搜档网
当前位置:搜档网 › 冲激函数

冲激函数

冲激函数
冲激函数

一冲激函数的定义

在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高的奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。

1 单位冲激函数的普通数学定义

定义有多种方式,其中

定义1设有一函数P(t)

当n趋近于∞时,函数P(t)的宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。

定义2 狄拉克(Dirac)定义

上面两个对单位冲激函数的定义是不符合普通函数的定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定的值,而δ(t)在唯一不等于零的点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数的范畴,不能用普通函数进行定义,要用广义函数进行严格的定义。

2 单位冲激函数的广义定义

选择一类性能良好的函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值N的映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为

式中检验函数是连续的,具有任意阶导数,且用其各阶导数在无限远处急剧下降的普通函数这类函数的全体构成的检验函数空间称为急降函数

空间,用表示.在上定义的广义函数称为缓增广义函数它的全体构成广义函数空间,用这类广义函数有良好的性质。根据以上定义,如有一广义函数f(t),它与的作用也赋给相同的值,即若

就认为二广义函数相等,记作f(t)=g(t)。按照广义函数的理论,冲激函数δ(t)由式

定义,即冲激函数δ(t)作用于检验函数的效果是给它赋值。如将(1)式中的函数看做广义函数,则有:

当n趋近于∞时在(,)区间内有=,取广义函数(t)的极限(广义极限),得

比较以上两式,得

按照此定义,冲激函数有多种定义形式,如:

δ(t)=高斯钟形函数

δ(t)=取样函数

δ(t)=双边指数函数

等等

而对于离散的δ[n]定义很简单:

δ[n]=1,(n=0)

δ[n]=0,(n 0)

二 冲激函数的性质 1.微分性质

冲激函数δ(t)

的一阶导数

可定义为

:

通常称δ‘

(t )为单位冲激偶,用下图所示的图形符号表示

冲激偶信号两个重要性质

n 阶导数为

:

由于选好了性能良好的检验函数空间中,广义函数的各阶导数存在并属于缓增广义函数空间中,广义函数的求导运算和求极限运算可以交换次序,这就摆脱了普通函数求导求极限运算的限制,分析更加灵活简便。

2.积分性质

设有一广义函数G(t)的导数g(t),就称G(t)是g(t)的原函数,令G(-)=0,则有

G(t)=

这样δ(t)函数的积分就定义为δ(t)

=

=

,

以上两式不能看作普通积分,这里仅仅是一种表示形式,它表明δ(t)

的原函数是

)

0(')()('x dt t x t -=?

-δ0

)('=?

-dt t δ

,的原函数是,当t时有=1,和=0

3.取样性质

根据函数的广义定义,可以推出下面公式:

f(0)为普通函数,即使f(t)是缓升的,只要f(t) 在t=0处连续,上式则成立,被称为函数的取样性质,即冲激函数从普通函数f(t)中选出函数值f(0).也可以推出

4.移位性质

表示在t=0处的冲激,在t=处的冲激函数可表示为δ(t—),式中的为常

数,于是有

5.尺度变换

因=) ,令f(t)=1时f(0)=1 ,则有=类似地一阶导数

有:=,n阶导数有:=。

6.奇偶性

在=中取a=-1,得这表明n为偶数时有,

;当n为奇数时有即为奇函数。

三冲激函数的应用

1. 用冲激函数匹配法求系统的完全响应

例1.++3i(t)=+3e(t)其中e(t)=2u(-t)+4u(t)

系统完全解可写为:i(t)=(++4)u(t)

i()=,=--3

=(

=[ i()- i()]

=()+[]=(+(--3)

以及(t)=2,(t)=2

在t=0处,将i(0),(0),及e(0),(t),(t)代入微分方程,有

(+ (--3)+ 4(=2

两边系数相等,就可得出=则i(t)=(+4)u(t)

2. 系统的单位冲激响应h(t)或h[n]

由于单位冲激函数的傅里叶变换为1,所以任何信号与冲激函数相卷积后仍为它本身,冲激信号可视为标准量单位“1”,而对于LTI系统,单位冲激响应h (t)就是某一特定系统的单位“1”。

若已知系统的单位冲激响应,则y(t)=h(t)*x(t),对于离散序列y[n]=x[n]*h[n] 若知道其傅里叶变换H(jw),则Y(jw)= H(jw)X(jw),对于离散序列Y(=H (X(

3. 信号的采样

若对某一连续时间信号x(t)以周期T进行采样,则采样后信号

(t)==

,=

根据对冲激函数的分析,可以得出,当>2时,采样后信号与没有发生混叠,

加一滤波器后即可重建。

4. 利用冲激函数表示非周期信号

根据冲激函数的取样性质,任意信号x(t)可用

X(t)=

x[n]=

五用matlab求解某一系统的冲激响应

设某一LTI系统+4+3y=x(t)

Matlab代码如下:

sys=tf([1],[1,4,3]);

t=0:0.01:5;

y=impulse(sys,t);

plot(t,y);

grid on

图形如下:

总结

以上对单位冲激函数进行了比较科学的定义,并分析了其特性以及在在信号分析中的用途,冲激函数时很重要的一类函数,存在着极为广泛的用途。

参考文献:

于慧敏《信号与系统》第二版

奥本海默《信号与系统》

周锦诚《傅里叶级数与广义函数论》

冲激函数

一冲激函数的定义 在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高的奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。 1 单位冲激函数的普通数学定义 定义有多种方式,其中 定义1设有一函数P(t) 当n趋近于∞时,函数P(t)的宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。 定义2 狄拉克(Dirac)定义 上面两个对单位冲激函数的定义是不符合普通函数的定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定的值,而δ(t)在唯一不等于零的点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数的范畴,不能用普通函数进行定义,要用广义函数进行严格的定义。 2 单位冲激函数的广义定义 选择一类性能良好的函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值N的映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为 式中检验函数是连续的,具有任意阶导数,且用其各阶导数在无限远处急剧下降的普通函数这类函数的全体构成的检验函数空间称为急降函数

空间,用表示.在上定义的广义函数称为缓增广义函数它的全体构成广义函数空间,用这类广义函数有良好的性质。根据以上定义,如有一广义函数f(t),它与的作用也赋给相同的值,即若 就认为二广义函数相等,记作f(t)=g(t)。按照广义函数的理论,冲激函数δ(t)由式 定义,即冲激函数δ(t)作用于检验函数的效果是给它赋值。如将(1)式中的函数看做广义函数,则有: 当n趋近于∞时在(,)区间内有=,取广义函数(t)的极限(广义极限),得 比较以上两式,得 按照此定义,冲激函数有多种定义形式,如: δ(t)=高斯钟形函数 δ(t)=取样函数 δ(t)=双边指数函数 等等 而对于离散的δ[n]定义很简单: δ[n]=1,(n=0)

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统常用公式

1 信号与系统常用公式 一、周期信号的傅里叶级数 1.三角函数形式的傅里叶级数:0111()[cos()sin()]n n n f t a a n t b n t ωω∞ ==++∑,其中 01 011()t T t a f t dt T += ?,010112()cos()t T n t a f t n t dt T ω+=?,010112()sin()t T n t b f t n t dt T ω+=?。 2.指数形式的傅里叶级数:11()()jn t n f t F n e ωω∞ =-∞ =∑ ,其中0110 111()()t T jn t t F n f t e dt T ωω+-= ?。 二、傅里叶变换 1.傅氏正变换:()[()]()j t F F f t f t e dt ωω∞ --∞ ==? 2.傅氏逆变换:11()[()]()2j t f t F F F e d ωωωωπ ∞ --∞ ==? 3 1.拉氏正变换:0 ()[()]()st F s L f t f t e dt ∞ -==? 2.拉氏逆变换:11()[()]()2j st j f t L F s F s e ds j σσπ+∞ --∞ ==?

2 3 四、z 变换 1.z 正变换:0 ()[()]()k k X z Z x k x k z ∞ -===∑ 2.z 逆变换:111 ()[()]()2k C x k Z X z X z z dz j π--==? 3.z 变换的基本性质: 1.连续时间信号的卷积:121221()()()()()()f t f t f f t d f f t d ττττττ∞ ∞ -∞ -∞ *=-=-?? 2.离散时间信号的卷积:()()()()()()n n x k h k x n h k n h n x k n ∞ ∞ =-∞ =-∞ *=-=-∑∑ 3.卷积定理: (1)1212[()()]()()F f t f t F F ωω*=? (2)12121[()()]()()2F f t f t F F ωωπ?=* (3)1212[()()]()()L f t f t F s F s *=? (4)12121[()()]()()2L f t f t F s F s j π?=* (5)[()()]()()Z x k h k X z H z *= (6)1 [()()]()()2C z dv Z x k h k X v H j v v π?=?

冲击函数

1、单位阶跃函数 单位阶跃函数用符号表示,其定义式如下 (1) 此函数的图形如图l所示。 图1 单位阶跃函数的图 单位阶跃函数的定义式表明:该函数在t<0 时,其值为0;t>0时,其值 1;当t=0时,发生跳变,其值未定(可取为);当t由负值(或正值)趋近于0时, 其值则是确定的,即 其中t=0-是t由负值趋近于零的极限,t=0+则是t由正值趋近于零的极限。 函数称为移位的单位阶跃函数。因为若令,则根据式(1)有 图2 移位的单位阶跃函数的图形 此函数的图形表示在图2a中(仅向右平移)。由此可见,函数在时,其值为0;时,其值为 时,发生跳变。

与此类似,移位的单位阶跃函数表示在图2(b)中,此函数在时发生跳变。 对任一函数f(t)与单位阶跃函数的乘积f(t)而言,当t<0时,其值为0;当t>0时,等于f(t)。也就是f(t)只存在于t>0的区间。类似地, f(t)只存在于t>的区间。 图3 用单位阶跃函数表示电路的输入示例 图3(a)表示的网络在t<0时,A、B两端问的电压为零;在t>0时,接入一个电压为的直流电压源。此电路 用单位阶跃函数等效地表示于图3(b)。 2、单位冲激函数 1、单位冲激函数 单位冲激函数用符号表示,其定义式如下 (2) 图5 单位冲激函数的图形 这表明单位冲激函数只存在于t=0时,其图形与t轴之间所限定的面积等于 1,如图5(a)所示(图中括号内的数值表示函数图形的面积)。

2、移位的单位冲激函数: 令 其图如5(b) 3、冲激函数: ——常数A与的乘积。 单位冲击函数与单位阶跃函数之间的关系: 图6 冲激函数Aδ(t)的图形

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

冲激信号δ(t)的三种定义与有关性质的简单讨论

冲激信号δ(t)的三种定义与相关性质 的简单讨论 信息科学与工程学院1132班 樊列龙 学号:0909113224 有一些物理现象,如理学中的爆炸、冲击、碰撞··,电学中的放电、闪电雷击等,它们都有共同特点: ① 持续时间短. ② 取值极大. 冲击函数(或冲击信号)就是对这些物理现象的科学抽象与描述。通常用δ(t)表示冲激信号,它是一个具有有限面积的窄而高的尖峰信号,它也可以被称作δ函数或狄拉克(Dirac )函数,在信号领域中占有非常重要的地位. 由于冲激函数的特殊性,现给出其两种不严格的定义如下: 定义一:用脉冲函数极限定义冲激信号. 如图1-1(a)的矩形脉冲,宽为τ,高为τ 1 ,其面积为A.当A=1称之为单位冲激信号. 现保持脉冲面积不变,逐渐减小τ,则脉冲的幅度逐渐增大,当0→τ时,矩形脉冲的极限成为单位冲激函数,即: ?? ? ?????? ??--??? ??+=→221lim )(0τετετδτt t t (1-1) 冲击信号的波形就如1-1(b)所示. δ(t)只表示在t=0点有“冲激”,在t=0点以外的各处函数值

图 1-2 均为0,其冲激强度(冲激面积)为1,若为A 则表示一个冲击强度为E 倍单位值得函数δ,描述为A=E δ(t),图形表示时,在箭头旁边注上E 。 也可以用抽样函数的极限来定义δ(t)。有 ?? ? ???=∞ →)(lim )(kt Sa k t k πδ (1-2) 对式(1-2)作如下说明: Sa(t)是抽样信号,表达式为 t t t a sin )(S = (1-3) 其波形如图1-2所示,Sa(t)∝1/t, 1/t 随t 的增大而减小,sint 是周 期振荡的,因而Sa(t)呈衰减振荡; 并且是一个偶函数,当t=±π,±2π, ·,sint=0,从而Sa(t)=0,是其 (a)τ逐渐减小的脉冲函数 (b)冲激信号 图1-1

单位脉冲函数

在物理和工程技术中, 有许多物理、力学现象具有脉冲性质. 它反映出除了连续分布的量以外,还有集中于一点或一瞬时的量,例如冲力、脉冲电压、点电荷、质点的质量等等. 研究此类问题需要引入一个新的函数,把这种集中的量与连续分布的量来统一处理。单位脉冲函数,又称狄拉克(Dirac )函数,简记为δ一函数,便是用来描述这种集中量分布的密度函数. 下面我们通过两个具体的例子,说明这种函数引入的必要性. 1在原来电流为零的电路中, 某一瞬时(设为0=t )进入一单位电量的脉冲, 现在要确定电路上的电流)(t i , 以)(t q 表示上述电路中的电荷函数, 则 )(t q =? ? ?=≠,0,1, 0,0t t 由于电流强度是电荷函数对时间的变化率, 即 )(t i = dt t dq )(=0lim →?t t t q t t q ?-?+)()(, 所以, 当0≠t 时, )(t i =0;当0=t 时,由于)(t q 不连续, 从而在普通导数意义下, )(t q 在这 一点是不能求导数的. 如果我们形式地计算这个导数, 得 )0(i =0 lim →?t t q t q ?-?+) 0()0(=0lim →?t (t ?-1).∞=, 这表明在通常意义下的函数类中找不到一个函数能够表示这样的电流强度. 为此, 引进 一称为狄拉克(Dirac)的函数. 有了这种函数, 对于许多集中于一点或一瞬时的量, 例如点电荷点源, 集中于一点的质量及脉冲技术中的非常窄的脉冲等, 就能够象处理连续分布的量那样, 以统一的方式加以解决. 1 单位脉冲函数的定义 定义1 如果函数)(t δ称满足 )i )(t δ0=,(当0≠t 时) )ii ()1=?∞ ∞ -dt t δ,或者()?=I dt t 1δ,其中I 是含有0=t 的任何一个区间,则称) (t δ为δ一函数. . 更一般的情况下,如果函数满足 )i )(a t -δ0=,(当a t ≠时) )ii ()1=-?∞ ∞ -dt a t δ,或者()?=-I dt a t 1δ,其中I 是含有a t =的任何一个区间, 则称为)(a t -δ函数. 在现实生活中,这种函数并不存在,它只是如下特殊规律的数学抽象;在某定点非常狭小的区域内,所讨论的问题取非常的值;在这个领域之外,函数值处处为0.如函数

信号与系统课程标准

《信号与系统》教学大纲 第一部分:课程性质、课程目标与教学要求课程性质:《信号与系统》是电子信息工程专业本科生的专业基础主干课程,是该专业的必修课程。在专业培养方案中安排在第二学年第二学期实施。该课程与本科生的许多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是研究各类电子系统共性的一门技术基础课程。它具有科学方法论的鲜明特点,研究的问题带有普遍性,对工程实践具有重要的指导意义。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。 课程目标:设置本课程的目的在于使学生通过本课程的学习,初步建立起有关“信号与系统”的基本概念,掌握“信号与系统”的基本理论和基本分析方法,为进一步学习后续课程及从事通信、信息处理等方面有关研究工作打下基础。通过本课程的学习,学生应该掌握信号与系统的基本概念、基本理论和基本分析方法,通过一定数量的习题练习加深对各种分析方法的理解与掌握。 教学要求:信号与系统是一门理论结合实践的课程,本课程旨在使学生掌握信号与线性系统的基本理论,基本分析法,为后续课的学习及从事实际的科研工作奠定必要的基础。因此,要求学生在学习中,关注基本知识与方法的应用,积极参与信号与系统实践课程,课后要做一些相关练习和讨论。 第二部分:关于教材与学习参考书的建议本课程使用的教材是由高等教育出版社出版2006年吴大正等编著的《信号与线性系统分析》(第4版)。该教材入选“十五”国家级重点教材,发行数万册,是高等教育出版社比较全面系统的高校信号与系统教材。很多高校以该教材建设精品课程。 为了更好地理解和学习课程内容,建议同学可以进一步阅读以下几本重要的参考书: 1、郑君里:《信号与系统》,高等教育出版社2006年1月 2、管致中:《信号与线性系统》,高等教育出版社,2004年1月 3、刘泉主编:《信号与系统题解》,华中科技大学出版社,2003年12月 4、梁虹主编:《信号与系统分析及MATLAB实现》,电子工业出版社,2002 5、张小虹编著:《信号与系统》,西安电子科技大学出版社,2004 第三部分:课程教学内容纲要 第一章信号与系统 1.基本内容: 连续时间信号与离散时间信号的概念;连续时间系统和离散时间系统的概念;信号的基本运算;卷积的计算。 2.基本要求:

单位冲激函数的妙用(图

单位冲激函数的妙用(图) 上一回说到,单位冲激函数是连续函数与离散函数之间相互转换的桥梁,因此在工程技术尤其是IT领域的信号分析中有十分重要的妙用。 比如有许多不满足绝对可积条件的信号,应用单位冲激函数就可以求出其傅立叶变换,“化验”出信号包含的频率成分。 我们已经知道单位冲激信号的频谱密度函数是常数1,则根据傅里叶变换的对称性,有常数(直流信号)f(t)=1的傅里叶变换(频谱密度函数)为 (1)可见单位冲激函数δ(t)与常数1构成一个傅里叶变换对: (2)推而广之,再根据傅里叶变换的频移性质,可知指数函数的频谱为频域的冲激函数 (3)再根据欧拉公式,可导出正弦函数的傅里叶变换(频谱)为离散频谱: (4) (5)

一般地,对于周期函数(傅立叶级数展开式的指数形式) (6)利用冲激函数的特性也可求出其傅里叶变换为 (7)综上所述,周期函数的傅里叶变换(频谱密度函数),是位于周期函数各次谐波频率nω1处的频域冲激函数串,频率间隔是周期函数的基频ω1,冲激强度等于相应的傅立叶系数C n 的2π倍。 可见用频域的冲激函数串来表示时域周期信号的离散频谱是非常方便的。通过引入冲激函数的概念,把傅里叶变换的适用范围拓展到周期函数,则周期函数的离散频谱都可以用冲激函数串方便地表示。 例:有脉幅为E、脉宽为τ、周期为T的周期矩形脉冲信号f T(t),如下图所示: 图1 周期矩形脉冲的时域波形 求其离散频谱。我们知道通过傅立叶级数的方法,求出其傅立叶系数为

(8)其中ω1=2π/T为基频。由式(7)可得周期矩形脉冲的频谱密度函数为 (9)其离散频谱图如下图所示: 图2 周期矩形脉冲信号的频谱的冲激函数表示 单位冲激函数还有更大的妙用,且听下回分解。 (作者:周法哲2009-7-16于广东)

信号与系统课后习题参考答案

精心整理 1-试分别指出以下波形是属于哪种信号?题图1-1 1-2试写出题1-1图中信号的函数表达式。 1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。 题图1-3 ⑴ (1x ⑷2x ⑺1x 1-4 题图1-4 ⑴(1x ⑷2x ⑺1x 1-51-6⑴(t x 2⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1 )(t t t x = 1-7试画出下列信号的波形图: ⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π ⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --= ⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ

1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。 ⑴)1(1)(2Ω-Ω= Ωj e j X ⑵)(1 )(Ω-Ω-Ω =Ωj j e e j X ⑶Ω -Ω---=Ωj j e e j X 11)(4⑷21 )(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。 ⑴)() ()(221t x dt t x d t x +=⑵ττd x t x t ?∞-=)()(2 1-101-11⑴?∞ -⑶?∞ -⑸?∞ -1-12⑴x 1⑶x 31-13⑴t y =)(⑶)2()(t x t y =⑷)1()1()(t x t x t y ---= ⑸?∞ -=2)()(t d x t y ττ⑹2 ()(n x n y = ⑺)()(n nx n y =⑻)1()()(-=n x n x n y 1-14如题图1-14中已知一线性时不变系统当输入为)(t x 时,响应为)(t y 。试做出当输入为)(1t x 时, 响应)(1t y 的波形图。

3道经典例题冲激函数匹配法

经典例题1 教材第65页例题2-9的姐妹题: 设描述系统的微分方程式为)(2)()()(3)(4)(2222t e dt t de dt t e d t r dt t dr dt t r d ++=++,试求其冲激响应。 用第三版教材65页的解法,不能解答此题 解: (一)0-至0+期间系统的微分方程是: )(2)()()(3)(4)(2222t dt t d dt t d t r dt t dr dt t r d δδδ++=++ …………………(1) 根据方程两边奇异信号平衡的原则,可以假设: 22()d r t dt =)()()()(22t u d t c dt t d b dt t d a ?+++δδδ ()dr t dt =)()()(t u c t b dt t d a ?++δδ )()()(t u b t a t r ?+=δ (2) 将上述3式代入(1)式,可得32,11,3,1-==-==d c b a 系统的初始状态为零,也就是'(0)0,(0)0r r --==,所以 3)0(-=+r ,11)0('=+r (二)0+时刻以后系统处于零输入状态,系统的微分方程是: 22()()43()0d r t dr t r t dt dt ++= 设系统的齐次解(特解为零)为:3()()()t t r t Ae u t Be u t --=+ 则: 3-=+B A , 113=--B A ,从而可以知道4-=A , 1=B )()(4)(3t u e t u e t r t t --+-= (三)在考虑2式可以知道系统的冲激响应包含奇异函数,所以系统的冲激响应为:)()()(4)(3t t u e t u e t r t t δ++-=--

信号与系统常用公式

常用 公式 第一章 判断周期信号方法 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。 2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。 信号的能量 def 2 ()E f t dt +∞ -∞=? 信号的平均功率 def 2 /2 /2 1lim ()T T T P f t dt T +-→∞=? 冲激函数的特性 动态系统是线性系统的条件可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x ?=?+?=?+????????零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=?+????????????? 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+???????????? 判断系统时不变、因果、稳定的方法。 线性时不变的微分和积分特性。 第二章 微分方程的经典解:()()()()()()h p y t y t y t =+完全解齐次解特解 齐次解 () (1)(1)110()()...()()0n n n y t a y t a y t a y t --++++= 特解的函数形式与激励函数的形式有关。 初始状态和初始值。 零输入和零状态响应 ()()()x f y t y t y t =+ 冲激响应 ()[{0},()]h t T t δ= 卷积 1212()()()()f t f t f f t d τττ∞ -∞*=-? 卷积积分特性 卷积微分特性

冲激函数

一冲激函数の定义 在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高の奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。 1 单位冲激函数の普通数学定义 定义有多种方式,其中 定义1设有一函数P(t) 当n趋近于∞时,函数P(t)の宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。 定义2 狄拉克(Dirac)定义 上面两个对单位冲激函数の定义是不符合普通函数の定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定の值,而δ(t)在唯一不等于零の点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数の范畴,不能用普通函数进行定义,要用广义函数进行严格の定义。 2 单位冲激函数の广义定义 选择一类性能良好の函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值Nの映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为 式中检验函数是连续の,具有任意阶导数,且用其各阶导数在无限远处急剧下降の普通函数这类函数の全体构成の检验函数空间称为急降函数

空间,用表示.在上定义の广义函数称为缓增广义函数它の全体构成广义函数空间,用这类广义函数有良好の性质。根据以上定义,如有一广义函数f(t),它与の作用也赋给相同の值,即若 就认为二广义函数相等,记作f(t)=g(t)。按照广义函数の理论,冲激函数δ(t)由式 定义,即冲激函数δ(t)作用于检验函数の效果是给它赋值。如将(1)式中の函数看做广义函数,则有: 当n趋近于∞时在(错误!未找到引用源。,错误!未找到引用源。)区间内有 =,取广义函数错误!未找到引用源。(t)の极限(广义极限),得 比较以上两式,得 按照此定义,冲激函数有多种定义形式,如: δ(t)=错误!未找到引用源。高斯钟形函数 δ(t)=错误!未找到引用源。取样函数 δ(t)=错误!未找到引用源。双边指数函数 等等 而对于离散のδ[n]定义很简单: δ[n]=1,(n=0) δ[n]=0,(n错误!未找到引用源。0) 二冲激函数の性质

信号与系统课后习题答案

1-1 试分别指出以下波形是属于哪种信号 题图1-1 1-2 试写出题1-1图中信号的函数表达式。 1-3 已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并 加以标注。 题图1-3 ⑴ )2(1-t x ⑵ )1(1t x - ⑶ )22(1+t x ⑷ )3(2+t x ⑸ )22 (2-t x ⑹ )21(2t x - ⑺ )(1t x )(2t x - ⑻ )1(1t x -)1(2-t x ⑼ )2 2(1t x -)4(2+t x 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以 标注。 题图1-4 ⑴ )12(1+n x ⑵ )4(1n x - ⑶ )2 (1n x ⑷ )2(2n x - ⑸ )2(2+n x ⑹ )1()2(22--++n x n x ⑺)2(1+n x )21(2n x - ⑻ )1(1n x -)4(2+n x ⑼ )1(1-n x )3(2-n x 1-5 已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。 题图1-5 1-6 试画出下列信号的波形图: ⑴ )8sin()sin()(t t t x ΩΩ= ⑵ )8sin()]sin(2 1 1[)(t t t x ΩΩ+ =

⑶ )8sin()]sin(1[)(t t t x ΩΩ+= ⑷ )2sin(1)(t t t x = 1-7 试画出下列信号的波形图: ⑴ )(1)(t u e t x t -+= ⑵ )]2()1([10cos )(---=-t u t u t e t x t π ⑶ )()2()(t u e t x t --= ⑷ )()() 1(t u e t x t --= ⑸ )9()(2 -=t u t x ⑹ )4()(2 -=t t x δ 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。 ⑴ )1(1)(2Ω-Ω= Ωj e j X ⑵ )(1 )(Ω-Ω-Ω =Ωj j e e j X ⑶ Ω -Ω---=Ωj j e e j X 11)(4 ⑷ 21 )(+Ω=Ωj j X 1-9 已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。 ⑴ )() ()(221t x dt t x d t x += ⑵ ττd x t x t ?∞-=)()(2 1-10 试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。 题图1-10 1-11 试求下列积分: ⑴ ?∞ ∞--dt t t t x )()(0δ ⑵ ? ∞ ∞ ---dt t t u t t )2()(00δ ⑶ ? ∞ ∞---dt t t t e t j )]()([0δδω ⑷ ?∞ ∞--dt t t )2(sin π δ ⑸ ? ∞ ∞ --++dt t t t )1()2(3δ ⑹ ? --11 2)4(dt t δ 1-12试求下列积分: ⑴ ? ∞ -'-=t d t x ττδτ)()1()(1 ⑵ ?∞ --=t d t x ττδτ)()1()(2 ⑶ ? ∞ ---= t d u u t x ττττ)]1()([)(3

单位冲激函数(图)

单位冲激函数(图) 上一回说到,单个矩形脉冲的时域波形如下图: 图1 单个矩形脉冲信号 根据傅里叶变换可求出其频谱函数 (1)频谱函数的图像(频域分布曲线)如下图:

图2 单个矩形脉冲的频谱函数 一、特殊的单个矩形脉冲信号 如果我们令单个矩形脉冲信号的脉幅在数值上取 (2)则无论脉宽τ怎样变化,函数图象下面的面积恒等于1,即 (3)如下图所示: 图3 特殊的单个矩形脉冲 这个特殊的单个矩形脉冲信号的数学表达式为 (4)

因而其傅立叶变换由式(1)得 (5)这是一种最大幅值为1的抽样函数,其频域曲线如下图 图4 特殊的单个矩形脉冲的频谱 二、单位冲激函数的定义 对图3和式(4)表示的特殊的单个矩形脉冲,如果我们令脉宽τ趋于0,取极限,则单个矩形脉冲变成在t=0处持续时间无限小、幅度无限大、面积仍为1的特殊信号(或广义函数)。科学界把这个广义函数叫做单位冲激函数或狄拉克(Dirac)函数。记为 (6)单位冲激函数的图象如下图所示

图5 单位冲激函数的图象 单位冲激函数是一种广义函数,它的幅值为无穷大,图象只能用带箭头的射线表示。但通常不标出其幅值∞,而是只用括号标出其冲激强度(S),即面积。由式(3)和(6)可知其面积(冲激强度)为1,所以称之为“单位”冲激函数。此外,单位冲激函数的自变量不仅仅限于时间t,可以是任何物理量x。 实际上还常用延迟的单位冲激函数,数学表达式如下: (7)其图象为

图6 延迟的单位冲激函数的图象 三、单位冲激函数的性质 根据单位冲激函数的定义,它具有下列最基本的性质: 1、广义积分归一性: (8) 2、筛分性质:单位冲激函数与任意函数乘积,等于只筛选出t=t0时刻f(t)的值作为冲激强度。 (9) 3、抽样性质: (10) 更一般地,有 (11) 即通过与δ函数(或延时的δ函数)乘积的积分,把任意的连续函数f(t)抽样为t=t0处的一个函数值。 4、微积分性质:δ函数的累计积分等于单位阶跃函数ε(t)。

信号与系统重点概念公式总结

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足: n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中 )(*t f i 为)(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数

相关主题