搜档网
当前位置:搜档网 › (完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2
(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法

——嘉陵江水质评价

一、案例背景

1、模糊数学简介

模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。

模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。

模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。

2、T-S模糊模型

T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下:

R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k

其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。

假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。

μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。

将各隶属度进行模糊计算,采用模糊算子为连乘算子。

ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n

根据模糊计算结果计算模糊型的输出值y i。

Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi

3、T-S模糊神经网络模型

T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘公式计算得到ω。输出层采用公式计算模糊神经网络的输出。

模糊神经网络的学习算法如下

(1)误差计算

E=2/1(d y-e y)2

式中,d y是网络期望输出;e y是网络实际输出;e魏期望输出和实际输出的误差。

(2)系数修正

式中,为神经网络系数;a为网络学习率;j x为网络输入参数;w’为输入参数隶属度连乘积。

(3)参数修正

式中,分别为隶属度函数的中心和宽度。

4、嘉陵江水质评价

水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。

水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项指标。其中氨氮是有机物有氧分解的产物,可导致水富营养化现象产生,是水体富营养化的指标。化学需氧量是采用强氧化剂络酸钾处理水样,消耗的氧化剂量是水中还原性物质多少的指标。高锰酸钾是反映有机污染的指标。溶解氧是溶解在水中的氧。总磷是水体中的含磷量,是衡量水体富营养化的指标。总氮是水体中氮的含量,也是衡量水体富营养化的指标。(各项数据在附件的数据库中。)地表水环境质量标准如下图所示:

地表水环境质量标准

二、模型建立

基于T-S模糊神经网络的嘉陵江水质评测算法流程图如下所示。其中,模糊神经网络构建根据训练样本维数确定模糊神经网络输入/输出节点数、模糊隶属度函数个数,由于输入数据为6维,输出数据为1维,所以有12个隶属度函数,选择7组系数P0~P6,模糊隶属度函数中心和宽度c和b随机得到。

图示:模糊神经网络水质评价算法流程

模糊神将网络训练用训练数据模糊神经网络,由于水质评价真实数据比较难找,所以采用了等隔均匀分布方式内插水质指标标准数据生成样本的方式来生成训练样本,采用的水质指标哦数据来自本文的上表,网络反腐训练100次。

模糊神经网络预测用训练好的模糊神经网络评价嘉陵采样水水质等级。

三、编程实现

根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。1、网络初始化

根据训练输入/输出数据确定网络结构,初始化模糊神经网络隶属度函数参数和系数,

归一化训练数据。从数据文件datal.mat中下载训练数据,其中input_train和output_train为模糊神经网络训练数据,input_train和output_train为模糊神经网络测试数据。

%下载数据

Load datal input_train output_train input_test output_test

%网络结构

I=6; %输入节点数

M=12; %隐含节点数

O=1; %输出节点数

Maxgem=100; %迭代次数

%初始化模糊神经网络参数

p0=0.3*ones(M,1);p0_1=p0;p0_2=p0_1;

p1=0.3*ones(M,1);p1_1=p1;p1_2=p1_1;

p2=0.3*ones(M,1);p2_1=p2;p2_2=p2_1;

p3=0.3*ones(M,1);p3_1=p3;p3_2=p3_1;

p4=0.3*ones(M,1);p4_1=p4;p4_2=p4_1;

p5=0.3*ones(M,1);p5_1=p5;p5_2=p5_1;

p6=0.3*ones(M,1);p6_1=p6;p6_2=p6_1;

%初始化模糊隶属度参数

c=1+rands(M,I);c_1=c;c_2=c_1;

b=1+rands(M,I);b_1=b;b_2=b_1;

maxgen=100; %进化次数

%调练数据归一化

[inputn,inputps]=mapminmax(input_train);

[outputn,outputps]=mapminmax(output_train);

2、模糊神经网络训练

用训练样本训练模糊神经网络

[n,m]=size(input_train);

%开始迭代

for i=1:maxgen %maxgem 最大迭代次数

for k=1:m %m个样本

%提取训练样本

x=inputn(:,k);

%输入参数模糊化

for i=1:I

for j=1:M

u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));

end

end

%模糊隶属度计算

for i=1:M

w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);

end

addw=sum(w);

%输出计算

for i=1:M

yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+ p6_1(i)*x(6);

end

addyw=0;

addyw=yi*w';

yn(k)=addyw/addw;

e(k)=outputn(k)-yn(k);

%系数p修正值计算

d_p=zeros(M,1);

for i=1:M

d_p(i)=xite*e(k)*w(i)/addw;

end

%b的修正值计算

d_b=0*b_1;

for i=1:M

for j=1:I

d_b(i,j)=xite*e(k)*(yi(i)*addw-addyw)*(x(j)-c(i,j))^2*w(i)/(b(i,j)^2*addw^2);

end

end

%c的修正值计算

for i=1:M

for j=1:I

d_c(i,j)=xite*e(k)*(yi(i)*addw-addyw)*2*(x(j)-c(i,j))*w(i)/(b(i,j)*addw^2);

end

end

%系数修正

p0=p0_1+ d_p;

p1=p1_1+ d_p*x(1);

p2=p2_1+ d_p*x(2);

p3=p3_1+ d_p*x(3);

p4=p4_1+ d_p*x(4);

p5=p5_1+ d_p*x(5);

p6=p6_1+ d_p*x(6);

% 隶属度参数修正

b=b_1+d_b;

c=c_1+d_c;

end

end

3、模糊神经网络水质评价

用训练好的模糊神将网络评价嘉陵江水质,各采样口水样指标值存储在data2.mat文件中,根据网络预测值得到水质等级指标。预测值小于1.5时水质登记为1级,预测值在1.5——2.5时水质等级为2级,预测值在2.5——3.5时水质等级为3级,预测值在3.5——4.5时水质等级为4级,预测值大于4.5时水质等级为5级。

% 下载数据,hgsc为红工厂水质指标,gjhy为高级花园水质指标,dxg为大溪沟水质指标zzsz=hgsc;

%输入数据归一化

inputn_test =mapminmax('apply',zssz,inputps);

[n,m]=size(zssz);

%网络预测

for k=1:1:m

x=inputn_test(:,k);

%输入参数模糊化

for i=1:I

for j=1:M

u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));

end

end

for i=1:M

w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);

end

addw=0;

for i=1:M

addw=addw+w(i);

end

%计算输出

for i=1:M

yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+ p6_1(i)*x(6);

end

addyw=0;

for i=1:M

addyw=addyw+yi(i)*w(i);

end

%网络预测值

szzb(k)=addyw/addw;

end

%预测值反归一化

szzbz2=mapminmax('reverse',szzb,outputps);

%根据预测值确定本质等级

for i=1:m

if szzbz1(i)<=1.5

szpj1(i)=1;

elseif szzbz1(i)>1.5&&szzbz1(i)<=2.5

szpj1(i)=2;

elseif szzbz1(i)>2.5&&szzbz1(i)<=3.5

szpj2(i)=3;

elseif szzbz1(i)>3.5&&szzbz1(i)<=4.5

szpj1(i)=4;

else

szpj1(i)=5;

end

end

4、结果分析

用训练好的模糊神经网络评价嘉陵江各取水口2003年到2008年每季度采样水水质等级,网络评测结果如下所示:

时间2003.1 2003.2 2003.3 2003.4 2004.1 2004.2 2004.3 2004.4 2005.1 2005.2 2005.3 2005

.4 红水工厂 3 3 3 3 3 4 3 2 2 3 2 2 葛家花园水厂 4 4 3 3 3 3 2 3 3 2 2 3 大溪沟水厂 4 4 3 3 4 3 2 2 4 2 2 3

时间2006.1 2006.2 2006.3 2006.4 2007.1 2007.2 2007.3 2007.4 2008.1 2008.2 2008.3 2008

.4 红水工厂 3 2 2 3 3 2 2 3 3 2 2 3 葛家花园水厂 3 2 2 3 3 3 3 3 3 3 2 3 大溪沟水厂 3 2 2 3 3 3 2 2 3 3 3 3

从水质量评价等级可以看出嘉陵汇上、中、下游三个取水口水样质量在2003年到2004你爱你间有一定改善,近几年变化不大,基本维持在2、3级左右。总体来说,上游水质量评价结果优于下游水质量结果,网络评价水质等级变化趋势同真实指标数据变化趋势相符,说明了模糊神经网络评价的有效性。

四、案例扩展

神经网络是按照模糊系统原理建立的,网络中各个节点及参数均有一定的物理含义,在网络初始化的时候,这些参数的初始值可以根据系统的模糊或定性的知识来确定,这样网络n能够很快收敛。在本案例中,由于训练数据由地表水评价标准均匀线性内插得到,并且根据表达式可以看到,输入数据对网络输出的影响都是相同的,所以系数P的初始值都是相同。求隶属度函数b、c随机初始化得到。

参考文献

[1]杜刚.改进的BP神经网络在地下水质评测中的应用[D].上海:上海师范大学,2007.

[2]邹美玲。基于人工神经网络的济南市北沙河河水环境综合整治研究[D].济南:山东师范

大学,2008

[3]张伟.基于人工神经网络吉林市地下水水质现状评价及预测研究[D].长春:吉林大学, 2007

[4]杜伟.基于神经网络的水质评价与预测的探索[D].天津:天津大学,2007

[5]王海霞.模糊神经网络在水质评测中的作用[D].重庆:重庆大学,2002

[6]宋浩国.人工神经网络在水质模拟与水质评价中的应用研究[D].重庆:重庆大学,2002

[7]周忠寿.基于T-S模型的模糊神经网络在水质评价中的应用[D].南京:河海大学,2007

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

模糊神经网络的预测算法在嘉陵江水质评测中的应用

题目:模糊神经网络的预测算法在嘉陵江水质评测中的应用 院(系):物联网工程学院 专业: 计算机科学与技术 班级:计科0802 姓名:刘伟 学号: 0304080230 设计时间: 10-11 学年 2 学期 2011年5月

一、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 二、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j 分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 三、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘公式计算得到ω。输出层采用公式计算模糊神经网络的输出。 四、嘉陵江水质评测 水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。 水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

ANFIS模糊神经网络研究(二)

实验 ANFIS神经网络的构建与使用 一、实验目的 1.加深对ANFIS神经网络原理的理解及使用; 2.掌握使用ANFIS神经网络解决实际问题的方法。 二、实验内容 本次实验通过ANFIS神经网络在用电预测中的应用, 对未来某交易时段内统负荷的预先估计。负荷预测是进行实时控制、制定运行计划和发展规划的基础,是电力市场决策支持软件的基本组成部分。并观察同ANFIS神经网络的各个参数对ANFIS神经网络的影响: 1、该用电预测的实例中,常规重要的量化指标主要:时间(date)、实际用电值(x)、以及拟合用电值(y)为输出项;本实验中通过选取date、x等指标, y为输出变量;运用评价数据对训练好的ANFIS 系统进行验证。通过仿真实验表明, 该方法行之有效, 并可大大提高故障诊断效率, 具有较强的实用性。实验数据见 《electricity-data.xls》。 2、在初始参数下,观测ANFIS神经网络的训练过程及使用测试数据进行仿真时的输出,然后将训练次数设置为100、800、1200等等,分析网络的输出效果,以便确定合适的训练次数。 3、在保持其它参数不变的情况下,改变隶属度函数的类型(或者隶属函数的个数),例如取钟形、S形、梯形、高斯形等等,观测ANFIS神经网络的训练过程和输出,以便最终确定隐含层神经网络的个数。

4、在ANFIS人工神经网络已经训练好的情况下,从样本数据中抽取若干数据进行模型测试,测试训练好的ANFIS人工神经网络能否正确逼近它们。 注意:模型训练时可选取80%样本用于建模,另20%用作模型验证。 三、实验方法与步骤 1.数据准备 ①准备样本数据文件: electricity-data.xls。 ② “ID”属性为数据列编号,不需时,可以选择去掉。 ③将“electricity-data.xls”文件的12条数据中前9条数据 作为训练数据集,后3条数据作为测试数据集,并保存为文件。 2.创建方案:登录TipDM平台(https://www.sodocs.net/doc/072585837.html,)后的默认页面即 为“方案管理”,在此页面,选择“分类与回归”创建一个新方案,方案名称:自适应模糊神经网络在用电预测中的应用 方案描述:电力负荷预测是根据电力负荷的历史数据,考虑其它外部客观因素的影响,对未来某交易时段内系统负荷的预先估计。负荷预测是进行实时控制、制定运行计划和发展规划的基础,是电力市场决策支持软件的基本组成部分。信息输入完成后点“确定”保存方案。 3.上传数据:进入“数据管理”标签页,选择electricity-data.xls, 并上传,上传的数据将自动显示在列表框中,若不能正确显示,点“刷新”按钮。 4.预测建模:“系统菜单”中选择“分类与回归→神经网络→ANFIS

模糊神经网络综述

1.模糊神经网络的提出 模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的,而不是竞争的。在协作体中,各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。 2.模糊神经网络的研究进展 模糊神经网络的发展经历了一个漫长的过程。MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。此后,人们对模糊神经网络研究得很少。直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。 (1)引入模糊运算的神经网络———狭义模糊神经网络 狭义模糊神经网络通过调整参数进行学习。其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。(2)用模糊逻辑增强网络功能的神经网络 这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。 (3)基于神经网络的模糊系统—神经模糊系统 于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。这类模糊神经网络按照模糊逻辑的运算步骤分层构造,不改变模糊系统的基本功能(如模糊化、模糊推理和解模糊化)。 3.糊神经网络的应用 在基于模糊神经网络的控制器方面,Berenji和Khedker(1992)采用增强式学习方法提出了GARIC控制器结构,该系统通过三个神经网络完成了控制的功能:ASN进行普通模糊控制,AEN评价控制效果,SAM随机综合ASN和AEN的过程,然后产生控制信号;Lin和Lee(1994)提出了一种自动构造模糊系统的方法,该方

第8章 模糊神经网络方法

第八章 模糊神经网络算法 火灾火情决策是一个复杂的过程,它包括接收输入信号,与已知信息和经验进行比较,对输入信号作出判决,并给出正常、火警或故障信号。通常火灾自动报警系统的决策系统是很简单,它根据单个传感器送来信息作出是否发生火灾的判决。例如,当感烟探测器探测到的粒子数达到预定阈值,就发出火警信号。这些粒子可能是烟雾粒子,也可能是水雾或灰尘等非火灾产生的粒子,普通感烟探测器无法区分烟雾粒子,还是水雾和灰尘粒子,这就导致误报的发生。 经过长期的研究发现,火灾的发生具有双重性,既有它的随机性一面,又有它的确定性一面。人们并不能确切的知道何时发生火灾,但是当具备了发生火灾的条件,就会发生火灾,出现表征火灾的火灾参量。如果同时测量这些火灾参量,对信号进行综合分析处理,那么,火灾的误报率便大大降低。然而火灾的复杂性还在于相同的材料在不同的环境下,具有不同的着火温度,相同的环境不同的材料,着火条件也不一样,人类的活动以及环境的变化事先也无法确定,所以实际的火灾参量是随着空间和时间的变化而变化,很难用建立一种或几种数学模型进行精确描述。因此,火灾探测信号检测是一种十分困难的信号检测,它要求信号处理算法能够适应各种环境条件的变化,自动调整参数以达到既能快速探测火灾,又有很低的误报率。 而神经网络与模糊系统都属于一种数值化的和非数学模型的函数估计和动力学系统。它们都能以一种不精确的方式处理不精确的信息。因而它在火灾探测领域具有美好的应用前景。 第一节 模糊逻辑与模糊计算 一、模糊集合及其运算规则 (一) 模糊集合与隶属度 人们往往把讨论的议题限制在某个相关的范围内,例如讨论火灾问题,不会去谈论如何打乒乓球,讨论的范围称为“论域”。用大写字母U 、V 、X 、Y 表示。论域中的每个对象称为“元素”,用小写字母u 、v 、x 、y 表示。具有某些特定属性的元素的全体称为U 上的一个“集合”,常用大写字母A 、B……表示。 普通集合概念是论域中的任一元素,要么属于某个集合,要么不属于该集合,不允许有含混不清的说法,例如乒乓开关不是接通,就是断开。但是在现实生活中,却充满了模糊事物和模糊概念,例如“瘦子”集合,“少年”集合,“温度低”集合等等,其边界都是不明确的。将这类边界不明确的集合称为模糊集合,这里用A 表示一个模糊集合。 给定论域U 上的一个模糊集合A ,是指对于任意x U ∈都确定一个数A (x)μ , 0≤ A (x)μ ≤1,它表示x 对~ A 的隶属程度。 A A=((x)|x) , x U μ?∈ A (x )[0,1] μ∈

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

模糊神经网络讲义

模糊神经网络(备课笔记) 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌等,现在简化改成一个综合评价:好、坏、一般等,都是根据个人爱好或者个人经验等模糊概念进行判断的。 在科学发展的今天,尤其在工程研究和设计领域中,这些模糊性问题就无法回避了,要求对数据进行定量分析,那如何对其进行定量分析呢? 1965年,Zadeh教授发表一篇论文“模糊集合”(Fuzzy sets),所谓模糊集合就是指边界不清的集合。提出用“隶属函数”(menbership function)这一概念来描述现象差异中的中间过渡,突破了德国人Cantor创立的古典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。Zadeh认为应该重新把模糊性和精确性统一在一起,因为在现实生活中复杂事物要绝对精确是不可能的,实际上只是把所谓的不准确程度降低到了无关重要的程度。他这篇论文第一次引人注目地提出了模糊性问题,给出了模糊概念的定量表示法,标志着模糊数学的诞生。模糊数学是使模糊现象定量化的应用数学分支学科。由于它突破了传统数学绝不允许模棱两可的约束,使那些与数学毫不相关的学科都可能用定量化和数学化加以描述和处理,从而显示其强大的生命力。 在模糊评价中,最基本和使用最多的是隶属度和隶属函数。隶属度表示元素u属于模糊集合U的程度;也就是对模糊集合的判断是用元素对此集合的从属程度大小来表达的。 模糊系统 模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。 模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。所以,它不需要知道系统的精确数学模型。对不确定的非线性的系统来说是一种有效的控制途径。但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集。这样会使控制规则搜索范围的扩大、搜索时间增加、降低了决策的速度,则影响了动态过程的品质。因此,隶属函数和控制规则的优化是提高品质的关键,在本质上,是对模糊控制中的知识进行正确性校正。

相关主题