以及以太网 进行通讯。

汽车雷达防撞

一.汽车防撞系统的定义及组成。 CCAS就是「Car Collision Avoidance System 」的简称,即为「汽车防撞系统」。 防撞雷达装置即汽车防撞系统,是防止汽车发生碰撞的一种智能装置。它能够自动发现可能与汽车发生碰撞的车辆、行人、或其它障碍物体,发出警报或同时采取制动或规避等措施,以避免碰撞的发生。防撞雷达装置主要由三个部分组成:(1)信号采集系统:采用雷达、激光、声纳等技术自动测出本车速度、前车速度以及两车之间的距离;(2)数据处理系统:计算机芯片对两车距离以及两车的瞬时相对速度进行处理后,判断两车的安全距离,如果两车车距小于安全距离,数据处理系统就会发出指令;(3)执行机构:负责实施数据处理系统发来的指令,发出警报,提醒司机刹车,如司机没有执行指令,执行机构将采取措施,比如关闭车窗、调整座椅位置、锁死方向盘、自动刹车等;防撞雷达装置高集成化、高智能化、高适应性:集声、光、电、机多方面的高科技组合。智能化的处理器,识别处理指令速度远远高于人脑的最快反映速度。适用于各种类型汽车的安装。由于车祸事件日驱严重,所以近年来各国(尤以欧洲为主),都在致力发展CCAS,但由于其成本高昂而未得到广泛的应用。 二.DSP(Digital Signal Processing)的介绍 DSP是一种价格低廉但性能高的芯片,将接受到的讯号(从雷达那)转成数字讯给计算机,让计算机做距离等的运算判断,别于现在市面上的倒车雷达,它必须精密计算,并且自动煞车,此芯片也正朝自动驾驶迈

进! DSP是微处理器的一种。这种微处理器具有极高的处理速度。 DSP的出现使得极大的推动了汽车防撞雷达技术研究,使汽车防撞雷达系统在普通汽车中的实现和普及成为可能。 三.汽车防撞的几种探测方式 目前汽车防撞系统按目标探测方式主要有激光、超声波、红外等一些测量方法,不同的目标探测方式其工作过程和原理有不同之处,但它们的主要目的都是通过前方返回的探测信息判断前方车辆和本车间的相对距离,并根据两车间的危险性程度做出相应的预防措施。下面对不同的探测方法进行介绍和比较。 1.激光方式 激光具有高单色性,高方向性和相干性好等特点,因此激光波束近似直线性,很少扩散,波速能量集中,传输距离远。汽车防撞采用激光探测技术时,其工作原理为:首先利用本车装备的激光雷达发射激光束照射到前车的反光镜,然后检测反射回来的激光速的到达时间,根据激光束从发射到返回的时间差来判断两车的距离。 激光测距的测量精度很高,技术上已经有了很大的进步。但是,在汽车防撞领域,激光测距的应用具有局限性,主要是因为激光测距方式受天气状态、汽车的震动及反射镜表面磨损、污染等因素影响较大,测距精度难以保证。所以在汽车防撞领域激光测距方式没有得到发展。 2.超声波方式

毫米波雷达在安防上的应用

毫米波雷达在安防上的应用 一、安防系统划分 安防系统按照其作用范围划分可以分为周界安防和区域安防。周界安防主要作用于围界,为‘线’式安防。而区域安防主要作用于一个平面,为‘面’式安防。随着社会的发展,人们对安全防护的等级的要求也越来越高。迫切希望通过一种技术实现围界安防和区域安防,做到前期能提前预警,后期又能形成持续有效的追踪。这时毫米波雷达安防技术手段完美解决了上述问题。 目前,国内外应用较多的周界安防系统可以分为以下几种类型:视频监控;红外对射、激光对射;振动电缆、振动光纤、泄漏电缆;毫米波雷达。 视频监控系统是一种重要的安全防范系统,主要由摄像机、监视器、控制平台、录像/回放设备等组成。视频监控系统通常不是作为实时监控手段,而是事后调取录像,追查线索时使用。不能及时有效的处理警报。并且受天气(雨、雪、雾)、光线(夜间)影响较大。监控的范围会大大降低,并且很容易产生漏警。造成严重的安防防护隐患。 红外对射的工作原理是:利用红外发光二极管发射的红外射线,再经过光学透镜做聚焦 处理,使光线传至很远距离,最后光线由接收端的光敏晶体管接收。当有物体挡住发射端发射的红外射线时,由于接收端无法接收到红外线,所以会发出警报。红外对射安防系统缺陷较大,飞鸟、动物、温度、光线、空气流动、雾气、雨雪等等环境因素以及安装方式、角度、位置等因素都很容易引发误报。

线缆型防护系统主要有震动电缆、泄漏电缆、振动光缆。震动电缆和振动光缆都安装在金属护栏上。而泄漏电缆通常需要埋入地下1米。 震动电缆主要缺点是在大风天气条件时,无法正常工作,会产生非常多的误警。 振动电缆对振动敏感,并随温度变化而变化,因此误报率高,维护成本高。 泄漏电缆则存在施工复杂,地面受潮积水后影响系统工作的问题。 二、毫米波雷达原理 毫米波雷达作用于安防是最近新兴的技术,原理是电磁波由发射机通过雷达天线发射,遇到障碍物反射,再由接收机接收。根据收发之间的时间差测得目标的位置数据。 在特大暴雨时,雷达性能会降低,减少其监测范围。 总而言之,上述防护系统各有优缺点,没有哪一套系统能够独立解决全部问题。三、毫米波雷达优势 市场需求能够促进技术发展。为了弥补上述系统的不足,毫米波雷达逐渐走进安防领域。随着技术的进步,器件成本的下降,原本用于军事领域的毫米波雷达用于安防已不是问题。 新型毫米波安防雷达采FMCW技术,实现了对监测区内空间无任何间断全程覆盖,具有体积小、重量轻、可靠性高以及距离盲区小、无速度盲点、高距离分辨力、良好的抗干扰性能等优点。与红外对射系统相比,安防雷达提供的是一个具有一定高度和厚度的连续的毫米波雷达墙,没有钻越和跳越的可能。与线缆型系统相比,安防雷达不仅能对侵入目标进行定位,而且可以获取监控场景内移动物体的速度、方向、距离、角度信息,24小时无间隙监控。与具有同步变焦激光补光灯的高速球型摄像机配合,可以实现目标跟踪,不仅可以立即定位入侵点位,而且能够获得很好的图像信息,便于安保人员做出快速响应,从而避免事故发生。 毫米波雷达的优势在于,单台雷达可以实现360°区域覆盖,任何具有一定表面积的

ADAS图像处理+毫米波雷达安全预警系统

ADAS(77G毫米波雷达+视频) 预警系统 ROME THROUGH THE WORLD WITH STRONG BELIEF

ROME THROUGH THE WORLD WITH STRONG BELIEF 数据来源:http://www.who.int/mediacentre/factsheets/fs358/en/index.html 据可靠数据调查统计 交通事故现状 全世界每年有120万人死于道路交通伤害 受伤者多达5000万人 如果不采取强有力的预防措施 今后20年中道路交通伤害的死亡和受伤人数将增加65%左右 如果不采取适当措施 到2020年道路交通伤害预计将成为 全球疾病与伤害负担的第三位原因

ROME THROUGH THE WORLD WITH STRONG BELIEF 人为因素 93% 其它 7% 弗吉尼亚理工学院交通运输学院公布了一组实际的驾驶员习惯、分心和碰撞原因的调查数据分析,将近80%的碰撞是由于驾驶员事 发前3秒的疏忽造成 来源:https://www.sodocs.net/doc/0718612935.html,/briefdetails.aspx?id=19 事故原因分析 80% 事发前3秒的分神 其它 20%

ADAS毫米波雷达预警系统概述 ADAS+毫米波雷达,是基于视觉图像分析+毫米波雷达相结合的高科技预警产品,能够即时分析前方汽车的运动状态,同时也能计算自驾驶车辆的情况,根据驾驶者的习惯,对行车过程中有可能发生驾驶危险时进行提醒,同时也是对于瞌睡驾驶和鲁莽驾驶者的习惯纠正,让行车安全更有保障! ROME THROUGH THE WORLD WITH STRONG BELIEF

毫米波雷达的应用及发展

第19卷第4期2004年8月 光电技术应用 ELECTRO-OPTIC TECH NOLOGY APPLICATION Vol.19,No.4 Aug.2004毫米波雷达的应用及发展 同武勤,凌永顺,蒋金水,张鑫 (合肥电子工程学院,安徽合肥230037) 摘要:随着毫米波技术的应用,毫米波频率的雷达也得到了更深的研究和发展.毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面.评述了毫米波雷达的优缺点,以及它的应用,详细阐述了军用毫米波雷达发展的新技术和新方法. 关键词:毫米波;毫米波雷达;毫米波集成电路;毫米波雷达应用 中图分类号:TN958.5文献标识码:A Application and Development of M illimeter Wave Radar TONG Wu-qin,LING Yong-shun,JIANG Jin-shui,ZHANG Xin (Electronic Eng ineering I nstitute,Hefei230037,China) Abstract:With the development of millimetre w ave(M MW)technology,the MMW radar has been stud-ied and developed.Based on the features such as high guidance precision,better ant-i jamming ability, high Doppler resolution and plasma penetration ability etc,the M MW radar has been w idely used in end g uidance,fuse,industry and medical treatment etc.The features and applications are discussed in this pa-per,and the new technolog y and methods of the military M MW radar are presented. Key words:millimetre w ave;MM W radar;M MW integrated circuit;application of M MW radar 毫米波雷达技术的研究起步很早,有文献称,在二战结束前后即已开始,19世纪50年代就已在毫米波器件研制及毫米波传播损耗,水蒸汽与氧气等吸收谱等方面均已取得相当成就,并已研制成功机场交通管制用的毫米波雷达[1,2].最初,对发展毫米波雷达的推动力主要来自要在用小口径天线即可获得比微波雷达更窄的天线波束,高的天线增益.窄波束具有的高分辨率和由于空间选择性好而带来的高抗干扰能力. 近年来海湾战争、科索沃战争的实践已经表明,/远程打击,精确打击0技术在军事应用中非常重要,高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别(AT R)等需求对毫米波(M MW)雷达的发展提供了巨大的新的推动力. 毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大.例如,在8m m和3mm窗口,单程传播损耗分别为0.08dB/km和0.3dB/km 左右[3]. 1毫米波雷达的系统概念 如图1所示,发射信号按雷达计算机控制的速率,通过双工器输出.回波信号的返回时间也由该计算机控制,该信号被输入到接收机,在此, 收稿日期:2004-02-24 作者简介:同武勤(1980-),男,陕西韩城人,硕士研究生,研究方向为毫米波电子对抗研究;凌永顺(1937-),男,安徽定远人,中国工程院院士,研究方向为电子工程;蒋金水(1964-),男,安徽含山人,副教授(博士后),研究方向为毫米波对抗;刘勇(1982-),男,四川资阳人,研究方向为雷达对抗.

毫米波雷达技术及其发展趋势

1.引言 毫米波的工作频率介于微波和光之间,因此兼有两者的优点。它具有以下主要特点: 1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带 宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束 窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰 地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因 此毫米波系统更容易小型化。由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫米波技术和应用得到了迅速的发展。 2.毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能 互补的系统。下面分述各种应用的进展情况。 2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发 射功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作 于35GHz的空间目标识别雷达其天线直径达36m。用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。一部工作于 94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发射功率时,可以对14400km 远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积 要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇 移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细 的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作

毫米波雷达的应用及发展趋势

87 科协论坛·2009年第1期 (下)科研探索 与知识创新 1 引言 最初,对发展毫米波雷达的推动力主要来自于用小口径天线即可获得比微波雷达更窄的天线波束,更高的天线增益。窄波束具有高分辨率和由于空间选择性好而带来的高抗干扰能力。近年来海湾战争、科索沃战争的实践已经表明,“远程打击,精确打击”技术在军事应用中非常重要,高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别(ATR)等需求对毫米波(MMW)雷达的发展提供了巨大的新的推动力。毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大,例如,在8mm 和3mm 窗口,单程传播损耗分别为0.08dB/km 和0.3dB/km 左右。 2 毫米波雷达的系统概念 如图1所示,发射信号按雷达计算机控制的速率,通过双工器输出。回波信号的返回时间也由该计算机控制,该信号被输入到接收机,在此,它经下变频处理并采样。得到的信号由数字脉冲压缩系统压缩处理。该数字信号被记录在一个“廉价硬盘冗余阵列”(redundant array of inexpensive disks)(RAID)记录系统上,并且也输入到一个阵列处理机上, 该阵列处理机对这些数字实施综合处理。 3 毫米波雷达的优缺点 (1)毫米波雷达的优点与其他传感器系统比较,毫米波雷达有如下优点:1)高分辨率,小尺寸;由于天线和其他的微波元器件尺寸与频率有关,因此毫米波雷达的天线和微波元器件可以较小,小的天线尺寸可获得窄波束;2)干扰,大气衰减虽然限制了毫米波雷达的性能,但有助于减小许多雷达一起工作时的相互影响;3)与常常用来与毫米波雷达相比的红外系统相比,毫米 波雷达的一个优点是可以直接测量距离和速度信息。 (2)毫米波雷达的缺点1)与微波雷达相比,毫米波雷达的性能有所下降,原因如下:①发射机的功率低;②波导器件中的损耗大;2)与天气的关系很大,降雨时更为严重;3)在防空环境中,不可避免的会出现距离模糊和速度模糊;4)毫米波器件昂贵,不能大批量生产装备。 4 毫米波雷达的应用需求与特征4.1 对毫米波雷达的应用需求 (1)进行高精度、高分辨测量,精确制导和目标指示;(2)获得宽带信号与增大回波信号多普勒带宽;(3)获得高天线增益,获得高雷达能量(发射机平均功率,发射天线增益和接收天线口径的乘积,即PavGtAr); (4)获得精细的距离———多普勒图像和目标识别;(5)测量复杂目标的结构;(6)改善雷达的抗干扰能力;(7)观测小尺寸目标;(8)空间雷达,空间飞行器交汇雷达;(9)受体积、重量严格限制的平台上的雷达,例如安装在坦克、导弹、飞机,特别是直升机和无人机等上的雷达,例如导弹上的寻的头,机载地形跟随,地形回避等; (10)低角跟踪、测高、抑制多径干扰;(11)毫米波无源探测。4.2 毫米波对目标高精度探测 目标的高分辨测量,在纵向距离维,主要依靠大的雷达信号瞬时带宽(Δf=1GHz),其理论距离分辨Δθ。 ΔRcr=λ/(2Δθ) 由于毫米波雷达波长比微波雷达短许多,故为获得同样的ΔRcr ,Δθ可相应降低,因而实现转角Δθ所需的目标飞行时间(亦称雷达观察时间)也相应降低,这对在远距离高机动飞行目标(例如在空间变轨的卫星和导弹目标)进行成像特别有意义。为了说明这一点,若设目标相对于雷达的切向飞行速度为υtang ,目标至雷达的距离为Rt ,为实现要求的横向分辨率ΔRcr 所需时间为Tobs ,则有:Tobs=λRt/(2υtang ΔRcr)。图2中a为对λ=8.57mm ,图中b为对λ=3cm 时要求的观察时间Tobs 与目标相对于雷达的切向飞行速度Vtang 的关系图。将来Rt设为1000km ,要求的△Rcr 为0.3m。由此不难看出,如果目标远离雷达,即使是对高速飞行导弹目标,为了获得很高的横向分辨率,对雷达观察时间的要求仍是很高,因此,即使采用X波段,仍嫌不够,必须毫米波波段雷达。 毫米波雷达的应用及发展趋势 □ 刘荣丰 李 博 (91550部队第210所 辽宁·大连 116023) 摘 要 毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面。本文评述了毫米波雷达的优缺点,以及它的应用,详细阐述了军用毫米波雷达发展的新技术和新方法。 关键词 毫米波 毫米波雷达 毫米波集成电路 毫米波雷达应用 中图分类号:TN95 文献标识码:A 文章编号:1007-3973(2009)01-087-02

汽车防撞雷达系统的设计

-126- 度高的酒精误差小,这也是设计的该酒精浓度探测仪适合与检测酒后驾车的原因,因为人在饮酒后,从呼吸道呼出的酒精气体浓度一般都不是很高。因此,经过适当的改进,可以用于 检测酒后驾车。 参考文献 [1]彭军.传感器与检测技术[M].西安:西安电子科技大学 大学出版社,2003. [2]高伟.51单片机原理及应用[M].北京:国防工业出版社,2008. 汽车防撞雷达系统的设计 德州学院汽车工程学院 寻 莹 【摘要】随着我国汽车行业不断发展,公路交通随着出车流密集化和驾驶员非职业化,交通事故越来越多。本文设计的汽车防撞雷达系统,就是当汽车与障碍物的距离较近时即可向司机预先发出报警信号,可及时有效的防止交通事故的发生。【关键词】单片机;报警系统;防撞雷达 1.引言 随着人民经济水平的提高,汽车已经走进我们的家庭中。但汽车相撞的交通事故发生增加了人民财产的损失。为了减少这种损失,设计一种能够提前预知前方行驶车辆的速度和距离的安全避撞装置是非常必要的。该汽车防撞雷达系统是以MCS-51系列单片机为核心器件,结合比较常规的超声波测距器件和霍尔车速传感器以及价格低廉的电子元件组成,包括硬件设计和软件设计两部分。本系统具有低误差、高精度和低成本的特点。 2.系统总体设计原理 设计的基本思路:通过对速度和距离的感知与计算,判断驾驶状态是否安全,并报警提醒驾驶员。系统总体方框图如图1所示。利用AT89S51单片机为核心器件并结合常规的超声波测距探头和霍尔车速传感器以及价格低廉的电子元件完成的。硬件电路由超声波信号发生电路、超声波信号接收电路、、单片机控制电路以及显示电路组成。测量获得的距离、速度信息都传递给单片机,单片机根据设计的计算模型,分析计算所获得的各种信息来判断与前方障碍物距离是否安全,并决定是否需要 图1?系统总体方框图 当40kHz的超声波发送脉冲信号由单片机送出,(其脉冲宽度及发送间隔均由软件控制),经多路选择开关按序分别送到前左、前右、后左、后右4路发送换能器上,由接收电路接收反射波,通过多级放大,整形后,待将交流信号整形输出一个方波信号时,由单片机检测此信号,从而检测出前进和倒车方向障碍物距离,通过显示单元显示距离和方位,起到提示和警戒的作用。 3.硬件电路设计 控制系统采用单片机为主控部件。单片机本身是一个最小的应用系统,但由于应用系统中有一些功能器件无法集成到芯片内部,需在片外加接相应的外围电路。汽车防撞系统的硬件电路是由超声波信号发生电路、超声波信号 接收电路、感应信号放大及处理电路、中央处理单元电路、测速电路等其他电路组成。 3.1 主控芯片 本设计选用AT89S51为主控芯片,充分利用了AT89S51的片内资源,即可在很少外围电路的情况下构成功能完善的超声波测距系统,而且AT89S51的性价比较高。AT89S51的主要技术参数如表1所示。 3.2 超声波信号发射电路 超声波信号发射电路如图2所示,包括超声波信号的产生、多路选择及换能器等。超声波探头选用压电超声波换能器。压电超声波换能器是利用压电材料的压电效应来工作的。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动产生超声波,这时它就是一超声波发生探头;如没加电压,当共振板接受到超声波时,将压迫压电振荡器作振动,将机械能转换为电信号,这时它就成为超声波接受探头。超声波发射换能器与接受换能器其结构 稍有不同。 图2?超声波信号发射电路 3.3 超声波信号接收电路 超声波信号接收电路如图3所示,由接收换能器、多路选择开关、放大及控制等电路组 成。 4.软件设计 主程序包括初始化和各个子程序的调用,最后把结果用LCD显示出来,并作出判断。系统主程序流程图如图4所示。 显示子程序流程图如图5所示。超声波发射极和接收极距离较近,当发射极发射超声波以后,有部分超声波没经过障碍物反射就直接绕射到接收极上,这部分信号是无用的,会引起系统误测。设计中采用延时技术来解决这个问题,并设定延时时间为1ms,即在发射极发射超声波1ms内,通过软件关闭所有中断,接收电路对此期间接收到的任何信号不予理睬,1ms后立即启动中断程序,这时接收到的信号才有效,并在接受到回波信号的同时,中断程序停。此时中断程序所记录的CPU发送脉冲信号的前沿到回波脉冲信号之间的时间才是需要的。因此,系统存在测量盲区。最后把测量结果存储并通过LCD液晶显示电路显示出来,完 图4?系统主程序流程图 图5?显示子程序流程图 表1?AT89S51的主要技术参数 (1)与MCS-51产品指令系统完全兼容;(2)4K字节可编程FLASH存储; (3)1000次擦/写循环;(4)4.0~5.5V的工作电压范围;(5)全静态工作:0Hz-24KHz;(6)三级程序存储器保密锁定; (7)128*8位内部RAM;(8)32条可编程I/O线;(9)两个16位可编程定时/计数器;(10)6个中断源;(11)2个全双工串行通信口;(12)可直接驱动LCD;(13)5个中断优先级;(14)2层中断嵌套中断;(15)片内时钟振荡器;(16)看门狗(WDT)电路; (17)低功耗空闲和掉电保护。

汽车防撞技术综述

常德职业技术学院 标题:汽车防撞技术综述 校内指导教师姓名:刘雨亮 校外指导教师姓名:张恩鑫 学生名称:李嘉 系部名称:汽车工程系 专业名称:汽车检测与维修 班级名称:汽大1201班 论文提交日期: 2015.05.12

汽车防撞技术综述 目录 1 引言 (3) 2 防抱死系统(ABS)与驱动防滑系统 (3) 2.1 ABS系统 (4) 2.1.1 滑动率与地附着系数的关系............................ .. (4) 2.1.2 组成与原理 (5) 2.2 ASR系统 (6) 3 电子稳定程序控制 (7) 3.1 ESP作原理:与时俱进的卡罗拉: (7) 3.2 ESP有如下功能: (8) 3.3在从下几个方面改善汽车行驶安全性: (9) 4 汽车自动防撞系统 (9) 4.1 自动防撞系统组成部分 (9) 4.2 技术性能 (10) 4.3 汽车自动防撞器的研发现状 (10) 5 结论 (11) 致谢 (11) 参考文献 (11)

摘要:随着世界汽车工业的发展,汽车数量逐年增加,然而与汽车有关的交通 事故,却对人们的生命财产构成了日益严重的威胁。人们对提高汽车行驶安全性问题十分重视。为了保证高速公路上急速行驶汽车的安全,迫切需要防止交通事故的发生。如何有效防止车辆碰撞,这成为有效保护行车安全的重要因素。轿车上采用的防撞技术,阐述其结构组成、简单工作原理及对于防止汽车碰撞产生的积极作用,并对防撞技术的发展提出思考。 1 引言 汽车防撞系统是一种可向驾驶员预先发出视听告警信号的探测装交通管理置。它安装在汽车上,能探测接近车辆的行人、车辆或周围障碍物,能向驾驶员及乘员提前发出即将发生撞车危险的信号,使驾驶员采取应急措施来应付特殊险情,避免损失。 在众多的交通事故中,以追尾碰撞与侧向碰撞事故这两种最为常见。在碰撞的瞬间,如果车辆具有某些防撞设备,将大大减少事故损害。汽车防撞系统正式基于提高车辆的主动安全性来实现在行车过程中,给驾驶员提供必要的技术设施。 目前,在轿车上的防撞系统有防抱死制动系统(ABS),驱动防滑系统,电子稳定系统,自动防撞系统等。这些电子技术在汽车上的应用,大大提高了汽车的安全性能。汽车碰撞标准是检验或评价汽车碰撞安全性能的重要依据,它不但对汽车制造商具有法律的约束,而且也能够促进汽车安全性能的提搞。 2 防抱死系统(A B S)与驱动防滑系统(A S R) 汽车的检测与维修死系统(A B S)正是为了防止制动时车轮抱死而诞生的一种撞技术。 汽车在光滑路面制动时,有时候车轮会打滑,甚至令汽车的方向失控。同样,在起步或者突然加速时,驱动轮也有打滑的可能,A S R就是为了防止这样的情况发生而

毫米波相控阵雷达及其应用发展_石星

文章编号:1001-893X(2008)01-0006-07 毫米波相控阵雷达及其应用发展* 石星 (中国西南电子技术研究所,成都610036) 摘要:概述了毫米波相控阵雷达的特点,介绍了电扫原理和主要毫米波电扫技术,以及相位控制扫描和多种移相器技术。针对毫米波相控阵雷达的特点,叙述了其主要应用领域,结合雷达和半导体技术对毫米波相控阵雷达的发展进行了展望。 关键词:毫米波雷达;相控阵雷达;电扫天线;移相器;数字波束形成 中图分类号:TN958.92文献标识码:A M illi m eter-W ave Phased-Array Radar and its Application Progress S H I X i ng (Southw est China I nstitute o f E lectron ic Techno l o gy,Chengdu610036,Ch i n a) Abstract:The characteristics ofM illi m eter-W ave(MMW)Phased-A rray R adar(P AR)are descri b ed, t h e pr i n ciple of electron ica ll y scanned array(ESA)and pri m ary e l e ctronically scanned techn i q ues for MMW array are presented,as w ell as phase-con tro lled scan and phase shifter techn iques.M a i n app lication fields ofMMW P AR are ill u m i n ated and its progress is antici p ated on the basis o f radar and se m iconductor techniques. Key w ords:MMW radar;phased-array radar(PAR);electr onically scanned array(ESA);phase sh ifter; dig ita l bea m for m i n g(DBF) 1概述 随着雷达技术的发展以及不同应用领域日益提高的需要,远距离和高数据率、宽带和高分辨、多目标跟踪和识别、低截获和抗干扰、多功能和高可靠已经成为现代侦察、监视以及火控等雷达的基本要求。毫米波同相控阵雷达的发展和结合应用,在多个方面适应了现代雷达发展的这些需求。 毫米波段(1~10mm)相对应的频率为30~ 300GH z,其低端毗邻厘米波段,具有厘米波段全天候的特点,高端邻接红外波段,具有红外波的高分辨力特点。毫米波雷达波束窄,角分辨力高,频带宽,隐蔽性好,抗干扰能力强,体积小,重量轻。与红外、激光设备相比较,它具有很好的穿透烟、尘、雨、雾的传播特性,具备良好的抗干扰、反隐身、反低空突防和对抗反辐射导弹(/四抗0)的能力。由于受器件功率和大气条件的影响,毫米波雷达的作用距离受到了一定限制,但这并没有妨碍毫米波雷达的广泛应用。 相控阵雷达,特别是有源相控阵雷达,具有波束扫描快、波形变化灵活、功率孔径积大、易于全固态化和轻小型化、可靠性高等特点,容易实现天线共形设计并具备低截获概率和抗干扰的优良性能。自20世纪50年代末问世以来,相控阵雷达在地基、空基、海基和天基雷达中得到广泛的应用。特别是80年代后,砷化镓(Ga A s)等半导体器件的出现极大促进了有源相控阵雷达的迅速发展,有源相控阵雷达大量取代现役的机械扫描雷达,代表了现代雷达的 #6 # *收稿日期:2007-10-18;修回日期:2007-12-28

毫米波雷达

1.毫米波雷达 毫米波是指波长在1-10mm的电磁波。 毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得符合要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大。例如,在8mm 和3mm窗口,单程传播损耗分别为0.08dB/km和0.3dB/km左右。 优点: ·高分辨率,小尺寸;由于天线和其它的微波元器件尺寸与频率有关,因此毫米波雷达的天线和微波元器件可以较小,小的天线尺寸可获得窄波束; ·干扰,大气衰减虽然限制了毫米波雷达的性能,但有助于减小许多雷达一起工作时的相互影响; ·与红外系统相比,毫米波雷达的一个优点是可以直接测量距离和速度信息。 与微波雷达相比,毫米波雷达体积小、质量轻,提高了雷达的机动性与隐蔽性;波束窄、分辨力高,能进行目标识别与成像,有利于低仰角跟踪;频带宽,天线旁瓣低,有利于抗干扰。 同激光与红外制导武器相比,毫米波制导武器在其传输窗口的大气衰减和损耗低,穿透云层、雾、尘埃和战场烟雾能力强,能在恶劣的气象和战场环境中正常工作。 缺点: 毫米波虽然较红外和可见光具有相对较好的穿透烟、尘埃的能力,但其传输距离受气象条件的影响相当大,图1是大气和雨对电磁波的双程衰减。在恶劣的天气情况下,毫米波的传输衰减相当大。除了雨之外,雪、雹、雾、云等对毫米波传输也有相当的影响,在防护时首先应尽可能利用天气的自然防护作用。

毫米波在穿越树叶丛、地面覆盖物等时会受到很大的衰减,图2是毫米波双程衰减与单程叶丛深度的关系。由图可以看出,衰减随叶丛深度的增加而增加,将目标隐藏在树林或其 他植被下是一种有效的对付毫米波制导武器的隐蔽手段。 与微波雷达相比,毫米波雷达的性能有所下降,原因如下: 1)发射机的功率低 ; 2) 波导器件中的损耗大 ;

基于超声波倒车雷达防撞系统设计

万方数据

万方数据

万方数据

万方数据

基于超声波倒车雷达防撞系统设计 作者:沈二波, 陈彬, SHEN Er-bo, CHEN Bin 作者单位:沈二波,SHEN Er-bo(开封大学国际教育学院,开封,475004), 陈彬,CHEN Bin(湖南省电子研究所,长沙,410001) 刊名: 电脑与信息技术 英文刊名:COMPUTER AND INFORMATION TECHNOLOGY 年,卷(期):2011,19(2) 被引用次数:1次 参考文献(4条) 1.林勇汽车倒车防撞雷达系统原理及优化的探讨[期刊论文]-计算机工程应用技术 2008(04) 2.潘福全;符传聪;魏慧娟基于超声波的汽车倒车防擅系统设计[期刊论文]-机械工程与自动化 2010(2) 3.魏海明;杨兴瑶实用电子电路500例 1996 4.沈二波;王爱民;杨红卫基于DS18820的远程粮仓温控系统[期刊论文]-微计算机信息 2008(10-1) 本文读者也读过(9条) 1.李小松.田文强.LI Xiao-song.TIAN Wen-qiang倒车防撞报警系统的设计[期刊论文]-太原科技大学学报2011,32(3) 2.周超.ZHOU Chao具有声光提示双功能的倒车防撞系统设计[期刊论文]-传感器与微系统2011,30(5) 3.闫新星.李铁鹰.刘鹏鹏.YAN Xin-xing.LI Tie-ying.LIU Peng-peng基于AT89S51的汽车防撞报警系统设计与开发[期刊论文]-电脑知识与技术2011,07(2) 4.孙会楠基于单片机的倒车雷达研究[期刊论文]-科技创新导报2011(15) 5.张敏.寇为刚.ZHANG Min.KOU Wei-gang基于超声波的自动测距系统设计[期刊论文]-自动化技术与应用 2011,30(4) 6.陈学永具有语音提示和数码距离显示的超声波倒车雷达设计[会议论文]-2007 7.张莹.张进.刘天飞.ZHANG Ying.ZHANG Jin.LIU Tian-fei超声波倒车防撞系统[期刊论文]-通信技术 2011,44(2) 8.陈双全.CHEN Shuangquan基于AT89S51单片机倒车雷达的研制[期刊论文]-电脑编程技巧与维护2010(14) 9.董敏学汽车倒车碰撞防止系统设计[期刊论文]-上海汽车2001(11) 引证文献(1条) 1.兰羽具有温度补偿功能的超声波测距系统设计[期刊论文]-电子测量技术 2013(2) 引用本文格式:沈二波.陈彬.SHEN Er-bo.CHEN Bin基于超声波倒车雷达防撞系统设计[期刊论文]-电脑与信息技术 2011(2)

相关主题