搜档网
当前位置:搜档网 › 酸性蚀刻液培训教材

酸性蚀刻液培训教材

碱性氯化铜蚀刻液原理及基础配方

碱性氯化铜蚀刻液 1.特性 1)适用于图形电镀金属抗蚀层,如镀覆金、镍、锡铅合金,锡镍合金及锡的印制板的蚀刻。 2)蚀刻速率快,侧蚀小,溶铜能力高,蚀刻速率容易控制。 3)蚀刻液可以连续再生循环使用,成本低。 2.蚀刻过程中的主要化学反应 在氯化铜溶液中加入氨水,发生络合反应: CuCl 2+4NH 3 →Cu(NH 3 ) 4 Cl 2 在蚀刻过程中,板面上的铜被[Cu(NH 3) 4 ]2+络离子氧化,其蚀刻反应如下: Cu(NH 3) 4 Cl 2 +Cu →2Cu(NH 3 ) 2 Cl 所生成的[Cu(NH 3) 2 ]1+为Cu1+的络离子,不具有蚀刻能力。在有过量NH 3 和Cl-的情 况下,能很快地被空气中的O 2所氧化,生成具有蚀刻能力的[Cu(NH 3 ) 4 ]2+络离子, 其再生反应如下: 2Cu(NH 3) 2 Cl+2NH 4 Cl+2NH 3 +1/2 O 2 →2Cu(NH 3 ) 4 Cl 2 +H 2 O 从上述反应可看出,每蚀刻1克分子铜需要消耗2克分子氨和2克分子氯化铵。因此,在蚀刻过程中,随着铜的溶解,应不断补加氨水和氯化铵。 应用碱性蚀刻液进行蚀刻的典型工艺流程如下: 镀覆金属抗蚀层的印制板(金、镍、锡铅、锡、锡镍等镀层) →去膜→水洗→吹干→检查修板→碱性蚀刻→用不含Cu2+的补加液二次蚀刻→水洗→检查→浸亮(可选择) →水洗→吹干 3. 蚀刻液配方 蚀刻液配方有多种,1979年版的印制电路手册(Printed Circuits Handbook)中介绍的配方见表10-4。 表10-4 国外介绍的碱性蚀刻液配方

国内目前大多采用下列配方: CuCl 2·2H 2 O 100~150g/l 、NH 4 Cl 100g/l 、NH 3 ·H 2 O 670~700ml/1 2 配制后溶液PH值在9.6左右。溶液中各组份的作用如下: NH 3·H 2 O的作用是作为络合剂,使铜保持在溶液里。 NH 4 Cl的作用是能提高蚀刻速率、溶铜能力和溶液的稳定性。 (NH4) 3PO 4 的作用是能保持抗蚀镀层及孔内清洁。 4.影响蚀刻速率的因素 蚀刻液中的Cu2+的浓度、PH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。掌握这些因素的影响才能控制溶液,使之始终保持恒定的最佳蚀刻状态,从而得到好的蚀刻质量。 Cu2+浓度的影响 因为Cu2+是氧化剂,所以Cu2+的浓度是影响蚀刻速率的主要因素。研究铜浓度与蚀刻速率的关系表明:在0-11盎司/加仑时,蚀刻时间长;在11-16盎司/加仑时,蚀刻速率较低,且溶液控制困难;在18-22盎司/加仑时,蚀刻速率高且溶液稳定;在22-30盎司/加仑时,溶液不稳定,趋向于产生沉淀。 注:1加仑(美制)=3.785升 1盎司= 28.35克1盎司/加仑=28.35/3.785=7.5G/1

蚀刻液类别

蚀刻液分类 目前已经使用的蚀刻液类型有六种类型: 酸性氯化铜 碱性氯化铜 氯化铁 过硫酸铵 硫酸/铬酸 硫酸/双氧水蚀刻液。 各种蚀刻液特点 酸性氯化铜蚀刻液 1) 蚀刻机理:Cu+CuCl2→Cu2Cl2 Cu2Cl2+4Cl-→2(CuCl3)2- 2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。 a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。 添加Cl-可以提高蚀刻速率的原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。 b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。较微量的Cu+就会显著的降低蚀刻速率。所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。 c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。当铜含量增加到一定浓度时,蚀刻速率就会下降。为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。 d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。温度太高会引起HCl过多地挥发,造成溶液组分比例失调。另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。 碱性氯化铜蚀刻液

碱性蚀刻液在线回收操作规范

碱性蚀刻液回用铜回收设备 操 作 规 范 (试用版) 2012 年 11月

目录 1.清洗 (3) 2.测试搅拌、泵、过滤器的运行情况 (3) 3.调配电解槽电解液的酸度 (3) 4.调配水洗液的酸度 (4) 5.调节好萃取缸1、2、3、4的液位 (4) 6.设备的启动、操作及注意事项 (5) 7.停机 (7) 8.参数检测方法 (8) 9.蚀刻液循环系统保养细则 (9) 10.了解氨气及其防范措 (10) 11.附表 (11)

1.清洗 1.1先用毛巾清理安装时缸里的灰尘和胶丝; 1.2再用自来水清洗2~3次,直至把各个缸清洗干净为止; 1.3清洗干净后,试水,往各个缸注自来水(至每个缸容积的3/4),检查各 个缸的性能,是否有漏夜; 2.测试搅拌、泵、过滤器的运行情况 2.1到电控箱的【泵浦界面】把搅拌、泵逐个逐个打开,逐个检查各搅拌、 泵是否反转异常等; 2.2如果发现异常,立刻停止启动,及时处理异常后才能试运; 2.3检查各个过滤器的运行情况,查看其是否压力过大等问题,及时做好处 理措施,防止压力过大损坏泵; 2.4检查各管道是否通畅,是否接好,是否漏液; 2.5检查完各个设备正常工作后,准备下阶段的工作。 3.调配电解槽电解液的酸度 3.1把电解槽里的自来水调至约8m3,把试水时多余的自来水排掉(如有杂物用 水瓢捞出来,以防堵泵和管道); 3.2把AC缸的循环泵P7开启、打开冷凝水阀门(把阀门开到最大); 3.3穿戴好防化服、水鞋、手套等劳保,加入纯度较高的硫酸(约2.8吨、浓 度98%),加硫酸时,不能单独进行,旁边一定要有人监视(由于加的量比较多,可多人轮换添加)

碱性蚀刻工序培训讲义

碱性蚀刻培训讲义 蚀刻是将板面上多余之铜蚀去得到合符要求的线路图形的重要工序。 一、工艺流程(外层) 退膜→水洗→蚀刻→子液洗→水洗→孔处理(沉金板)→退锡。 二、控制要点与工作原理 1.退膜:是利用碱性溶液进行干膜的剥除工作,我司使用的退膜液有3% KOH 与10-13% RR-2有机退膜液,其中KOH的氧化性较强,一般在溶液 中添加抗氧化剂,以防止蚀刻铜面的氧化。 2.蚀刻:是使用碱性蚀铜液将不需要的部份铜予以去除,而形成线路图形,碱 性CuCl2蚀刻液中主要含Cu(NH3)42+、Cl _ 、NH4+、OH _ 及一些有机、 无机添加剂。 (1)蚀刻反应原理为: Cu(NH3)4Cl2+Cu 2Cu(NH3)2Cl 所生成的[Cu(NH3)2]+为Cu+络离子,不具有蚀刻能力,在有过量NH3和Cl_的情况下,能很快地被空气中的O2所氧化,生成具有蚀刻能力的[Cu (NH3)4]2+络离子,其再生反应式如下: 2Cu(NH3)Cl+2NH4Cl+2NH3+1 2 O2 2Cu(NH3)4Cl2+H2O 蚀刻过程就是重复上述两个反应,简单一点就是Cu2+吃Cu成为Cu+,Cu+经氧化反又生成Cu2+,Cu2+又去吃Cu。 (2)在蚀刻过程中,随着铜的溶解,要不断补充氨水和氨化铵,这样才能使得[Cu(NH3)4]2+的再生,通过比重计和PH计的自动控制添加可实现上述反应的连贯。 (3)在生产过程中,重点要控制的应该是蚀刻的均匀性和蚀刻速率问题,均匀性是前提,假如蚀刻不均匀,蚀刻速率再大,也会造成局部线粗/线达不到要求,更何况加上板面电镀的不均匀,进一步造成蚀刻对局部的不均匀。

蚀刻工艺之酸性氯化铜蚀刻液

目录 摘要 (1) 1设计任务书 (2) 1.1项目 (2) 1.2设计内容 (2) 1.3设计规模 (2) 1.4设计依据 (2) 1.5产品方案 (2) 1.6原料方案 (2) 1.7生产方式 (3) 2 工艺路线及流程图设计 (3) 2.1工艺路线选择 (3) 2.2内层车间工艺流程简述 (4) 3.车间主要物料危害及防护措施 (6) 3.1职业危害 (6) 3.2预防措施 (6) 4.氯酸钠/盐酸型蚀刻液的反应原理 (7) 4.1蚀刻机理 (7) 4.2蚀刻机理的说明 (8) 4.3蚀刻中相关化学反应的计算 (8) 5.影响蚀刻的因素 (6) 5.1影响蚀刻速率的主要因素 (10) 5.2蚀刻线参数设计 (10) 6 主要设备一览表 (12) 7车间装置定员表 (13) 8投资表 (13) 9安全、环保、生产要求 (14) 致谢 (15) 参考文献 (16)

蚀刻工艺之酸性氯化铜蚀刻液 摘要:本文介绍了印制电路板制造过程中的酸性氯化铜蚀刻液,并对其蚀刻原理和影响蚀刻的因素进行了阐述。 关键词:印制电路板;酸性氯化铜;蚀刻; 分类号:F407.7 Brief principies to acid chlorination copper etching and factors analysis Chen yongzhou (Tutor:Pi-yan) (Department of Chemistry and Environmental Engineering, Hubei NormalUniversity , Huangshi ,Hubei, 435002) Abstract: In this paper acid chlorination etching solution was introduced. Meanwhile the etching principle and the factors affecting the etching rate been explain. Keywords: PCB;acid chlorination copper solution;etching

碱性蚀刻制程讲义全

碱性蚀刻制程讲义 目录 一、碱性蚀刻流程 二、为什么要蚀刻 三、碱性蚀刻制程需求 四、制程及产品介绍 五、特性及优点 六、制程控制 七、洗槽及配槽程序 八、问题及对策 九、信赖度测试方法 十、药水分析方法

一、碱性蚀刻流程 剥膜→水洗→蚀刻→子液洗→水洗→剥锡→水洗→烘干 二、为什么要蚀刻 将基板上不需要的铜,以化学反应方式予以除去,以形成所需要的电路图形 三、蚀刻制程需求 1.适宜的抗蚀剂类型 2.适宜的蚀刻液类型 3.可实现自动控制 4.蚀刻速度要快 5.蚀刻因子要大,侧蚀少 6.蚀刻液能连续运转和再生 7.溶铜量要大,溶液寿命长 四、制程及产品介绍 PTL-503B为全溶碱性蚀刻液,适用于图形电镀金属抗蚀层,如镀覆镍.金. 锡铅合金.锡镍合金及锡的印制电路板蚀刻 1.剥膜 成份:NaOH 功能:剥除铜面上之干膜,露出底层铜面 特性:强碱性,适用于水平及垂直设备 2.碱性蚀刻 主要成份:NH3H2O NH3Cl Cu(NH3)4Cl2 ①.Cu(NH3)4Cl2:具有蚀刻能力,与板面Cu反应,生成不具蚀刻能力之 Cu(NH3)2Cl,在过量氨水和氯离子存在的情况下,Cu(NH3)2Cl很快被空气氧 化生成具有蚀刻能力之Cu(NH3)4Cl2 ②.NH3.H2O:提供蚀刻所需之碱性环境,并与NH4Cl一道完对Cu(NH3)2Cl之氧化

氧化 氧化 氧化 氧化 再生 ③. NH 4Cl:提供再生时之Cl - 反应原理: Cu+Cu(NH 3)4Cl 2→2Cu(NH 3)2Cl 2Cu(NH 3)2Cl+2NH 4Cl+2NH 4OH+O 2→2Cu(NH 3)4Cl 2+2H 2O Cu+2NH 4Cl+2NH 4OH+O 2→Cu(NH 3)4Cl 2+2H 2O 3. 剥锡铅:PTL-601D/605 PTL-602A/602B 1 功能:剥除线路板表面锡金属抗蚀层,露出线路板之铜面,并保持铜面之光泽 主要成份:HNO 3 ①. 双液型:PTL-602A/602B 1 A. A 液 a. 氧化剂:用以将Sn/Pb 氧化成PbO/SnO b. 抗结剂:将PbO/SnO 转成可溶性结构,避免饱和沉淀 c. 抑制剂:防止A 液咬蚀锡铜合金 B. B 液 a. 氧化剂:用以咬蚀铜锡合金 b. 抗结剂:防止金属氧化物沉淀 c. 护铜剂:保护铜面,防止氧化 ②. 单液型 a. 氧化剂:用以将Sn/Pb 氧化成PbO/SnO b. 抗结剂:将PbO/SnO 转成可溶性结构 c. 护铜剂:保持铜面,防止氧化 反应原理: 1. 咬Sn/Pb Sn/Pb SnO/PbO SnL/PbL H 2SnO 3(H 2O)X (a) 2. 铜锡合金剥除 Cu 6Sn 5 Cu 2++Sn 2+(溶解) Cu 3Sn Cu 2++Sn 2+(溶解)

酸性氯化铜液蚀刻化学及蚀刻液再生方法评述

57 Printed Circuit Information 印制电路信息2008 No.10……… 因为具有侧蚀小、蚀率易控制和易再生等特点,所以酸性氯化铜蚀刻液是一种适合精细线路制作、多层板内层制作的蚀刻液。酸性氯化铜蚀刻液体系比较丰富,常见的包括盐酸/氯化铜、盐酸/氯化钠/氯化铜、氯化铵/氯化铜、盐酸/氯化铵/氯化铜等体系。随着高度精细化线路和高层数印制板产量的增加,印制板酸性蚀刻所产生的废液量将 大大增加,因此增大了周边环境的负荷,严重危害了操作人员的健康,研究和开发酸性蚀刻液的再生方法和设备已成为印制板生产国污染防治的重要工作[1][2]。美国、日本、西欧、中国台湾等研究和开发工作起步较早,而国内的研究较少。为此,首次全面论述了印制板酸性氯化铜液蚀刻过程化学及蚀刻液的再生方法,讨论了各种方法的优缺点, 酸性氯化铜液蚀刻化学及蚀刻液 再生方法评述 王红华1 蒋玉思2 (深圳市成辉环保设备有限公司1,广东 深圳 518105) (广州有色金属研究院2,广东 广州 510651) 摘 要 为了清洁生产、生态环境和人们健康,研究和开发酸性氯化铜蚀刻液的再生方法及再生设备,已成为当前印制板制造行业污染防治工作的重点。为此,文章首次论述了印制板酸性氯化铜液蚀刻化学及蚀刻液的再生方法,讨论了各种方法的优缺点,进而指出了酸性蚀刻液再生的发展趋势。 关键词 印制板;酸性蚀刻液;蚀刻;再生;氧化还原 中图分类号:TN41,TQ171.4+18 文献标识码:A 文章编号:1009-0096(2008)10-0057-04 The Chemistry of Acidic Cupric Chloride Etching Process and Review on Regenerating Methods for Cupric Chloride Etchant WANG Hong-hua 1 JIANG Yu-si 2 Abstract Research and development of regenerating methods and equipments for acid cupric chloride etchants,have been stressed in prevention and control of pollution work in the business of printed circuit boards for clean production, ecosystem and people’s health. The chemistry of the cupric chloride etching process and regenerating methods of cupric chloride etchants, were firstly reviewed in the paper. The advantages and disadvantages of different methods were discussed, and development trend of cupric chloride etchants was pointed out. Key words PCB; cupric chloride etchant; etching; regeneration; oxidation and reduction 环境保护 Environment & Protection

目前PCB行业酸性蚀刻制程废酸性蚀刻液处理方法浅谈

关于目前PCB行业酸性蚀刻制程废酸性蚀刻液处理方法浅谈 目前PCB铜回收行业正在蓬勃发展,自2002年以来国际铜价飙升,企业越来越重视开流节源,铜回收设备制造企业如雨后春笋般遍地开花。但由于含铜废液回收铜行业入行门槛低,各企业素质参差不齐。真正成规模,有实力的铜回收设备企业很少,大多数企业员工不超过20人,业务能力开展差,能安装一套设备也美其名曰环保科技公司。此种现象造就PCB 企业无法真正了解到技术的发展程度,技术的可行性以及盲目安装设备后对自身造成的损失等;本文通过针对目前许多铜回收企业自称“已突破技术瓶颈,技术成熟稳定”的《PCB 酸性蚀刻废液再生与铜回收装置》的分析来让广大PCB企业更加直观更加清楚的了解目前的技术发展。 首先,要了解一个技术的稳定性我们需要了解其工艺流程及产物、企业工艺介绍是否符合生产工艺等。 众所周知PCB酸性蚀刻制程在蚀刻过程中,氯化铜中的Cu2+具有氧化性,能将板面上的铜氧化爲Cu+,形成的Cu2Cl2是不易溶于水的,在有过量的Cl-存在下,可形成可溶性的络离子,随着蚀刻的进行,溶液中的Cu+越来越多,蚀刻能力很快下降,以至最后失去蚀刻能力。爲保持蚀刻能力,一般通过加入氧化剂对蚀刻液进行再生,使Cu+氧化重新转变爲Cu2+,使蚀刻得以连续的进行。 酸性废蚀刻液中酸性子液只是很少一部分,而大部分为生产中所添加的盐酸。一般低酸生产子液与盐酸的比例大概为:1:1.5-2,高酸生产子液与盐酸比例大概为1:2-3。通过酸性蚀刻的生产工艺我们可以得出,目前许多蚀刻铜回收企业所描述的酸性铜回收系统处理后废液可完全回用是不可能达到的。以月废酸性蚀刻液100T为例,经提铜后回用再生液100T,酸性蚀刻生产中盐酸添加与再生液中的氯离子、铜离子含量均无关,固在处理完100T废液后将会超过150T的废液产生,如此循环废液量将是无限增长。 有人说可以回用一部分,另一部分排入PCB厂废水处理站。针对此点,我可以很负责人的讲,目前没有一家企业的酸性铜回收处理设备能将废酸性蚀刻液中的铜提取完,排入废水站的废水,PCB企业自身根本无法处理达标。目前酸性蚀刻废液提铜设备有两种处理方法:一种是萃取法,一种是直接电解法。 萃取法:通过调整废酸性蚀刻液的PH值后,再通过一种萃取剂分离其中的铜离子。但此方法根本就算不上成熟技术。1.调整PH值时需加入其他碱性物质(某些企业所说自行研发的添加剂纯属扯淡)。且经过一次萃取后就要重新调整PH。所以废液体积会不断增大。 2.萃取能力低。酸性萃取剂每次萃取铜最多8g/L,很多企业在处理是都是将废液稀释至15-20g/L后再萃取。在铜离子剩余3-5g/L后排放至废水站(不可能将铜离子萃取到零)。(如此大量含铜废水PCB厂很难处理合格)。 3.处理后的废液根本不能循环利用,且每月都需要外卖废蚀刻液(卖液就是铜流失)。以上几点我们可以从卖废液再生液回用及废水排放方面判定此法目前不可取。 直接电解法:直接电解法笔者在2005年左右就开始使用,此方法在本人所了解的案例中还没有真正成熟的。记得在今年有长沙一位做该项目的经理跟笔者探讨此技术。笔者3个问题便使该经理无言以对。该方法的原理:通过电化学原理直接对废酸性蚀刻液施加低电压高电流直流电(阴阳极间有离子交换膜,将电解槽分成阳极室与阴极室)。使铜离子向阴极移动,生成单质铜粉,再将铜粉干燥,电解后废液回用。(类似于电解工艺制碱)从理论上讲该方法是可行的,但在实际操作中该方法弊端太多。1.直接电解废蚀刻液阳极将析出大量氯

碱性蚀刻液再生循环处理系统介绍

碱性蚀刻液再生循环系统介绍 目录 一、碱性蚀刻液再生循环系统简介 1.1系统工作原理 1.2系统工作流程简图 二、系统成本分析 2.1系统运行成本分析 三、项目效益分析 四、项目运作 4.1系统安装条件 4.2工程进度计划 4.3运行常用的主要物料 4.4系统排放物及其处理

一、碱性蚀刻液再生循环系统简介 1.1系统工作原理 本系统采用多级萃取-反萃及电解再生工艺组合,可实现碱性蚀刻液完全回用零排放,是将碱性蚀刻废液提铜处理和再生利用进行组合的系统设备,可根据需要调整再生液的品质,完全确保PCB 企业蚀刻工序产品质量的稳定。 该系统主要由以下部分组成:铜分离系统、铜提取系统、存储及调配系统。 1)铜分离系统:是将废蚀刻液中的铜离子通过铜吸附剂从废液中无损分离吸取铜离子,并将铜离子转移到铜提取系统,释放铜离子后的吸铜剂再回到此系统循环工作。 2)铜提取系统:吸铜剂中的铜离子释放到此系统中,通过电解提取高纯度产品铜。 3)存储及调配系统:系统将已降低铜含量的蚀刻液通过组份调节,使Cu 2+、Cl -、PH 值及相关工艺元素达至生产所需要求,待生产所用。 整个系统工作时无排放封闭式循环运行。 系统工作时,只需在碱性蚀刻设备的溢流排出口接一管道,直接将废液引入再生循环设备中,经过系统处理后,再通过自动添加系统循环回到蚀刻工序,整个系统无排放封闭式循环运行,系统设备与生产线对接时,产线不需停机。 1.2系统工作流程简图 碱性蚀刻液在线循环技术工艺原理图 蚀刻 蚀刻废液 水相 净化、组份调节 富载铜油相 萃取 再生蚀刻液 电积 阴极铜 电积后液 O 2排空 水相 油相 化气塔净化排放

蚀刻液分类及工艺流程

蚀刻液分类及工艺流程 一、目前PCB业界使用的蚀刻液类型有六种类型: 酸性氯化铜碱性氯化铜氯化铁过硫酸铵硫酸/铬酸硫酸/双氧水蚀刻液前三种常用。 二、各种蚀刻液特点 酸性氯化铜蚀刻液 1) 蚀刻机理:Cu+CuCl2→Cu2Cl2 Cu2Cl2+4Cl-→2(CuCl3)2- 2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。 a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。添加Cl-可以提高蚀刻速率,原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。 b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。较微量的Cu+就会显著的降低蚀刻速率。所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。 c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。当铜含量增加到一定浓度时,蚀刻速率就会下降。为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。 d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。温度太高会引起HCl过多地挥发,造成溶液组分比例失调。另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。 碱性氯化铜蚀刻液 1) 蚀刻机理:CuCl2+4NH3→Cu(NH3)4Cl2 Cu(NH3)4Cl2+Cu→2Cu(NH3)2Cl 2) 影响蚀刻速率的因素:蚀刻液中的Cu2+浓度、pH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。 a、Cu2+离子浓度的影响:Cu2+是氧化剂,所以Cu2+的浓度是影响蚀刻速率的主要因素。研究铜浓度与蚀刻速率的关系表明:在0~82g/L时,蚀刻时间长;在82~120g/L时,蚀刻速率较低,且溶液控制困难;在135~165g/L时,蚀刻速率高且溶液稳定;在165~225g/L时,溶液不稳定,趋向于产生沉淀。 b、溶液pH值的影响:蚀刻液的pH值应保持在8.0~8.8之间,当pH值降到8.0以下时,一方面对金属抗蚀层不利;另一方面,蚀刻液中的铜不能被完全络合成铜氨络离子,溶液要出现沉淀,并在槽底形成泥状沉淀,这些泥状沉淀能

蚀刻工艺(酸性、碱性、微蚀)

PCB外层电路的蚀刻工艺 在印制电路加工中﹐氨性蚀刻是一个较为精细和覆杂的化学反应过程, 却又是一项易于进行的工作。只要工艺上达至调通﹐就可以进行连续性的生产, 但关键是开机以后就必需保持连续的工作状态﹐不适宜断断续续地生产。蚀刻工艺对设备状态的依赖性极大, 故必需时刻使设备保持在良好的状态。目前﹐无论使用何种蚀刻液﹐都必须使用高压喷淋﹐而为了获得较整齐的侧边线条和高质量的蚀刻效果﹐对喷嘴的结构和喷淋方式的选择都必须更为严格。 对于优良侧面效果的制造方式﹐外界均有不同的理论、设计方式和设备结构的研究, 而这些理论却往往是人相径庭的。但是, 有一条最基本的原则已被公认并经化学机理分析证实﹐就是尽速让金属表面不断地接触新鲜的蚀刻液。在氨性蚀刻中﹐假定所有参数不变﹐那么蚀刻的速率将主要由蚀刻液中的氨(NH3)来决定。因此, 使用新鲜溶液与蚀刻表面相互作用﹐其主要目的有两个﹕冲掉刚产生的铜离子及不断为进行反应供应所需要的氨(NH3)。 在印制电路工业的传统知识里﹐特别是印制电路原料的供货商们皆认同﹐并得经验证实﹐氨性蚀刻液中的一价铜离子含量越低﹐反应速度就越快。事实上﹐许多的氨性蚀刻液产品都含有价铜离子的特殊配位基(一些复杂的溶剂)﹐其作用是降低一价铜离子(产品具有高反应能力的技术秘诀)﹐可见一价铜离子的影响是不小的。将一价铜由5000ppm降至50ppm, 蚀刻速率即提高一倍以上。 由于在蚀刻反应的过程中会生成大量的一价铜离子, 而一价铜离子又总是与氨的络合基紧紧的结合在一起﹐所以要保持其含量近于零是十分困难的。而采用喷淋的方式却可以达到通过大气中氧的作用将一价铜转换成二价铜, 并去除一价铜, 这就是需要将空气通入蚀刻箱的一个功能性的原因。但是如果空气太多﹐又会加速溶液中的氨的损失而使PH值下降﹐使蚀刻速率降低。氨在溶液中的变化量也是需要加以控制的, 有一些用户采用将纯氨通入蚀刻储液槽的做法, 但这样做必须加一套PH计控制系统, 当自动监测的PH结果低于默认值时﹐便会自动进行溶液添加。 在相关的化学蚀刻(亦称之为光化学蚀刻或PCH)领域中﹐研究工作已经开始﹐并达至蚀刻机结构设计的阶段。此方法所使用的溶液为二价铜, 不是氨-铜蚀刻, 它将有可能被用

蚀刻工艺

蚀刻工艺

一蝕刻技術 利用對金屬表面的侵蝕作用,從金屬表面去除金屬的處理技術。 (1) 電解蝕刻(electrolytic etching) 用母模作導電性陰極,以電解液作媒介,對加工部分,集中實施蝕刻的侵蝕去除法。 (2) 化學蝕刻(chemical etching) 利用耐藥品被膜,把蝕刻侵蝕去除,作用集中於所要部位的方法。 照相蝕刻技術(photo-etching process) 在金屬表面全面均勻形成層狀的感光性耐藥品被膜(photo resist),而透 過原圖底片,用紫外線等曝光,後施以顯像處理,來形成所要形狀的耐藥 品被膜之被覆層,再以蝕刻浴的酸液或鹼液,對露出部產生化學或電化學 侵蝕作用,來溶解金屬的加工技術。 2

(3) 化學蝕刻技術之特性 a. 不需要電極、母型(master)等工具,故無需此等工具之維護費。 b. 由規劃到生產間所需時間短,可作短期加工。 c. 材料之物理、機械性質不受加工影響。 d. 加工不受形狀、面積、重量之限制。 e. 加工不受硬度、脆性之限制。 f. 能對所有金屬(鐵、不銹鋼、鋁合金、銅合金、鎳合金、鈦、史泰勒合 金)實施加工。 g. 可高精度加工。 h. 可施複雜、不規則、不連續之設計加工。 i. 面積大,加工效率良好,但小面積時,其效率比機機械加工差。 j. 水平向之切削易得高精度,但深度、垂直方向不易得到同機機械加工之 3

精度。 k. 被加工物之組成組織宜均勻,對不均質材,不易加工順利。 二蝕花加工(咬花加工)演進 (1) 第1階段:補助目的掩飾成形品上之缺陷。 (2) 第2階段:裝飾目的提高商品價值。 (3) 第3階段:應用複合花紋邁入更高度的意匠設計時代。 (4) 第4階段:應用立體花紋進入更高品質之時代。 三咬花加工之特性(針對模具) (1) 加工時,幾乎不產生熱量,故不會引起熱變形或熱變質。 (2) 大型模具亦可加工。 (3) 加工時不會產生毛邊、應變、硬化等不良現象。 (4) 曲面、側面之加工容易。 4

PCB行业废酸性蚀刻液处理

PCB行业废酸性蚀刻液处理 水处理技术:印刷电路板最令人关心、头痛的问题就是其生产过程中的处理问题。令人关心是因为中富含的铜具有较高的经济价值,令人头痛是因为处理此会严重污染环境,环保压力大。目前处理废液唯一的办法是把失效后的废蚀刻液廉价卖给有资质的单位。这种方式不仅造成污染源转移,而且时残液排放对周边环境会造成二次污染,加上产品纯度差,价值低,中和及沉淀时会消耗大量的碱,只其中的铜,不能回收盐酸,造成资源浪费和环境污染。 国家对环境治理非常重视,投入巨资进行大规模的治理,对污染物的排放标准及要求越来越高。2004年,国家颁布了《法》,近两年对电镀、电子和印制电路板企业实行审核,对不合格的严重污染企业实行关、停、转。国家提倡建设资源节约型、环境友好型的循环经济企业,拒绝建高能耗、高污染的企业。国家、企业和许多有识之士都看到了该问题的严重性和迫切性,同时也看到了潜在的经济价值。全国许多企业、高等院校、研究单位都在致力于该方面的研究和开发,这不仅会给国家带来较好的社会效益,也会给企业带来良好的经济效益。 上海兴平生化科技有限投巨资和华东理工大学合作,共同研究开发废酸性蚀刻液回收系统。该系统不仅回收废液中的铜,而且蚀刻液后可回用于蚀刻生产线,回收过程无“三废”排放,符合国家要求,

也符合国家减排、循环经济的方针。 本系统的原理和作用是跳出常规的电解原理,巧妙地利用电化学原理设计出新颖的工艺结构,结合国际先进的膜系统进行电解,在不破坏任何成分的情况下,电解并提取里面的金属铜,使盐酸得以循环使用。这种方式资源利用率高,符合环保、清洁生产、循环经济等原则,不仅会给企业带来很高的经济效益,而且还有极好的社会效益。 该系统得到了浙江省杭州市环保局固废中心、深圳市环保局危废中心等单位的好评并受到中国印制电路的重视,均鼓励我进一步完善并快速推向市场,为社会服务。

pcb教材-10 蚀刻

十蚀刻 10.1制程目的 将线路电镀完成从电镀设备取下的板子,做后加工完成线路: A. 剥膜:将抗电镀用途的干膜以药水剥除 B. 线路蚀刻:把非导体部分的铜溶蚀掉 C. 剥锡(铅):最后将抗蚀刻的锡(铅)镀层除去上述步骤是由水平连线设备一次完工. 10.2 制造流程 剥膜→线路蚀刻→剥锡铅 10.2.1剥膜 剥膜在pcb制程中,有两个step会使用,一是内层线路蚀刻后之D/F剥除,二是外层线路蚀刻前D/F剥除(若外层制作为负片制程)D/F的剥除是一单纯简易的制程,一般皆使用连线水平设备,其使用之化学药液多为NaOH或KOH浓度在1~3%重量比。注意事项如下: A. 硬化后之干膜在此溶液下部份溶解,部份剥成片状,为维持药液的效果及后水洗能彻底,过滤系统的效能非常重要. B. 有些设备设计了轻刷或超音波搅拌来确保膜的彻底,尤其是在外层蚀刻后的剥膜, 线路边被二次铜微微卡住的干膜必须被彻底剥下,以免影响线路品质。也有在溶液中加入BCS帮助溶解,但有违环保,且对人体有害。 C. 有文献指K(钾)会攻击锡,因此外层线路蚀刻前之剥膜液之选择须谨慎评估。剥膜液为碱性,因此水洗的彻底与否,非常重要,内层之剥膜后有加酸洗中和,也有防铜面氧化而做氧化处理者。 10.2.2线路蚀刻 本节中仅探讨碱性蚀刻,酸性蚀刻则见四内层制作10.2.2.1 蚀铜的机构 A. 在碱性环境溶液中,铜离子非常容易形成氢氧化铜之沉淀,需加入足够的氨水使产生氨铜的错离子团,则可抑制其沉淀的发生,同时使原有多量的铜及继续溶解的铜在液中形成非常安定的错氨铜离子,此种二价的氨铜错离子又可当成氧化剂使零价的金属铜被氧化而溶解,不过氧化还原反应过程中会有一价亚铜离子)出现,即

碱性蚀刻经验谈

碱性蚀刻经验谈 一、蚀刻液的种类: 本人使用过的蚀刻液有: 酸性氯化铜蚀刻液、碱性氯化铜蚀刻液、三氯化铁蚀刻液三种,其中三氯化铁蚀刻液在电路板行业已经没有人再用,仅用于部分金属(如不锈钢)蚀刻。 电路板行业大量使用含氨的碱性氯化铜蚀刻液,由于需要添加氨水或充氨气,在碱性条件下使用,一般称为碱性蚀刻液。这种蚀刻液具有蚀刻速度快、侧蚀小、溶铜量高、循环使用成本低、适应性广、可自动控制等优点。国内电路板行业仅部分单面板,多层板的内层,柔性电路板有用到其它类型的蚀刻液。二、碱性氯化铜蚀刻液的组成和原理 碱性氯化铜蚀刻液包括以下组分: 1、铜氨络离子[Cu(NH3)4]2+——蚀刻的主要作用成分,由母液提供,以Cu 含量或密度形式体现; 2、游离氨NH3——参与蚀刻反应,由氨水补充,以PH值体现; 3、氯离子Cl-——活化剂,由氯化铵补充; 4、铵离子NH4+——PH稳定剂及氨补充剂,由氯化铵补充; 5、添加剂——促进蚀刻反应产物[Cu(NH3)2]+转化为具有蚀刻作用的[Cu(NH3)4]2+。 通常,由氨水+氯化铵+添加剂组成补充液。 蚀刻反应机理: [Cu(NH3)4]2++Cu→2[Cu(NH3)2]+ 所生成的[Cu(NH3)2]+为Cu+的络离子,不具有蚀刻能力。在有过量NH3和Cl-,在起催化作用的添加剂的作用下,能很快地被空气中的O2所氧化,生成具有

蚀刻能力的[Cu(NH3)4]2+络离子。其再生反应如下: 2[Cu(NH3)2]++2NH4++2NH3+ 0.5 O2 = 2[Cu(NH3)4]2++H2O 从上述反应,每蚀刻1摩尔铜需要消耗2摩尔氨和2摩尔铵离子(氧气则靠喷淋时与空气接触提供)。因此,在蚀刻过程中,随着铜的溶解,应不断补加氨水和氯化铵。 三、影响蚀刻速率的因素: 蚀刻液中的Cu含量、pH值、氯化铵浓度、添加剂含量以及蚀刻液的温度对蚀刻速率均有影响。 1、Cu含量: 蚀刻液中的Cu绝大部分是以铜氨络离子[Cu(NH3)4]2+形式存在,一般以化验的Cu2+含量或密度体现。它是蚀刻反应的氧化剂,适当的含量能够得到稳定且快速的蚀刻速率一般控制在120-150g/L(或18-23波美度)。过高液体粘度增大,容易产生沉淀。 2、溶液pH值的影响: 此处所说的PH值,实际上是指游离氨的浓度。蚀刻液的pH值应保持在8.0-8.6之间,当pH值降到8.0以下时,游离氨不足以把蚀刻液中的铜完全络合成铜氨络离子,溶液会出现粘性的沉淀,这些沉淀能在加热器上结成硬皮可能损坏加热器,会堵喷嘴给造成蚀刻不均等。如果溶液pH值过高,蚀刻液中氨氨释放到大气中,导致成分不稳定和环境污染。 3、氯化铵含量的影响: 通过蚀刻再生的化学反应可以看出:[Cu(NH3)2]+的再生需要有NH3和NH4+存在;同时,Cl-也是活化金属铜所需的活化剂。如果溶液中缺乏NH4Cl,大量的[Cu(NH3)2]+得不到再生,蚀刻速率就会降低,以致失去蚀刻能力。氯化铵以氯离子含量来衡量,一般控制在160-180g/L。

蚀刻液

三氯化铁蚀刻液在印制电路、电子和金属精饰等工业中被广泛广泛采用,一般用来蚀刻铜、铜合金、不锈钢、铁及锌、铝等。虽然近些年来越来越要求再生容易,更加环保的蚀刻液,但由于三氯化铁蚀刻液它的工艺稳定,操作方便,价格便宜,因此还仍然被广大蚀刻加工企事业单位采用。 三氯化铁蚀刻液适用于网印抗蚀印料、液体感光胶、干膜、镀金抗蚀层等抗蚀层的印制板的蚀刻。(但不适用于镍、锡、锡-铅合金等抗蚀层) 1.蚀刻时的主要化学反应 三氯化铁蚀刻液对铜箔的蚀刻是一个氧化-还原过程。在铜表面Fe3+使铜氧化成氯化亚铜。同时Fe3+被还原成Fe2+。FeCl3+Cu →FeCl2+CuCl CuCl具有还原性,可以和FeCl3进一步发生反应生成氯化铜。 FeCl3+CuCl →FeCl2+CuCl2 Cu2+具有氧化性,与铜发生氧化反应: CuCl2+Cu →2CuCl 所以,FeCl3蚀刻液对Cu的蚀刻时靠Fe3+和Cu2+共同完成的。其中Fe3+的蚀刻速率快,蚀刻质量好;而Cu2+的蚀刻速率慢,蚀刻质量差。新配制的蚀刻液中只有Fe3+,所以蚀刻速率较快。但是随着蚀刻反应的进行,Fe3+不断消耗,而Cu2+不断增加。当Fe3+消耗掉35%时,Cu2+已增加到相当大的浓度,这时Fe3+和Cu2+对Cu的蚀刻量几乎相等;当Fe3+消耗掉50%时,Cu2+的蚀刻作用由次要地位而跃居主要地位,此时蚀刻速率慢,即应考虑蚀刻液的更新。 一般工厂很少分析和测定蚀刻液中的含铜量,多以蚀刻时间和蚀刻质量来确定蚀刻液的再生与更新。 蚀刻铜箔的同时,还伴有一些副反应,就是CuCl2和FeCl3的水解反应: FeCl3+3H2O →Fe(OH)3↓+3HCl CuCl2+2H2O →Cu(OH)2↓+2HCl 生成的氢氧化物很不稳定,受热后易分解: 2Fe(OH)3 →Fe2O3↓+3H2O Cu(OH)2 →CuO↓+H2O 结果生成了红色的氧化铁和黑色的氧化铜微粒,悬浮于蚀刻液中,对抗蚀层有一定的破坏作用。 2. 影响蚀刻速率的因素 Fe3+的浓度和蚀刻液的温度 蚀刻液温度越高,蚀刻速率越快,温度的选择应以不损坏抗蚀层为原则。 Fe3+的浓度对蚀刻速率有很大的影响。蚀刻液中Fe3+浓度逐渐增加,对铜的蚀刻速率相应加快。当所含Fe3+超过某一浓度时,由于溶液粘度增加,蚀刻速率反而有所降低。一般蚀刻涂覆网印抗蚀印料、干膜的印制板,浓度可控制在350Be’左右;蚀刻涂覆液体光致抗蚀剂(如骨胶、聚乙烯醇等)的印制板,浓度则要控制在420Be’以上。其重量百分比浓度和比重的关系见表10-5:《三氯化铁溶液的组成》 低浓度最佳浓度高浓度 浓度(g/l) 365 452~530 608 重量百分比28 34~38 42 比重 1.275 1.353~1.402 1.450 波美度31.5 38~42 45 盐酸的添加量

碱性蚀刻工艺培训教材

碱性蚀刻工艺培训教材 何勇强 一、概说 碱性蚀刻是氯化铜在碱性条件下用化学方法去除图形中不需要的铜层以形成线路图形,主要应用于图形电镀后蚀刻铜层。碱性蚀刻适用于以镀铅/锡、镀钝锡、镀镍、镀金等作为抗蚀层用于外层线路图形的蚀刻。 二、流程 上板→褪膜→水洗→碱性蚀刻→补充药水清洗→水洗→烘干→褪铅锡→水洗→烘干 褪膜机、蚀刻机、退铅/锡机三部分组成一条联动线 2.1 褪膜 a)原理:经图形电镀后未被电镀部分是由干膜覆盖着,该部分在最终形成线路图形时要被蚀去,所以在蚀刻前首先要把干膜退除以便露出铜面。退膜液为稀碱,当稀碱进入干膜中把含酸基的树脂中和反应而被溶解出来,使干膜脱离铜面。b)设备:IS和ACS褪膜机、外置过滤器 c)材料:有机褪膜碱(例如ATO的RS628),对铅锡层无攻击。铅能缓慢溶于强碱性溶液,曾使用氢氧化钠,但是对铅锡层攻击大,在退膜时时间过长,对抗蚀层有一定的腐蚀作用,轻者线路不直或渗锡蚀刻不净,严重时抗蚀层太薄而造成蚀铜时把线路蚀断,甚至出现孔内无铜。 d)控制关键:退膜段的生产控制是很重要的一步,如果板在该段退膜不干净,或者说表面看似已退膜完成但线路间(特别是细线路)如果还残有余胶也会造成蚀铜过程不干净而形成短路。所以正确的操作是控制溶液的浓度、板在该段停留的时间和充分的水洗,才能确保退膜后的板顺利通过蚀铜工序。 2.2 蚀刻 a)碱性蚀刻:蚀刻液中的二开铜离子是一种氧化剂,它与金属铜反应并溶解金属铜。 主要反应机理: 络合反应:CuCl2+4NH3==[Cu(NH3)4]2+Cl2 [Cu(NH3)4]2+Cl2是具有强氧化能力的络合离子 蚀刻反应:Cu°+[Cu(NH3)4]2+Cl2==2[Cu(NH3)2] +1Cl

外层蚀刻工艺

PCB外层电路的蚀刻工艺 https://www.sodocs.net/doc/0b7952531.html, 2003-8-1 SMT信息网 一.概述 目前,印刷电路板(PCB)加工的典型工艺采用"图形电镀法"。即先在板子外层需保留的铜箔部分上,也就是电路的图形部分上预镀一层铅锡抗蚀层,然后用化学方式将其余的铜箔腐蚀掉,称为蚀刻。 要注意的是,这时的板子上面有两层铜.在外层蚀刻工艺中仅仅有一层铜是必须被全部蚀刻掉的,其余的将形成最终所需要的电路。这种类型的图形电镀,其特点是镀铜层仅存在于铅锡抗蚀层的下面。另外一种工艺方法是整个板子上都镀铜,感光膜以外的部分仅仅是锡或铅锡抗蚀层。这种工艺称为“全板镀铜工艺“。与图形电镀相比,全板镀铜的最大缺点是板面各处都要镀两次铜而且蚀刻时还必须都把它们腐蚀掉。因此当导线线宽十分精细时将会产生一系列的问题。同时,侧腐蚀会严重影响线条的均匀性。 在印制板外层电路的加工工艺中,还有另外一种方法,就是用感光膜代替金属镀层做抗蚀层。这种方法非常近似于内层蚀刻工艺,可以参阅内层制作工艺中的蚀刻。 目前,锡或铅锡是最常用的抗蚀层,用在氨性蚀刻剂的蚀刻工艺中.氨性蚀刻剂是普遍使用的化工药液,与锡或铅锡不发生任何化学反应。氨性蚀刻剂主要是指氨水/氯化氨蚀刻液。此外,在市场上还可以买到氨水/硫酸氨蚀刻药液。 以硫酸盐为基的蚀刻药液,使用后,其中的铜可以用电解的方法分离出来,因此能够重复使用。由于它的腐蚀速率较低,一般在实际生产中不多见,但有望用在无氯蚀刻中。有人试验用硫酸-双氧水做蚀刻剂来腐蚀外层图形。由于包括经济和废液处理方面等许多原因,这种工艺尚未在商用的意义上被大量采用.更进一步说,硫酸-双氧水,不能用于铅锡抗蚀层的蚀刻,而这种工艺不是PCB外层制作中的主要方法,故决大多数人很少问津。 二.蚀刻质量及先期存在的问题 对蚀刻质量的基本要求就是能够将除抗蚀层下面以外的所有铜层完全去除干净,止此而已。从严格意义上讲,如果要精确地界定,那么蚀刻质量必须包括导线线宽的一致性和侧蚀程度。由于目前腐蚀液的固有特点,不仅向下而且对左右各方向都产生蚀刻作用,所以侧蚀几乎是不可避免的。 侧蚀问题是蚀刻参数中经常被提出来讨论的一项,它被定义为侧蚀宽度与蚀刻深度之比, 称为蚀刻因子。在印刷电路工业中,它的变化范围很宽泛,从1:1到1:5。显然,小的侧蚀度或低的蚀刻因子是最令人满意的。 蚀刻设备的结构及不同成分的蚀刻液都会对蚀刻因子或侧蚀度产生影响,或者用乐观的话来说,可以对其进行控制。采用某些添加剂可以降低侧蚀度。这些添加剂的化学成分一般属于商业秘密,各自的研制者是不向外界透露的。至于蚀刻设备的结构问题,后面的章节将专门讨论。 从许多方面看,蚀刻质量的好坏,早在印制板进入蚀刻机之前就已经存在了。因为印制电路加工的各个工序或工艺之间存在着非常紧密的内部联系,没有一种不受其它工序影响又不影响其它工艺的工序。许多被认定是蚀刻质量的问题,实际上在去膜甚至更以前的工艺中已经存在了。对外层图形的蚀刻工艺来说,由于它所体现的“倒溪”现像比绝大多数印制板工艺都突出,所以许多问题最后都反映在它上面。同时,这也是由于蚀刻是自贴膜,感光开始的一个长系列工艺中的最后一环,之后,外层图形即转移成功了。环节越多,出现问题的可能性就越大。这可以看成是印制电路生产过程中的一个很特殊的方面。 从理论上讲,印制电路进入到蚀刻阶段后,在图形电镀法加工印制电路的工艺中,理想状态应该是:电镀后的铜和锡或铜和铅锡的厚度总和不应超过耐电镀感光膜的厚度,使电镀图形完全被膜两侧的“墙”挡住并嵌在里面。然而,现实生产中,全世界的印制电路板在电镀后,镀层图形都要大大厚于感光图形。在电镀铜和铅锡的过程中,由于镀层高度超过了感光膜,便产生横向堆积的趋势,问题便由此产生。在线条上方覆盖着的锡或铅锡抗蚀层向两侧延伸,形成了“沿”,把小部分感光膜盖在了“沿”下面。 锡或铅锡形成的“沿”使得在去膜时无法将感光膜彻底去除干净,留下一小部分“残胶”在“沿”的下面。“残胶”或“残膜”留在了抗蚀剂“沿”的下面,将造成不完全的蚀刻。线条在蚀刻后两侧形成“铜根”,铜根使线间距变窄,造成印制板不符合甲方要求,甚至可能被拒收。由于拒收便会使PCB的生产成本大大增加。 另外,在许多时候,由于反应而形成溶解,在印制电路工业中,残膜和铜还可能在腐蚀液中形成堆积并堵在腐蚀机的喷嘴处和耐酸泵里,不得不停机处理和清洁,而影响了工作效率。 三.设备调整及与腐蚀溶液的相互作用关系 在印制电路加工中,氨性蚀刻是一个较为精细和复杂的化学反应过程。反过来说它又是一个易于进行的工作。一旦工艺上调通,就可以连续进行生产。关键是一旦开机就需保持连续工作状态,不宜干干停停。蚀刻工艺在极大的程度上依赖设备的良好工作状态。就目前来讲,无论使用何种蚀刻液,必须使用高压喷淋,而且为了获得较整齐的线条侧边和高质量的蚀刻效果,必须严格选择喷嘴的结构和喷淋方式。 为得到良好的侧面效果,出现了许多不同的理论,形成不同的设计方式和设备结构。这些理论往往是大相径庭的。但是所有有关蚀刻的理论都承认这样一条最基本的原则,即尽量快地让金属表面不断的接触新鲜的蚀刻液。对蚀刻过程所进行的化学机理分析也证实了上述观

相关主题