搜档网
当前位置:搜档网 › 聚酯纤维增粘用硅烷偶联剂

聚酯纤维增粘用硅烷偶联剂

聚酯纤维增粘用硅烷偶联剂

引言:

聚酯纤维是一种重要的纺织原料,由于其优异的物理性能和化学稳定性,广泛应用于纺织、包装、建筑等领域。然而,聚酯纤维的表面活性低,与其他材料之间的粘接性能有限。为了改善聚酯纤维的增粘性能,研究人员开发了硅烷偶联剂,并成功应用于聚酯纤维的表面修饰,提高其粘接性能。

一、硅烷偶联剂的定义和作用机理

硅烷偶联剂是一种含有有机基团和硅原子的化合物,可以在聚酯纤维表面形成一层致密的硅酸盐层。这层硅酸盐层能够提高聚酯纤维与其他材料的粘接性能,增加其表面能,从而实现聚酯纤维与其他材料的牢固结合。

硅烷偶联剂的作用机理主要有两个方面:

1. 在聚酯纤维表面形成致密的硅酸盐层,提高表面能;

2. 通过硅烷基团与其他材料的化学键结合,增加粘接强度。

二、硅烷偶联剂的种类和选择

常用的硅烷偶联剂有三种:氨基硅烷、羟基硅烷和甲基硅烷。根据不同的应用需求,选择合适的硅烷偶联剂是十分重要的。

1. 氨基硅烷

氨基硅烷的分子结构中含有氨基官能团,能够与聚酯纤维中的羧基发生反应,形成酯键,从而提高粘接强度。氨基硅烷偶联剂在聚酯纤维的增粘过程中被广泛使用。

2. 羟基硅烷

羟基硅烷的分子结构中含有羟基官能团,能够与聚酯纤维表面的羧基或醇基发生反应,形成酯键或醚键,从而增加聚酯纤维与其他材料的粘接性能。

3. 甲基硅烷

甲基硅烷的分子结构中含有甲基官能团,能够与聚酯纤维表面的氧发生反应,形成硅酸甲酯键,增强聚酯纤维的表面活性,提高粘接强度。

三、硅烷偶联剂的应用

硅烷偶联剂在聚酯纤维的增粘过程中起到关键作用。根据不同的应用需求和工艺要求,可以选择不同的硅烷偶联剂进行表面修饰。

1. 增加聚酯纤维与其他材料的粘接强度

硅烷偶联剂能够增加聚酯纤维与其他材料的粘接强度,提高复合材料的整体性能。例如,在纺织行业中,硅烷偶联剂被广泛应用于聚酯纤维与棉纤维、尼龙纤维等材料的粘接,以提高纺织品的牢固度。

2. 提高聚酯纤维的耐久性

硅烷偶联剂可以形成一层致密的硅酸盐层,提高聚酯纤维的耐久性。这种硅酸盐层能够抵御外界环境的侵蚀,延长聚酯纤维的使用寿命。

3. 改善聚酯纤维的润湿性能

硅烷偶联剂能够提高聚酯纤维的润湿性能,使其更易吸湿。这对于某些需要润湿性能的应用场景具有重要意义,如印刷、染色等工艺。

结论:

硅烷偶联剂作为一种有效的表面修饰剂,可以显著提高聚酯纤维的增粘性能。通过形成致密的硅酸盐层和与其他材料的化学键结合,硅烷偶联剂能够增加聚酯纤维与其他材料的粘接强度,提高纤维的耐久性和润湿性能。随着科技的不断进步,硅烷偶联剂的研究与应用将进一步完善和拓展,为聚酯纤维的应用领域带来更多可能性。

硅烷产品介绍

美国Momentive迈图产品硅烷偶联剂源自美国联合碳化(Union Carbide)公司。美国联合碳化公司经美国奥斯佳(OSi)、威科(Witco)、康普顿(Crompton)重组。在2003年8月正式被美国通用电气(GE)收购,在亚太区列入GE东芝有机硅部门。迈图高新材料集团,由美国阿波罗投资公司于2006年12月完成对GE高新材料集团的收购后正式创立。 SILQUEST?系列硅烷偶联剂 乙烯基硅烷 A-171、A-151、A-172NT、A-2171、RC-1 氨基硅烷 A-1100、A-1102、A-1106、A-1110、A-1120、A-1128、A-1130、A-1170/Y-9627、A-1387、A-1637、A-2120、A-2639、Y-9669、A-Link 15 硫基/巯基 A-189、A-1891(橡胶和弹性体)、A-Link 599、A-1289(轮胎)、NXT(轮胎) 脲基硅烷 A-1160、A-1524 环氧 A-186、A-187、A-1871、WetLink 78、CoatOSil 1770 异氰酸酯硅烷 A-Link 25、A-Link 35 甲基丙烯酸酯 A-174、CoatOSil 1757 硅烷酯 A-137、A-138、A-162、A-1230、A-1630A、A-Link 597、HDTMS --------------------------------------------------------------------------------------- Silquest? A-171? 硅烷偶联剂Silane coupling agent A-171 化学名称:乙烯基三甲氧基硅烷Vinyltrimethoxysilane

硅烷偶联剂

在连接过程中,为了胶粘剂和被粘物表面之间获得一坚固的粘接界面层,常利用含有反应活性基团的偶联剂与被粘物固体表面形成化学键来实现。 由偶联剂的化学组成的结构看,偶联剂是这样的一类化合物,它们的分子两端通常含有性质不同的基团;一端的基团与被粘物(如玻璃纤维、磨料等)表面发生化学作用或物理作用,另一端的基团则能和粘合剂(如合成树脂)发生化学作用或物理作用,从而使被粘物和粘合剂能很好地偶联起来,获得了良好的粘结,改善了多方面的性能,并有效地抵抗了水的侵蚀。 按化学组成偶联剂主要可分为有规格和有机硅两大类,此外还有钛酸酯等。 有机硅烷是一类品种很多,效果也很显著的表面处理剂,其一般结构通式为: R n SiX4-n 式中:R——有机基团,是可与合成树脂作用形成化学键的活性基团。 X——易于水解的基团,水解后能与玻璃表面作用。 n——1、2或3,绝大多数硅烷处理剂n=1。 1、X基团与玻璃表面的机理 乙烯基三乙氧基硅烷水解后生成硅烷三醇的中间产物。硅烷三醇的三个活性基中,一个与玻璃表面的羟基作用,脱去一分子水而形成强的硅—氧—硅键(Si —O—Si)。余下的两个活性基也同时进行分子间脱水反应,在玻璃表面形成一种聚合物薄膜层,这样,硅烷偶联剂通过化学键与玻璃表面牢固结合,在玻璃表面上生成Si—R中的R基团向外的有机硅单分子层、多分子层,还有以物理吸附引起的沉积层。 通过同位素和电子显微镜的表征研究证明:硅烷偶联剂与玻璃纤维表面以化学反应形成了牢固的共价键,同时它在玻璃纤维表面上不是孤立的各斑点,而是铺展成为连续的薄膜面。因此改变了玻璃纤维表面原来的性质,使之具有憎水性和亲有机粘结剂的性质。 2、R基团与树脂基体的作用机理

带双键的硅烷偶联剂

KH570 KH-570硅烷偶联剂,γ-甲基丙烯酰氧基丙基三甲氧基硅烷是一种有机官能团硅烷偶联剂,对于提高玻纤增强和含无机填料的热固性树脂能提高它们的机械电气性能,特别是通过活性游离基反应固化(如不饱和聚酯,聚氨酯和丙烯酸酯)的热塑性树脂的填充,包括聚烯烃和热塑性聚氨酯。 国外对应牌号: A-174(美国联合碳化物公司) 三、化学名称:γ-(甲基丙烯酰氧)丙基三甲氧基硅烷 四、分子式:CH2=C(CH3)COOC3H6Si(OCH3)3 五、典型的物理性质 参数标准指标 外观微黄色至无色透明液体 颜色Pt-Co, ≤ 30 密度(ρ 20℃,g/cm3)1.043~1.053 折光率(nD 25°C) 1.4285 ~1.4310 沸点:255℃ 纯度%, ≥ 97.0 溶解性 硅烷偶联剂KH-570可溶于甲醇、乙醇、乙丙醇、丙酮、苯、甲苯、二甲苯,水解后在 搅拌下可溶于PH=4的水中,水解产生甲醇. 六、用途: 主要用于改善有机材料和无机材料的粘接性能,特别适用于游离基交联的聚酯橡胶, 聚烯烃、聚苯乙烯和在光敏材料中作为助剂。 七CAS NO. : 2530-85-0 八特征和用途 KH-570硅烷偶联剂的用途: (1)当复合材料用经过与聚酯相容的表面处理剂处理过的玻纤时,能显著提高复合材料的强度,这种表面处理剂通常包括硅烷偶联剂、成膜剂、润滑剂和抗静电剂。 (2)此产品提高填充白碳黑、玻璃、硅酸盐和金属氧化物的聚酯复合材料的干湿态机械强度。 (3)此产品提高许多无机填料填充复合材料的湿态电气性能。例如:交联聚乙烯和聚氯乙烯。 (4)此产品可与醋酸乙烯和丙烯酸酯或甲基丙烯酸酯单体共聚合成可室温交联固化的。这些硅烷团化聚合物广泛应用于涂料、胶粘剂和密封胶中。提供优异的粘接力和耐久力。

常用硅烷偶联剂

常用硅烷偶联剂——K H550、K H560、K H570、K H792、D L602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

硅烷偶联剂成分分析、配方开发技术及作用机理

硅烷偶联剂成分分析、配方开发技术及作用机理导读:本文详细介绍了硅烷偶联剂的研究背景,理论基础,参考配方等,如需更详细资料,可咨询我们的技术工程师。 禾川化学引进国外配方破译技术,专业从事硅烷偶联剂成分分析、配方还原、配方开发,为偶联剂相关企业提供整套技术解决方案一站式服务; 一、背景 硅烷偶联剂是一种具有特殊结构的有机硅化合物。通过硅烷偶联剂可使两种性能差异很大的材料界面偶联起来,以提高复合材料的性能和增加粘接强度, 从而获得性能优异、可靠的新型复合材料。硅烷偶联剂广泛用于橡胶、塑料、填充复合材料、环氧封装材料、弹性体、涂料、粘合剂和密封剂等。使用硅烷偶联剂可以极大地改进上述材料的机械性能、电气性能、耐候性、耐水性、难燃性、粘接性、分散性、成型性以及工艺操作性等等。 近几十年来, 随着复合材料不断的发展,促进了各种偶联剂的研究与开发。偶联剂和叠氮基硅烷偶联剂改性氨基硅烷,耐热硅烷、过氧基硅烷、阳离子硅烷、重氮和叠氮硅烷以及α-官能团硅烷等一系列新型硅烷偶联剂相继涌现;硅烷偶联剂独特的性能与显著的改性效果使其应用领域不断扩大。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师

解谱

—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 二、硅烷偶联剂 2.1.1硅烷偶联剂作用机理 硅烷类偶联剂分子中存在亲有机和亲无机的功能基团,具有连接有机与无机材料两相界面的功能,对聚合物及无机物体系改性具有明显的技术效果。硅烷类偶联剂结构通式可以写为RSiX3。其中R为与树脂分子有亲和力或反应能力的活性官能团,如氨基、巯基、乙烯基、环氧基、氰基及甲基丙乙烯酰氧基等基团等;X代表能够水解的基团, 如卤素、烷氧基、酰氧基等;硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中的羟基反应,又能与有机物中的长分子链相互作用起到偶联的功效,其作用机理大致分以下3 步: 1)X基水解为羟基; 2)羟基与无机物表面存在的羟基生成氢键或脱水成醚键 3)R基与有机物相结合。 2.1.2硅烷偶联剂处理技术 硅烷偶联剂的实际使用方法主要有两种:预处理法和整体掺合法。 1)预处理法 预处理法就是先用偶联剂对无机填料进行表面处理,制成活性填料,然后再加入到聚合物中。根据处理方法不同可分为干法和湿法。干法即喷雾法,是将填料充分脱水后在高速分散机中,于一定温度下与雾气状的偶联剂反应制成活性填料;

硅烷偶联剂的型号及用途

硅烷偶联剂的型号,及用途 硅烷偶联剂KH-550:化学名称:γ—氨丙基三乙氧基硅烷分子式:H2NCH2CH2CH2Si(OC2H5)3 物化性质及指标:1.外观:无色透明液体2.含量(%):≥98.0 3.密度(25°C g/cm3):0.938~0.942 4.折光率(nD25):1.419~1.421 5.沸点(°C):217 用途:本分子中含有两种不同的活性基因氨基和乙氧基,用来偶联有机高分子和无机填料,增强其粘结性,提高产品的机械、电气、耐水、抗老化等性能。常用于玻纤、铸造、纺织物助剂、绝缘材料、粘胶剂等行业。适用于本偶联剂的树脂主要有环氧、酚醛、三聚氰胺、尼龙、聚氯乙烯、聚丙烯酸酯、聚氨酯、聚碳酸酯、聚亚酰胺、EVA、PBT、PPO等。1.本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、碳酸酯等热塑性和热固性树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。2.本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性,并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。3.用于氨基硅油及其乳液的合成。 硅烷偶联剂KH-560:化学名称:γ—(2,3-环氧丙氧)丙基三甲氧基硅烷分子式: 物化性质及指标:本品易溶于多种溶剂,水解后释放甲醇,固化后形成不溶的聚硅氧烷。1.外观:无色透明液体 2.含量(%)≥98.0 ;3.密度(25°C g/cm3)1.065~1.072; 4. 折光率(nD25):1.4265~1.4275; 5. 沸点(°C):290用途:1.主要用于改善有机材料和无机材料表面的粘接性能,提高无机填料底材和树脂的粘合力,从而提高复合材料的机械强度,电气性能并且在湿态下有较高的保持率。2.改善双组份环氧密封剂的粘合力,改善丙烯酸胶乳、密封剂、聚氨酯、环氧涂料的粘合力,免除了对多硫化物和聚氨酯密封胶和嵌缝化合物中独立底漆的要求。3.此产品适用于填充石英的环氧密封剂,预混配方,填充砂粒的环氧混凝土修补材料或涂料以及填充金属的环氧模具材料。4.作为无机填料表面处理剂,广泛应用于陶土、滑石粉、硅灰石、硅石白炭黑、石英、铝粉、铁粉。5.改善用玻璃纤维粗纱增强的硬复合材料的强度性能,在调温期后,把强度性能保持在最大程度。6.增强基于环氧树脂电子密封剂和封装材料及印刷电路板的电性能,增强许多无机物填充的尼龙、聚丁烯对苯二酸酯在内的复合材料的电学性能。7.适用于支柱式合成绝缘子。 硅烷偶联剂KH-570:化学名称:γ—(甲基丙烯酰氧)丙基三甲氧基硅烷分子式:物化性质及指标:本品易溶于多种有机溶剂中,易水解,缩合形成聚硅氧烷,过热、光照、过氧化物存在下易聚合。1. 外观:无色透明液体;2. 含量(%):≥97.0; 3. 密度(25°C g/cm3):1.035~1.045; 4. 折光率(nD25):1.4285~1.4295; 5. 沸点(°C):255 用途:1.用于玻纤浸润处理,可提高玻纤增强复合材料湿态的机械强度和电气性能。2.与醋酸乙烯和丙烯酸酯或甲基丙烯酸单体共聚,广泛用于涂料、胶粘剂和密封剂中,提供优异的粘合力和耐久性。3.在光敏材料中作为助剂。 硅烷偶联剂KH-151:化学名称:乙烯基三乙氧基硅烷分子式:CH2=CHSi(OC2H5)3物化性质及指标:1.外观:无色透明液体;2.含量(%):≥98;3.密度(25°C g/cm3):0.90~0.904;4.折光率(nD25):1.395~1.400;5.沸点(°C):161 用途:兼有偶联剂和交联剂的作用,适用的聚合物类型有聚乙烯、聚丙烯不

常用硅烷偶联剂

常用硅烷偶联剂——KH550、KH560、KH570、KH792、DL602 1. KH550 KH550硅烷偶联剂 CAS号:919-30-2 一、国外对应牌号 A-1100〔美国联碳〕,Z-6011〔美国道康宁〕,KBM-903〔日本信越〕。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-Triethoxysilylpropylamine APTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-Aminpropyltriethoxysilane AMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度〔ρ25℃):0.946 沸点:217℃

折光率nD25: 1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于枯燥、阴凉、避光的室。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其参加到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改良耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2. KH560 一、国外对应牌号:

硅烷说明

硅烷偶联剂简介 一、硅烷偶联剂解释 硅烷偶联剂在同一个硅原子上含有两种性质不同的活性基团,一种是硅官能的反应性基团,它能与无机物的表面发生化学反应,生成牢固的化学键。另一种是碳官能的反应基团,它能与有机聚合物发生反应,从而使两种性质差异很大的材料紧紧地结合在一起。可以把两种物质偶联起来,这就是其名称的由来。 二、硅烷偶联剂种类 硅烷的种类大概有数千种,有干硅烷,湿硅烷以及气体硅烷。经常使用以及规模化生产的硅烷偶联剂有几十种,目前国内常用的销量较大硅烷偶联剂如下: 1.乙烯基三甲氧基硅烷(171) 2.乙烯基三乙氧基硅烷(151) 3.γ-氨丙基三甲氧基硅烷(540) 4.γ-氨丙基三乙氧基硅烷(550) 5.N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷(792) 6.N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷(602) 7.γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷(560) 8.γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(570)

硅烷偶联剂牌号对照 化学名武大牌号联碳牌号信越牌号中科院牌号CAS NO. 乙烯基三甲氧基硅烷WD-21 A-171 KBM-1003 2768-02-7 乙烯基三乙氧基硅烷WD-20 A-151 KBE-1003 78-08-0 γ-氨丙基三甲氧基硅烷WD-56 A-1110 KBM-903 KH-540 13822-56-5 γ-氨丙基三乙氧基硅烷WD-50 A-1100 KBE-903 KH-550 919-30-2 N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷WD-51 A-1120 KBM-603 KH-792 1760-24-3 N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷WD-53 A-2120 KBM-602 3069-29-2 γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷WD-60 A-187 KBM-403 KH-560 2530-83-8 γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷WD-70 A-174 KBM-503 KH-570 2530-85-0

硅烷偶联剂及其在复合材料中的应用

方面的应用也是最早并最为成熟。 3.1.1不饱和聚酯在聚酯层压板中的玻璃纤维上用多种不饱和硅烷偶联剂进行了对比[4],其中有不少是很有效的偶联剂,其性能优越和应用较多的见表2所示。对于大多数通用聚酯来说,常选用含甲基丙烯酸酯的硅烷偶联剂(如WD-70)。在典型的含填料聚酯浇铸件中,采用各种填料和甲基丙烯酰氧基官能团硅烷可使其性能获得不同程度的改进[5]。 3.1.2环氧树脂许多硅烷对环氧树脂来说都相当有效,但可订出一些通则为某特定体系选择最适宜的硅烷。偶联剂的反应性至少与环氧树脂所用的特定固化体系的反应性相当。对于含缩水甘油官能团的环氧树脂来说,显然是选用缩水甘油氧丙基硅烷(如:WD-60)为宜,对于脂环族环氧化物或用酸酐固化的环氧树脂,建议用脂环族硅烷(如:A-153)。在实际应用中,硅烷偶联的应用机理并非总是很清楚,但可结合应用经验来选择,如使用伯胺基团的硅烷(如WD-50,WD-52)可使室温固化的环氧树脂获得最佳性能,但不可用 于酸酐固化的环氧树脂;含氯丙基官能团的硅烷(如WD-30)对高温固化的环氧树脂是一种很可靠的偶联剂;含甲基丙烯酸酯的硅烷(如WD-70)是双氰胺固化的环氧树脂的有效偶联剂。 3.1.3酚醛树脂硅烷偶联剂可用来改善几乎所有含酚醛树脂的复合材料。氨基硅烷可与酚醛树脂粘结料一起用于玻璃纤维绝缘材料;与间苯二酚—甲醛—胶乳浸渍液中的间苯二酚—甲醛树脂或酚醛树脂一起用于 玻璃纤维轮胎帘线上,与呋喃树脂与酚醛树脂一起用作金属铸造用砂芯的粘结料;氨基硅烷与酚醛树脂并用,可用于油井中砂层的固定,其中WD-50、WD-51效果理想[7]。 3.1.4其它热固性树脂表1中WD-20,WD-70可作为以邻苯二甲酸二烯丙脂、丙烯酸类单体以及可胶连的聚烯烃为基础的其它不饱和树脂的偶联剂。WD-60、WD-50、WD-52适合用作三聚氰酰胺树脂、呋喃树脂及聚酰亚胺树脂的偶联剂。 3.2热塑性树脂用硅烷处理颗粒状无机填料可显著改善含填料热塑性树脂的流变性能,并在诸如混炼挤出或注模等高剪切力的作业中,保护填料免受机械损伤。 3.2.1聚烯烃供压出法制电缆包层用的含填料聚乙烯可用硅烷改性,以提高复合材料在潮湿状态下的电性能。填充陶土、硅酸钙和石英的聚乙烯复合材料,在掺加了WD-70及WD-60后其性能均有明显改善。 3.2.2热塑性工程塑料适用于环氧树脂的有机官能团硅烷,在填充无机填料的尼龙中也能产生良好的效果。氨基硅烷可用于为数众多的热塑性塑料中,如ABS、缩醛树脂、尼龙、聚碳酸酯、聚砜、聚苯乙烯、聚酯、聚氯乙烯、苯乙烯-丙烯腈共聚物等。 3.3弹性体在橡胶中使用硅烷来处理炭黑、二氧化硅及其它无机填料已有多年的历史。子午线轮胎、胶辊、高级鞋底等橡胶制品中已大量使用硅烷偶联剂,含硫硅烷WD-40已成为这些橡胶配方中不可缺少的处理剂。研究表明,在各种类型橡胶中加入硅烷后,随着粘接强度的提高,其它性能也相应地发生变化,其变化情况因胶种而异。 4硅烷偶联剂的使用方法 4.1直接混合法在配合料中直接加入硅烷是对液体树脂内的颗粒状填料进行偶联改性的最简便的方法。如混炼橡胶时,直接掺入WD-40硅烷颗粒状填料进行即时处理。掺加硅烷的效果取决于混炼操作期间填料对硅烷的吸附能力。

硅烷偶联剂kh550使用方法

硅烷偶联剂kh550使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在1 20℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0. 5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH值KH-550乙醇/水:9.0~10.0 硅烷偶联剂怎么样处理填料 你好,硅烷偶联剂kh570一、概述:偶联剂kh570是一类具有两不同性质官能团的物质,它们分子中的一部分官能团可与有机分子反应,另一部分官能团可与无机物表面的吸附水反应,形成牢固的粘合。偶联剂在复合材料中的作用在于它既能与增强材料表面的某些基团反应,又能与基体树脂反应,在增强材料与树脂基体之间形成一个界面层,界面层能传递应力,从而增强了增强材料与树脂之间粘合强度,提高了复合材料的性能,同时还可以防止不与其它介质向界面渗透,改善了界面状态,有利于制品的耐老化、耐应力及电绝缘性能。化学名称:γ―甲基丙烯酰氧基丙基三甲氧基硅烷化学结构式:CH3CCH2COO(CH2)3Si(OCH3)3对应牌号:中科院KH-570、美国联碳公司A-174、美国道康宁公司Z-603、日本信越公司KBM-503典型特征:偶联剂570为甲基丙烯酰氧基官能团硅烷,外观为无色或微黄透明液体,溶于丙酮、苯、乙醚、四氯化碳,与水反应。沸点为255℃,密度P25'g/m1:1.040,折光率ND:1.429,闪点:88℃,含量为≥97%二、应用领域:1、用于玻璃纤维的表面处理,能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,即使在湿态时,它对复合材料机械性能的提高,效果也十分显著。目前,在玻璃纤维中使用硅烷偶联剂已相当普遍,用于这一方面的硅烷偶联剂约占其消耗总量的50%,其中用得较多的品种是乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。2、用于无机填料填充塑料。可预先对填料进行表面处理,也可直接加入树脂中。能改善填料在树脂中的分散性及粘合力,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。3、用作密封剂、粘接剂和涂料的增粘剂,能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。硅烷偶联剂作为增粘剂的作用原理在于它本身有两种基团;一种基团可以和被粘的骨架材料结合;而另一种基团则可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,大大改善了粘接强度。硅烷偶联剂的应用一般有三种方法:一是作为骨架材料的表面处理剂;二是加入到粘接剂中,三是直接加入到高分子材料中。从充分发挥其效能和降低成本的角度出发,前两种方法较好。三、使用方法1、表面预处理法:将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,

硅烷偶联剂

硅烷偶联剂 一项目建设的目的: 为减少单一产品的经营风险,改进有机硅主要产品的结构,考虑发展有机硅下游产品——硅烷偶联剂,降低经营风险,在市场占据有利形势。 近几年,由于我国玻纤行业和子午线轮胎生产的快速发展,使得市场对硅烷偶联剂的需求量增长很快。 我国的玻璃纤维产业属于朝阳产业,而随着建筑、机械、电子等玻璃纤维增强复合材料等应用领域的发展,使得我国的玻璃纤维产业正在进入新一轮高速发展期。预计“十一五”期间,玻纤生产量的发展速度将接近10%,2010年我国玻璃纤维量有望达到130万吨,对硅烷偶联剂的需求量将达到18000吨左右;加上橡胶行业及其他行业发展的需求,预计2010年国内硅烷偶联剂总需求量将达到25000吨以上。 目前国内虽有多家硅烷偶联剂生产企业,但绝大多数企业生产规模小,而且产品档次较低,品种规格较少。因此,有条件的地区或企业建设较大型的多功能硅烷偶联剂生产线,提高我国硅烷偶联剂的生产水平是必要的。 二概述 1 基本情况: 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表氨基、巯基乙烯基、环氧基、氯丙基、氰基及甲基丙烯酰氧基等基团,这些基团和不同的基体树脂均具有较强的反应能力,x代表能够水解的基团,如卤素、烷氧基、酰氧基等。 硅烷偶联剂是由三氯氢硅(HSiCl3)和带有反应性基团的不饱和烯烃在铂氨酸催化下加成,再经醇解而得。硅烷偶联剂既能与无机物中的羟基又能与有机聚合物中的长分子链相互作用,使两种不同性质的材料偶联起来,从而改善生物材料的各种性能。 2 用途:

硅烷偶联剂的应用大致可归纳为三个方面; (1) 用于玻璃纤维的表面处理。硅烷偶联剂能改善玻璃纤维和树脂的粘合性能,提高玻璃纤维增强复合材料的强度、抗水、抗气候等性能。2004年玻璃纤维使用的硅烷偶联剂约占其消耗总量的50%以上,其中用得较多的品种有乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。 (2) 用于无机填料的表面处理。硅烷偶联剂在对无机填料及树脂进行偶联时可预先对填料进行表面处理,也可直接加入树脂中,以改善填料在树脂中的分散性及粘合力,提高工艺性能和填充塑料(包括橡胶)的机械、电学和耐气候等性能。 (3) 用作密封剂、粘接剂和涂料的增粘剂。硅烷偶联剂能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。 3 硅烷偶联剂的品种: 硅烷偶联剂品种很多(常用硅烷偶联剂品种见下表),其中产量最大的是双-[3-(三乙氧基)硅丙基]四硫化物(Si-69或KH-846),它是由三氯氢硅、氯丙烯为原料催化合成γ-氯丙基三氯硅烷(它是生产多种硅烷偶联剂的中间产品),然后进行醇解得到γ-氯丙基三乙氧基硅烷,再与硫化物在一定条件下反应而制得。它是橡胶料行业中得到成功使用的多功能硅烷偶联剂,广泛应用在子线午轮胎及其它橡胶制品中。 目前常用的硅烷偶联剂品种

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅

常用硅烷偶联剂

常用硅烷偶联剂The manuscript can be freely edited and modified

常用硅烷偶联剂——K H550、K H560、K H570、K H792、D L602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100美国联碳;Z-6011美国道康宁;KBM-903日本信越..本品有碱性;通用性强;适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂.. 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 3-TriethoxysilylpropylamineAPTES; γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 3-AminpropyltriethoxysilaneAMEO 分子式:NH 2CH 23 SiOC 2 H 53 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度ρ25℃:0.946 沸点:217℃ 折光率nD25:1.420

溶解性:可溶于有机溶剂;但丙酮、四氯化碳不适宜作释剂;可溶于水..在水中水解;呈碱性.. 本品应严格密封;存放于干燥、阴凉、避光的室内.. 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂;能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能;并改善填料在聚合物中的润湿性和分散性.. 本品是优异的粘结促进剂;可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料;可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性;也适用于聚氨酯、环氧和丙烯酸乳胶涂料.. 在树脂砂铸造中;本品增强树脂硅砂的粘合性;提高型砂强度抗湿性.. 在玻纤棉和矿物棉生产中;将其加入到酚醛粘结剂中;可提高防潮性及增加压缩回弹性.. 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性.. 2.KH560 一、国外对应牌号: A-187美国联碳公司.. KBM-403日本信越化学工业株式会社 二、化学名称及分子式 化学名称:γ-缩水甘油醚氧丙基三甲氧基硅烷 分子式:CH 2CHOCH 2 OCH 23 SiOCH 33 结构式:

氨基硅烷偶联剂

氨基硅烷偶联剂 2007-5-27 来源:网络文摘 【全球塑胶网2007年5月27日网讯】 1 前言硅烷偶联剂最早是作为玻璃纤维增强塑料中玻璃纤维的处理剂而开发的,自20世纪中期开发至今,品种相当繁多,仅已知结构的硅烷偶联剂就有百余种之多,成为近年来发展较快的一类有机硅产品。氨基硅烷偶联剂由美国UCC公司于1955年首次提出,而后陆续衍生出一系列改性氨基硅烷偶联剂,由于其独特性能现已被广泛应用于国民经济的各个部门,成为硅烷偶联剂种类中越来越重要的一类产品。本文将着重介绍氨基硅烷偶联剂的种类、合成、用途及应用工艺。 2 氨基硅烷偶联剂种类及物理性能氨基硅烷偶联剂是最常用的硅烷偶联剂之一,据其氨基含有数量可分为单氨基、双氨基、三氨基以及多氨基。氨基硅烷类偶联剂属于通用型,几乎能与各种树脂起偶联作用,但聚酯树脂例外。常用的氨基硅烷偶联剂的物性数据见表1。 3 氨基硅烷偶联剂的合成氨基硅烷偶联剂的合成大致需要经过3个过程:(1)氯烃基氯化硅烷的合成;(2)醇解反应;(3)胺化反应。下面将就反应原理、反应过程作以详细介绍。 3.1 氯烃基氯化硅烷的合成一般因取代基团位置不同而采取两种合成路径:氯化法用以制取α—官能团硅烷偶联剂,而硅氢加成反应用以制备γ—官能团硅

烷偶联剂。 3.1.1 氯化反应以甲基三氯硅烷的合成为例,反应式为:CH3SiCl3+Cl2hrClCH2SiCl3具体实验方法[1]:在装有温度计、分馏柱的三口烧瓶中加入一定量的甲基三氯硅烷和少量催化剂,加热使之气化,向三口烧瓶中通入干燥氯气,用日光灯或紫外光灯照射。反应过程中底温逐渐升高,直至产物沸点;顶温保持在原料沸点附近。反应结束后,分馏,取112~120℃馏分,产率约70%。 3.1.2 硅氢加成反应ClCH2CHCH2+HSiCl2R1[pt]Cl(CH2)3SiCl2R1R1=CH3—,Cl—当取代基在γ位时,即官能团与硅原子相隔3个碳原子,官能团对硅原子的影响很小,所以这种结构的有机硅化合物是稳定的。具体实验方法[2]:在装有回流冷凝器恒压滴液漏斗、温度计的三颈烧瓶中放入溶剂和催化剂。用磁力搅拌器搅拌,以油浴加热,用控温仪控制温度在150℃左右。当瓶中液温上升到80~95℃时,从冷凝器上的恒压漏斗中滴入含氢硅烷和烯丙基氯的混合液,滴加速度控制在使烧瓶中液温维持在85℃左右,约6~8h滴完。然后回流直至几乎无回流液滴为止,产率约40%~60%。 3.2 醇解反应[3]ClR2SiCl3+3R3OHClR2Si(OR3)3+3HCl↑Cl(CH2)3SiCl2+2R3OHCH3Cl(CH2)3Si(OR3)2+2HCl↑CH3R2=CH2—,CH2CH2CH2—,R3=CH3—,C2H5—醇解反应可分为甲醇解和乙醇解两种。甲醇解反应较乙醇解投料方式、反应过程都略复杂,收率也偏低。甲醇解:在装有直形冷凝器(内填有瓷环)、两个恒压漏斗和温度计的四口瓶中,加入一定量的石油醚(60~90℃),然后在搅拌下,加热反应器。当石油醚回流时,从两个恒压漏斗中分别滴入甲醇和氯硅烷,不断搅拌维持正常回流。滴完后再回流约1h,反应产率约80%左右。乙醇解:在装有直形冷凝器(内填有瓷环)-恒压漏斗、温度计和N2插底管的四口烧瓶中,投入一定量的氯硅烷,加热至一定温度,再滴加乙醇,鼓泡赶酸,滴完后保持正常回流,测定氯含量判定反应终点,产率在90%以上。 3.3 胺化反应ClR2Si(R3)2+R′HR4R′R2Si(OR3)2+HClR4R4=CH3—,OR3—R′=NH2—, NH,HN(CH2)2NH2,NHCH2CH2NHCH2CH2NH2单氨基:单氨基硅烷偶联剂的胺化反应比较困难,且副反应较多。中科院化学所[4]合成(EtO)3SiC3H6NH2的工艺条件为:在压力釜中,加入一定量的(EtO)3SiC3H6Cl和液NH3,使釜升温,100℃下反应12h,釜压高达6.2MPa。分馏后得产品,收率约43%。合成PhNHC3H6Si(OEt)3时,加入过量的PhNH2以抑制付反应,可得到78%的目的产物。双氨基[5]:在装有冷凝管、恒压漏斗、温度计的三口瓶中放入乙二胺,加热回流。从漏斗中滴入氯烷基甲(乙)氧基硅烷,回流反应5h,冷却蒸除过量乙二胺。三氨

硅烷偶联剂kh

硅烷偶联剂kh570 一、概述: 偶联剂kh570是一类具有两不同性质官能团的物质,它们分子中的一部分官能团可与有机分子反应,另一部分官能团可与无机物表面的吸附水反应,形成牢固的粘合。偶联剂在复合材料中的作用在于它既能与增强材料表面的某些基团反应,又能与基体树脂反应,在增强材料与树脂基体之间形成一个界面层,界面层能传递应力,从而增强了增强材料与树脂之间粘合强度,提高了复合材料的性能,同时还可以防止不与其它介质向界面渗透,改善了界面状态,有利于制品的耐老化、耐应力及电绝缘性能。 化学名称:γ―甲基丙烯酰氧基丙基三甲氧基硅烷 化学结构式:CH3CCH2COO(CH2)3Si(OCH3)3 对应牌号:中科院KH-570、美国联碳公司A-174、美国道康宁公司Z-603、日本信越公司KBM-503 典型特征:偶联剂570为甲基丙烯酰氧基官能团硅烷,外观为无色或微黄透明液体,溶于丙酮、苯、乙醚、四氯化碳,与水反应。沸点为255℃,密度P25'g/m1:1.040,折光率ND:1.429,闪点:88℃,含量为≥97% 二、应用领域: 1、用于玻璃纤维的表面处理,能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,即使在湿态时,它对复合材料机械性能的提高,效果也十分显着。目前,在玻璃纤维中使用硅烷偶联剂已相当普遍,用于这一方面的硅烷偶联剂约占其消耗总量的50%,其中用得较多的品种是乙烯基硅烷、氨基硅烷、甲基

丙烯酰氧基硅烷等。 2、用于无机填料填充塑料。可预先对填料进行表面处理,也可直接加入树脂中。能改善填料在树脂中的分散性及粘合力,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。 3、用作密封剂、粘接剂和涂料的增粘剂,能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。硅烷偶联剂作为增粘剂的作用原理在于它本身有两种基团;一种基团可以和被粘的骨架材料结合;而另一种基团则可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,大大改善了粘接强度。硅烷偶联剂的应用一般有三种方法:一是作为骨架材料的表面处理剂;二是加入到粘接剂中,三是直接加入到高分子材料中。从充分发挥其效能和降低成本的角度出发,前两种方法较好。 三、使用方法 1、表面预处理法:将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。 2、迁移法:将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为

橡塑助剂 乙烯基硅烷偶联剂

橡塑助剂乙烯基硅烷偶联剂 硅烷偶联剂最早是作为玻璃纤维增强塑料中玻璃纤维的处理剂而开发的;之后,由于其独特的性能及新产品的不断问世,使得应用领域逐渐扩大,成了有机硅工业的重要分支,是近年来发展较快的一类有机硅产品。现在,世界上已商品化的硅烷偶联剂有一百多个品种。硅烷偶联剂的通式为:Y(CH2)nSiX3[n=0~3;X为可水解基团;Y为有机官能团]。按照有机官能团的不同,硅烷偶联剂可分为胺类、乙烯基类、环氧类、丙烯酸酯类、巯基类、脲类等。在这几类硅烷偶联剂中,乙烯基硅烷偶联剂是用途较广泛、用量也较大的一类硅烷产品,本文着重介绍乙烯基硅烷偶联剂。 1乙烯基硅烷偶联剂的种类及物理性能乙烯基硅烷偶联剂的通式为: CH2=CH(CH2)nSiX3X通常是氯基、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基等,这些基团水解时即生成硅羟基[-Si(OH)3],进而与无机物(M)结合,形成-Si-O-M键;而乙烯基可与有机物反应而结合。因而,乙烯基硅烷偶联剂具有既能与无机材料化学结合,又能与有机质材料化学结合的能力。 乙烯基三氯硅烷的合成方法主要有直接合成法、乙基三氯硅烷氯化和脱氯化氢法、三氯氢硅与乙炔的加成法、三氯氢硅与氯乙烯的热缩合法等。本文主要介绍后两种方法。 2.1三氯氢硅与乙炔的加成法在一定压力下,以第Ⅷ族金属为催化剂,三氯氢硅与乙炔反应生成乙烯基三氯硅烷,同时还生成1,2-二(三氯硅基)乙烯。铂黑、铂橡胶和铂石棉都是有效的催化剂[1];纯净的活性炭是最好的载体[2]。前苏联学者M FShostakovsky曾将铂载到氧化铝上作为催化剂,成功地使三氯氢硅与乙炔的加成反应在常压下进行,乙烯基三氯硅烷的收率为50%(以三氯氢硅为基准)[3]。采用八羰基钴、四氢呋喃、碘化钾或乙醚、或它们的混合物组成的催化剂系统,三氯氢硅或三乙氧基氢硅可与乙炔进行常压加成反应,温度为 15~20℃。具体方法是:反应器为直径30mm,高1m,内装直径为8mm玻璃环的填料塔,塔顶与干冰冷凝器相连。向塔中加入82g(0 5mol)三乙氧基氢硅和0 9g 八羰基合钴,在15~20℃,以5L/h的体积流量将乙炔通入反应塔底;反应产物经

相关主题