搜档网
当前位置:搜档网 › 北京航空航天大学航空航天概论课件第四章 机载设备

北京航空航天大学航空航天概论课件第四章 机载设备

信号与系统实验5

信号与系统实验(五) 班级:通信5班姓名:刘贺洋学号:11081515 班级:通信5班姓名:章仕波学号:11081522 1.符号函数的傅里叶变换 (1)下面参考程序和运行结果是信号||2 f- t =的傅里叶变换,分析程序,判 e ) (t 断运行结果正确与否。 syms t; %时间符号 f=exp(-2*abs(t)); %符号函数 F=fourier(exp(-2*abs(t))); subplot(1,2,1); ezplot(f); subplot(1,2,2); ezplot(F); 1(1)图

(2)参考上述程序试画出信号)(32 )(3t u e t f t -=的波形及其幅频特性曲线。 1(2)源程序: syms t ; %时间符号 f=2/3*exp(-3*t)*heaviside(t); %符号函数 F=fourier(f); subplot(1,2,1); ezplot(f); subplot(1,2,2); ezplot(abs(F)); 1(2)图: 2.符号函数的傅里叶变换

(1)下面参考程序是求信号211)(ωω+=j F 的逆傅里叶变换,分析程 序,比较运行结果。 源程序2(1) syms t w; F=1/(1+w^2); f=ifourier(F,t); subplot(1,2,1); ezplot(F); subplot(1,2,2); ezplot(f); 2(1)图: (2)求信号ωωωsin 2)(=j F 的逆傅里叶变换,并用程序验证。

源程序2(2) syms t w; F=2*sin(w)/w; f=ifourier(F,t); subplot(1,2,1); ezplot(F); subplot(1,2,2); ezplot(f); 图2(2):

北航考研通信类综合921的一些经验之谈

转眼离考试结束已经一个多月了,感觉时间真快。。。。。在这里,说一些自己考试的经验吧,虽然还不知道自己考试的结果怎么样,但是希望我的经验呢能给后来的学弟学妹们提供一些帮助。 921通信类综合包含三门专业课:模电,信号与系统以及电磁场。其中模电占得分最多是60分,信号和电磁场都是45分,难度最大、最难得分的当然是模电,在我们学校,大家都叫它魔鬼,当初我们专业挂了四分之一的人!足以见其变态程度,幸好北航出的模电题一般都不会特别的难,但是你想不失分那是不可能的。 北航921专业课的考试大纲已经说了这几门课所使用的教材: 模电:1.张凤言编著,电子电路基础(第二版),高等教育出版社; 2.模拟集成电路的分析与设计,P.R.Gray等著,张晓林等译,高等教育出版社,2005年6月; 3. 童诗白主编,模拟电子技术基础(第四版),高等教育出版社 其中张凤言老师的那本是北航本校的教材,外面基本没的卖,我辗转终于买到一本,但是里面的内容实在是太多太繁杂,非一般人能接受的,特别是在考研时间如此紧迫的情况下,如果能弄到一本的话,看看其中波特图的章节就行了,其他的部分看童诗白老师的那本书完全就能应对考试。在这里,我要说一下自己复习时的一些心得吧。因为波特图是每年的必考题,但是童诗白老师那本书讲的跟张凤言老师讲的是完全不一样的,所以大家最好能看一下张凤言老师的那本书的那个章节,把那个章节的习题做了,考试题有可能就是在里面。另外,我复习的时候在图书馆借了一本模电的辅导书,我觉得非常好,现在忘了叫什么名字了,等我去图书馆查了再告诉大家,那本书感觉跟北航的要求很相近,其中波特图、反馈电路、放大电路的讲解都非常的好。 信号与系统:1. 郑君里,应启珩,杨为理,《信号与系统》,高等教育出版社,2000年5第二版。 2. 郑君里,应启珩,杨为理,《信号与系统》,高等教育出版社,第一版。 3.A.V. Oppenheim等著,刘树棠译,《信号与系统》第二版,西安交通大学出版社 信号与系统应该说是三门专业课中最简单的一门,也是最好拿分的一门,复习的到位的话,45分全拿到手都很正常。信号与系统考试题一般是三道大题,信号系统这么多内容,三道大题根本就考不了多少东西,通过我做往年的真题和自己考试的经验来看,最重要的还是那几个变换,傅里叶变换,拉普拉斯变换,Z变换,时域的,频域的,离散域的都要弄明白,而且要灵活运用,我的建议就是看好郑君里老师的两本书,那两本书写的实在是太经典了,大部分时间你要用来看教材,少部分时间看一些信号系统的考研辅导书,多见一些题型,也要练一些题来培养一下题感。 电磁场:1. 苏东林等,《电磁场与电磁波》,高等教育出版社(2008) 2. 苏东林等,《电磁场理论学习指导书》,电子工业出版社(2005.09)电磁场从2011年开始有了变化,教材之前还有一本徐永斌老师出的一本《工程电磁场基础》,以前是说这两本书都可以,从去年开始改了。徐永斌老师的书和苏东林老师的书我都买了,99%的内容是一样的,所以说这两本书都可以。其实我之前也是听别人的经验说是电磁场很简单,是最好复习的,但是复习的时候却发现是最难得,我足足看了一个月!!!现在想起来当时实在是太傻了,其实大家基本都没怎么学过电磁场,想在短时间内弄懂基本是不可能的,而且北航考的也很简单,总是一些老题型,但是我并不建议大家把《电磁场理论学习指导书》这本书来回翻几遍就不管了,因为每年出题的老师会不一样,说不定哪个老师心血来潮给你出点新题型,到时候就傻眼了,所以说课本还是要看的,但是要有选择的看,根据考纲上的

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

2014信号与系统实验五(2)

Matlab拓展实验1:周期方波的傅立叶级数分析 一、周期方波信号的产生 1、周期方波函数:square(t,duty) (1)其中t为时间向量。 (2)duty为占空比,此参数可缺省,缺省时,duty=50。 注:周期方波的占空比为x%,是指一个周期内,高电平持续时间占整个周期时长的x%。但在square函数中,参数duty是一个0~100的数值。例如,若需产生占空比为20%的方波,则应设置duty=20。 2、功能描述:square函数产生一个周期为2π、高低电平分别为±1的周期方波,通过适当的编程可以调整为任意周期,任意幅度,任意中心值。 【例1】在时间范围[?4π,4π]产生周期的2π的周期方波。 clear;clf;clc; step=pi/200; %设置时间步长 t=-4*pi:step:4*pi; %设置时间范围 x1=square(t); %产生占空比为50%的周期方波 duty=20;x2=square(t,duty); %产生占空比为20%的周期方波 subplot(2,1,1);plot(t,x1); axis([-4*pi,4*pi,-1.5,1.5]);title('占空比为0.5的周期方波'); subplot(2,1,2);plot(t,x2); axis([-4*pi,4*pi,-1.5,1.5]);title('占空比为0.2的周期方波'); 上述程序的运行结果如下:

【思考】如将例1程序中的作图部分修改如下(修改部分以红色标出),这种处理方式称之为横坐标对pi归一化,图形结果会有何不同?这时横坐标的数值标注含义有何变化? subplot(2,1,1);plot(t/pi,x1); axis([-4,4,-1.5,1.5]);title('占空比为0.5的周期方波'); subplot(2,1,2);plot(t/pi,x2); axis([-4,4,-1.5,1.5]);title('占空比为0.2的周期方波'); 【实践1】产生周期为1,占空比为30%,高电平为1,低电平为0的周期方波,时间范围为[?2,2],即能观察到4个完整的周期。(时间变量的尺度变换) 二、傅立叶级数分解的计算 1、周期信号傅立叶级数展开的理论分析 周期信号的傅立叶级数有若干种形式(如三角形式、指数形式),这里以指数形式的傅立叶级数为例进行说明。 信号x(t)满足,x t=x(t+T),其中T称为周期(或基波周期,单位s),F=1T称为频率(或基波频率,单位Hz),ω=2πT=2πF称为基波角频率,单位rad s。 (1)指数形式的傅立叶级数:

15秋北航《信号与系统》在线作业二100分答案

北航《信号与系统》在线作业二 一、单选题(共10 道试题,共30 分。) 1. 信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为________。 A. Re[s]>0 B. Re[s]>2 C. 全S平面 D. 不存在 -----------------选择:C 2. 信号的时宽与信号的频宽之间呈________。 A. 正比关系 B. 反比关系 C. 平方关系 D. 没有关系 -----------------选择:B 3. If f1(t) ←→F1(jω),f2(t) ←→F2(jω) Then________。 A. [a f1(t) + b f2(t) ] ←→ [a F1(jω) *b F2(jω) ] B. [a f1(t) + b f2(t) ] ←→ [a F1(jω) - b F2(jω) ] C. [a f1(t) + b f2(t) ] ←→ [a F1(jω) + b F2(jω) ] D. [a f1(t) + b f2(t) ] ←→ [a F1(jω) /b F2(jω) ] -----------------选择:D 4. 某信号的频谱是周期的离散谱,则对应的时域信号为________。 A. 连续的周期信号 B. 连续的非周期信号 C. 离散的非周期信号 D. 离散的周期信号 -----------------选择:D 5. 信号在时域拥有的总能量,________其频谱在频域内能量的总和。 A. 大于 B. 等于 C. 小于 D. 不等于 -----------------选择:B 6. 理想低通滤波器是________。 A. 因果系统 B. 物理可实现系统 C. 非因果系统 D. 响应不超前于激励发生的系统 -----------------选择:C 7. 连续周期信号的傅氏变换是________。 A. 连续的 B. 周期性的 C. 离散的 D. 与单周期的相同 -----------------选择:C

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

信号与系统-实验报告-实验五

实验五 连续信号与系统的S 域分析 学院 班级 姓名 学号 一、实验目的 1. 熟悉拉普拉斯变换的原理及性质 2. 熟悉常见信号的拉氏变换 3. 了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法 4. 了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系 二、 实验原理 拉普拉斯变换是分析连续时间信号的重要手段。对于当t ∞时信号的幅值不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为: 拉氏反变换的定义为: 显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ?=。其中,|F(s)|为复信号F(s)的模,而()s ?为F(s)的相位。由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。从三维几何空间的角度来看,|()|F s 和()s ?分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况,在MATLAB 语言中有专门对信号进行正反拉氏变换的函数,并且利用 MATLAB 的三维绘图功能很容易画出漂亮的三维曲面图。 ①在MATLAB 中实现拉氏变换的函数为: F=laplace( f ) 对f(t)进行拉氏变换,其结果为F(s) F=laplace (f,v) 对f(t)进行拉氏变换,其结果为F(v) F=laplace ( f,u,v) 对f(u)进行拉氏变换,其结果为F(v) ②拉氏反变换 f=ilaplace ( F ) 对F(s)进行拉氏反变换,其结果为f(t) f=ilaplace(F,u) 对F(w)进行拉氏反变换,其结果为f(u) f=ilaplace(F,v,u ) 对F(v)进行拉氏反变换,其结果为f(u) 注意: 在调用函数laplace( )及ilaplace( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。对laplace( )中的f 及ilaplace( )中的F 也要用符号定义符sym 将其说明为符号表达式。具体方法参见第一部分第四章第三节。 例①:求出连续时间信号 ()sin()()f t t t ε=的拉氏变换式,并画出图形 求函数拉氏变换程序如下: syms t s %定义符号变量 ft=sym('sin(t)*Heaviside(t)'); %定义时间函数f(t)的表达式

北航《信号与系统》复习题一

北航《信号与系统》复习题一 一、 单选题 1. 连续周期信号的频谱具有( )。 A. 连续性、周期性 B. 连续性、收敛性 C. 离散性、周期性 D. 离散性、收敛性 2. 下列描述正确的是( )。 A. 信号()t f 反折,则其相应的频谱()ωj F 也反折。 B. 信号()t f 在时间轴上扩展2倍,则其相应的频谱在ω轴上也扩展2倍。 C. 信号()t f 在时间轴上平移2,则其相应的频谱在ω轴上也平移2。 D. 信号()t f 为时限信号,则其相应的频谱也是频带有限的。 3. 连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是( )。 A. 因果稳定 B. 因果不稳定 C. 非因果稳定 D. 非因果不稳定 4. 一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为( )。 A. 500 B. 1000 C. 0.05 D. 0.001 5. f (5-2t )是如下运算的结果( ) A. f (-2t )右移5

B. f (-2t )左移5 C. f (-2t )右移 25 D. f (-2t )左移2 5 6. 已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ( )。 A. 1-at e - B. at e - C. )1(1 at e a -- D. at e a -1 7. 线性系统响应满足以下规律( )。 A. 若起始状态为零,则零输入响应不一定为零。 B. 若起始状态为零,则零状态响应为零。 C. 若系统的零状态响应为零,则强迫响应也为零。 D. 若激励信号为零,零输入响应就是自由响应。 8.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)23 1 (-t f 进行取样,其奈奎斯特取样频率为( )。 A. 3f s B. s f 3 1 C. 3(f s -2) D. )2(3 1 -s f 9.时域是实偶函数,其傅氏变换一定是( )。 A. 实偶函数 B. 纯虚函数 C. 任意复函数 D. 任意实函数 10.理想低通滤波器是( )。 A. 因果系统 B. 物理可实现系统

信号与系统实验实验报告

信号与系统实验实验报 告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验五连续系统分析一、实验目的 深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。 二、实验原理 MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。 三、实验内容 1.已知描述连续系统的微分方程为,输入,初始状态 ,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。 实验代码: a=[1 10]; b=[2]; [A B C D]=tf2ss(b,a); sys=ss(A,B,C,D); t=0: :5; xt=t>0; sta=[1]; y=lsim(sys,xt,t,sta); subplot(3,1,1); plot(t,y); xlabel('t'); title('系统完全响应 y(t)'); subplot(3,1,2); plot(t,y,'-b'); hold on yt=4/5*exp(-10*t)+1/5; plot(t,yt,' : r'); legend('数值计算','理论计算'); hold off xlabel('t'); subplot(3, 1 ,3); k=y'-yt; plot(t,k); k(1) title('误差');

实验结果: 结果分析: 理论值 y(t)=0. 8*exp(-10t)*u(t)+ 程序运行出的结果与理论预期结果相差较大误差随时间增大而变小,初始值相差最大,而后两曲线基本吻合,表明该算法的系统响应在终值附近有很高的契合度,而在初值附近有较大的误差。 2.已知连续时间系统的系统函数为,求输入分别为,, 时,系统地输出,并与理论结果比较。 a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1); xlabel('t'); title('X(t)=u(t)'); subplot(3,1,2); plot(t,y2); xlabel('t'); title('X(t)=sint*u(t)'); subplot(3, 1 ,3); plot(t,y3); xlabel('t'); title('X(t)=exp(-t)u(t)'); 实验结果: 结果分析: a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1,'-b');

航空航天概论

《航空航天概论》国家精品课建设 北京航空航天大学贾玉红 一、课程的历史沿革和特色 《航空航天概论》是我校针对全校大学一年级学生开设的工程概论性公共必修课程,作为全校的重要特色基础课一直都受到学校和教师们的高度重视。自1952年建校以来,《航空航天概论》(以下简称《航概》)就被列为全校的选修课。经过几代人50多年的努力,该课程从课程内容、教学方法、组织形式等各方面均有了很大的突破,使本课程成为全校重点建设的基础课程。随着航空航天科技的快速发展,1997年学校又把本课作为全校所有理工类、文史类和法律类大学一年级的必修课,使之成为一门具有浓郁航空航天特色的重要课程。 航空航天技术是一门高度综合的尖端科学技术,是一个国家科学技术先进水平的重要标志,对社会发展影响巨大。因此,《航概》的学习,是学生了解航空、航天科技和世界先进技术的第一窗口,是培养学生爱航空、学航空、投身于航空事业的重要入门课程,也是让学生初步建立航空航天工程意识,并为后继课程的学习打下基础的重要环节。《航概》课不仅对航空类专业的学生有重要的意义,而且对于非航空类专业和其它各类高校的学生来讲,也是他们进一步拓宽知识面和专业面,开拓视野,扩大知识口径,提高文化素质的有效途径。 由于教学对象是低年级的大学生,还不具备相应的专业基础,因此必须考虑如何将先进的航空航天知识更好地传授给学生,使学生达到融会贯

通、学以致用的目的。通过长期的教学实践,我们对传统的单一的以课堂讲授为主的教学模式进行了改革,不断更新教学内容,改进教学方法,形成了一种课堂授课和现场教学相结合,跨院系、跨学科、跨专业的联合教育模式,充分利用各系资源和教学条件,为学生提供更多的学习和实践机会。经过多年来的教学实践,教学水平和教学质量有了显著的提高。二、课程教材建设 航空航天技术的发展日新月异,为了使教学内容充分体现现代航空航天的最新成果,自52年建校以来,教材内容几经改革,由最初的讲义,到史超礼编的《航空概论》和过崇伟等编的《航空航天技术概论》,都凝聚了很多教师的心血,课程内容浓缩了航空航天技术每个阶段的发展历程。 教材建设是教学改革的重要内容,1996年学校组织了一批以何庆芝教授为组长的在航空航天领域有较高学术造诣的专家编写了《航空航天概论》教材,教材内容丰富翔实,通俗易懂,被评为普通高等教育“九五”国家级重点教材,教材发行量在20000册以上,已成为航空院校和相关院校的首选教材。为了使教学内容充分体现现代航空航天技术的特点,需要对教材内容进行及时更新,从2002年起,课程组又组织新版教材的编写。新编的《航空航天技术概论》(谢础主编)即将出版,并作为国防“十五”重点教材向全国推行。新编教材在吸收原教材优点的基础上,突出了航空航天新技术和新成果的介绍,使教材具有很强的时代性。 三、教学改革与教学实践 《航概》的特点是图片多,信息量大,涉及内容广,如果采用传统的

17春北航《信号与系统》在线作业一

2017秋17春北航《信号与系统》在线作业一 一、单选题(共10 道试题,共30 分。) 1. 信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为________。 A. Re[s]>0 B. Re[s]>2 C. 全S平面 D. 不存在 正确答案: 2. 将信号f(t)变换为________称为对信号f(t)的平移或移位。 A. f(t–t0) B. f(k–k0) C. f(at) D. f(-t) 正确答案: 3. 计算ε(3-t)ε(t)= ________。 A. ε(t)-ε(t-3) B. ε(t) C. ε(t)- ε(3-t) D. ε(3-t) 正确答案: 4. 对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)是否都在左半平面上,即可判定系统是否稳定。下列式中对应的系统可能稳定的是?________ A. s*s*s+2008s*s-2000s+2007 B. s*s*s+2008s*s+2007s C. s*s*s-2008s*s-2007s-2000 D. s*s*s+2008s*s+2007s+2000 正确答案: 5. 幅度调制的本质是________。 A. 改变信号的频率 B. 改变信号的相位 C. 改变信号频谱的位置 D. 改变信号频谱的结构 正确答案: 6. 哪种滤波器功能是只允许信号中的低频成分通过________。 A. 理想低通滤波器 B. 带通滤波器

C. 高通滤波器 D. 以上全对 正确答案: 7. 零输入响应是________。 A. 全部自由响应 B. 部分自由响应 C. 部分零状态响应 D. 全响应与强迫响应之差 正确答案: 8. 信号的时宽与信号的频宽之间呈________。 A. 正比关系 B. 反比关系 C. 平方关系 D. 没有关系 正确答案: 9. 时域是实偶函数,其傅氏变换一定是________。 A. 实偶函数 B. 纯虚函数 C. 任意复函数 D. 任意实函数 正确答案: 10. 已知一连续系统在输入f(t)的作用下的零状态响应为y=f(4t),则该系统为________。 A. 线性时不变系统 B. 线性时变系统 C. 非线性时不变系统 D. 非线性时变系统 正确答案: 北航《信号与系统》在线作业一 二、多选题(共10 道试题,共40 分。) 1. 关于带宽描述正确的是________。 A. 在通信工程中,带宽是指波形的振幅频谱中正频率的带宽 B. 从理论上讲有限时域信号的带宽是无穷的,真正做到有限带宽是很不容易的 C. 绝对带宽一般是正频率轴上的带宽 D. 以上描述都对 正确答案:

北航《航空航天概论》在线作业一、二、三

北航《航空航天概论》在线作业一 试卷总分:100 测试时间:-- 单选题(共 5 道试题,共 20 分。) V 1. 中国的第一位航天员是()。 B. 杨利伟 满分:4 分 2. 20世纪60年代,苏联航天员加加林乘坐()飞船进入太空,人类实现了遨游太空的 伟大理想。 A. 东方1号 满分:4 分 3. 中国的运载火箭都是以()命名。 A. 长征 满分:4 分 4. 固定翼航空器包括飞机和()。 A. 滑翔机 满分:4 分 5. 美国的()兄弟发明了飞机。 B. 莱特 满分:4 、多选题(共 5 道试题,共 20 分。) V 1. 神舟6号飞船搭载的航天员是()。 C. 费俊龙 D. 聂海胜 满分:4 分 2. 人造地球卫星按照用途可以分为()。 A. 科学卫星 B. 应用卫星 C. 技术试验卫星 满分:4 分 3. 飞机的隐身方式主要有()。

A. 雷达隐身 B. 红外隐身 满分:4 分 4. 民用航空市场现在基本处于垄断市场的两家飞机公司是()。 A. 空客 B. 波音 满分:4 分 5. 根据大气中温度随高度的变化,可将大气层划分为()。 A. 对流层 B. 平流层 C. 中间层 D. 热层和散逸层 满分:4 、判断题(共 15 道试题,共 60 分。) V 1. 中国是第一个具有载人航天能力的国家。 A. 错误 满分:4 分 2. 伯努利原理就是能量守恒原理在流体流动中的应用。 B. 正确 满分:4 分 3. 马赫数可以用来衡量空气被压缩的程度。 B. 正确 满分:4 分 4. 卫星导航系统是21世纪的新技术。 A. 错误 满分:4 分 5. 惯性导航系统是通过测量飞行器的加速度进而推算出飞行器的位置和速度的一种导航 技术。 B. 正确

北理工信号与系统实验(5)

实验5 连续时间系统的复频域分析 一、实验目的 1.掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB实现方法。 2.学习和掌握连续时间系统函数的定义及复频域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换、反变换定义为 MATLAB中,可以采用符号数学工具箱的laplace函数和ilaplace函数进行拉氏变换和拉氏反变换。 L=laplace(F)符号表达式F的拉氏变换,F中时间变量为t,返回变量为s的结果表达式。 L=laplace(F,t)用t替换结果中的变量t。 F=ilaplace(L)以s为变量的符号表达式L的拉氏反变换,返回时间变量为t的结果表达式。 F=ilaplace(L,x)用x替换结果中的变量t。 2.连续时间系统的系统函数 连续时间系统的系统函数是系统单位冲击响应的拉氏变换 连续时间系统的系统函数还可以由输入和输出信号的拉氏变换之比得到 单位冲击响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。由上式描述的连续时间系统,其系统系数为s的有理函数

3.连续时间系统的零极点分析 系统的零点指使上式的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s平面上,零点用○表示,极点用×表示,得到零极点分布图。 由零点定义可知,零点和极点分别指上式分子和分母多项式的根,利用MATLAB求多项式的根可以通过roots来实现,该函数调用格式为: r=roots(c) c为多项式的系数向量,返回值r为多项式的根向量。 分别对上式的分子、分母多项式求根即可求得零极点。 此外,在MATLAB中还提供了pzmap函数来求取零极点和绘制系统函数的零极点分布图,该函数的调用格式为: Pzmap(sys) 绘出系统模型sys描述的系统的零极点分布图。 [p,z]=pzmap(sys) 这种调用方法返回极点和零点,而不绘出零极点分布图。其中sys为系统传函模型,由t命令sys=tf(b,a)实现,b、a为传递函数的分子和分母多项式的系数向量。 MATLAB还提供了两个专用函数tf2zp和zp2tf来实现系统传递函数模型和灵机电网增益模型的转换,其调用格式为 [z,p,k]=th2zp(b,a) [b,a]=th2zp(z,p,k) 其中b、a为传递函数的分子和分母多项式的系数向量,返回值z为零点列向量,p为极点列向量,k为系统函数零极点形式的增益。 三、实验内容 1.已知系统的冲激响应h(t)u(t)u(t2) =,试采用复频域的 =--,输入信号x(t)u(t) 方法求解系统的响应,编写MATLAB程序实现。 解:MATLAB程序如下: h=sym('heaviside(t)-heaviside(t-2)'); H=laplace(f) x=sym('heaviside(t)'); X=laplace(x) Y=H*X

北航《信号与系统》在线作业二15秋标准答案

北航《信号与系统》在线作业二 单选题多选题判断题 一、单选题(共 10 道试题,共 30 分。) 1. 信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为 ________。 A. Re[s]>0 B. Re[s]>2 C. 全S平面 D. 不存在 -----------------选择:C 2. 信号的时宽与信号的频宽之间呈 ________。 A. 正比关系 B. 反比关系 C. 平方关系 D. 没有关系 -----------------选择:B 3. If f1(t) ←→F1(jω), f2(t) ←→F2(jω) Then________。 A. [a f1(t) + b f2(t) ] ←→ [a F1(jω) *b F2(jω) ] B. [a f1(t) + b f2(t) ] ←→ [a F1(jω) - b F2(jω) ] C. [a f1(t) + b f2(t) ] ←→ [a F1(jω) + b F2(jω) ] D. [a f1(t) + b f2(t) ] ←→ [a F1(jω) /b F2(jω) ] -----------------选择:D 4. 某信号的频谱是周期的离散谱,则对应的时域信号为 ________。 A. 连续的周期信号 B. 连续的非周期信号 C. 离散的非周期信号 D. 离散的周期信号 -----------------选择:D 5. 信号在时域拥有的总能量,________其频谱在频域内能量的总和。 A. 大于 B. 等于 C. 小于 D. 不等于 -----------------选择:B 6. 理想低通滤波器是 ________。 A. 因果系统 B. 物理可实现系统 C. 非因果系统 D. 响应不超前于激励发生的系统 -----------------选择:C 7. 连续周期信号的傅氏变换是 ________。 A. 连续的

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

北航13年6月课程考试《航空航天概论》考核要求[1] 2

北航13年6月课程考试《航空航天概论》考核要求 1.飞机的气动布局形式有哪些?请简述各布局形式的特点。(20分) 2.简述直升机是如何实现前飞、后飞、上飞和下飞的?(20分) 3.比较描述宇宙飞船和航天飞机的基本结构及其用途。(20分) 4.无人机是如何分类的?试估计未来无人机的发展趋势;(20分) 5.支线飞机的定义是什么?通过你对航空技术现状和未来的发展趋势,谈谈你对我国支线 飞机发展状况和前景的看法。(20分) 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。 苏-27的边条使之具有不亚于鸭式布局飞机的大迎角飞行操纵性,以至于可以做出 “普加契夫眼镜蛇”这样的高难度动作。 我们看到任何一架飞机,首先注意到的就是气动布局。简单地说,气动布局就是指 飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于 发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。 飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。现代 作战飞机的气动布局有很多种,主要有常规布局、无尾布局、鸭式布局、三翼面布局和 飞翼布局等。这些布局都有各自的特殊性及优缺点。 EF-2000“台风”的前翼只有很小的面积,却有很大的作用。 常规布局 自从莱特兄弟发明第一架飞机以来,飞机设计师们通常将飞机的水平尾翼和垂直尾翼都 放在机翼后面的飞机尾部。这种布局一直沿用到现在,也是现代飞机最经常采用的气动布局,因此称之为“常规布局”。 20多年前,研究人员发现,如果在机翼前沿根部靠近机身两侧处增加一片

北航信号与系统上机实验报告

信号与系统上机实验报告 我是 buaa 快乐的小2B

目录 实验一、连续时间系统卷积的数值计算 (3) 一、实验目的 (3) 二、实验原理 (3) 三、实验程序源代码、流图实验程序源代 码 (4) 4.1源代码与程序框图: (4) 4.2数据与结果 (5) 4.3数据图形 (6) 实验二、信号的矩形脉冲抽样与恢复 (7) 一、实验目的: (7) 二、实验原理: (7) 三、实验内容 (9) 四、实验程序流程图和相关图像 (9) 4.1、画出f(t)的频谱图即F(W)的图像 (9) 4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信 号的时域波形f(t) (11) 4.3、三种不同频率的抽样 (14) 4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17) 实验五、离散时间系统特性分析 (21) 一、实验目的: (21) 二、实验原理: (21) 三、实验内容 (21) 四、程序流程图和代码 (22) 五、实验数据: (23) 5.1单位样值响应 (23) 5.2幅频特性 (24) 六、幅频特性和相频特性曲线并对系统进行分析。 (25) 6.1幅频特性曲线 (25) 6.2相频特性曲线 (26)

实验一、连续时间系统卷积的数值计算 一、实验目的 1 加深对卷积概念及原理的理解; 2 掌握借助计算机计算任意信号卷积的方法。 二、实验原理 1 卷积的定义 卷积积分可以表示为 2 卷积计算的几何算法 卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。 3 卷积积分的应用 卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响 应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。 设一个线性零状态系统,已知系统的单位冲激响应为h (t ),当系统的激励信 号为e (t )时,系统的零状态响应为 由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁 的工作,并可以获得足够的精度。因此,信号的时域卷积分析法在系统分析中 得到了广泛的应用。 卷积积分的数值运算实际上可以用信号的分段求和来实现,即: 如果我们只求当 t )时r (t )的值,则由上 1 1 2 t = n Δt (n 为正整数, n Δt 记为 式可以得到: 当 1 Δt 足够小时, ( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面 的公式可以得到卷积数值计算的方法如下: 1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间 隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原

北航《航空航天概论》第一章 课堂笔记(1)

北航《航空航天概论》第一章课堂笔记(1) 一、主要知识点掌握程度 了解航空航天发展概况.掌握航空器、航天器的分类,航空器、航天器发展过程中具有里程碑的重要事件,航空发动机及火箭发动机原理,飞行器升空原理、复合材料和飞机的仪表等内容。 二、知识点整理 (一)气球飞艇 1、载人气球的诞生 热气球在中国已有悠久的历史,称为天灯或孔明灯,知名学者李约瑟也指出,西元1241年蒙古人曾经在李格尼兹(Liegnitz)战役中使用热气球过龙形天灯传递信号。法国的孟格菲兄弟于1783年才向空中释放欧洲第一个内充热空气的气球。法国的罗伯特兄弟是最先乘充满氢气的气球飞上天空的。在世界很多不同的国家,气球也会用来作庆祝大日子来临时的点缀。很多地方的街道上都可以看到不同颜色的各种气球。在一些开幕的仪式中,人们会刺破气球,象征着那开幕的重要时刻,也能凝聚气氛。 2.发展历程 十八世纪,法国造纸商蒙戈菲尔兄弟因受碎纸屑在火炉中不断升起的启发,用纸袋聚热气作实验,使纸袋能够随着气流不断上升。1783年6月4日,蒙戈菲尔兄弟在里昂安诺内广场做公开表演,一个圆周为110英尺的模拟气球升起,这个气球用糊纸的布制成,布的接缝用扣子扣住。兄弟俩用稻草和木材在气球下面点火,气球慢慢升了起来,飘然飞行了1.5英里。乘坐蒙戈菲尔兄弟制造的气球的第一批乘客是一只公鸡、一只山羊还有一只丑小鸭。同年9月19日,在巴黎凡尔赛宫前,蒙戈菲尔兄弟为国王、王后、宫廷大臣及13万巴黎市民进行了热气球的升空表演。同年11月21日下午,蒙戈菲尔兄弟又在巴黎穆埃特堡进行了世界上第一次载人空中航行,热气球飞行了二十五分钟,在飞越半个巴黎之后降落在意大利广场附近。这次飞行比莱特兄弟的飞机飞行整整早了120年。二战以后,高新技术使球皮材料以及致热燃料得到普及,热气球成为不受地点约束、操作简单方便的公众体育项目。八十年代,热气球引入中国。1982年美国著名刊物《福布斯》杂志创始人福布斯先生驾驶热气球、摩托车旅游来到中国,自延安到北京,完成了驾驶热气球飞临世界每个国家的愿望。热气球作为一个体育项目正日趋普及,它曾创造了上升34668米高度的记录。1978年8月11日至17日,“双鹰Ⅲ号”成功飞越了大西洋,1981年“双鹰Ⅴ号”又成功跨越太平洋。现在全世界有20000多个的热气球在飞行。我国目前已有100多个球,成功地举办了第一届、第二届北京国际热气球邀请赛、泰山国际热气球邀请赛等大型比赛活动、99'

相关主题