搜档网
当前位置:搜档网 › 交流异步电动机变频调速系统设计样本

交流异步电动机变频调速系统设计样本

交流异步电动机变频调速系统设计样本
交流异步电动机变频调速系统设计样本

中南大学

《工程训练》

——设计报告

设计题目:异步电机变频调速

指引教师:黎群辉

设计人:冯露

学号:

专业班级:自动化0906班

设计日期:9月

交流异步电动机变频调速系统设计

摘要

近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。

本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。

V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒

f

化极为以便,新型集成元件采用也使得它开发周期短。

此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。

V控制,SA4828波形发生器

核心字:变频调速,正弦脉宽调制,

f

目录

摘要................................................ 错误!未定义书签。

1.1 研究目与意义 (1)

1.2本次设计方案简介 (2)

1.2.1 变频器主电路方案选定 (2)

1.2.2 系统原理框图及各某些简介 (3)

1.2.3 选用电动机原始参数 (4)

2交流异步电动机变频调速原理及办法 (5)

2.1 异步电机变频调速原理 (5)

2.2 变频调速控制方式及选定 (6)

V比恒定控制 (6)

2.2.1

f

2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13)

3.1 主电路工作原理 (13)

3.2 主电路各某些设计 (13)

3.3. 采用EXB840IGBT驱动电路 (15)

4控制回路设计 (16)

4.1 驱动电路设计 (16)

4.2 保护电路......................................... 错误!未定义书签。

4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。

4.2.2 过流保护设计................................ 错误!未定义书签。

4.3 控制系统实现 (19)

5变频器软件设计....................................... 错误!未定义书签。

5.1 流程图 (22)

5.2 程序设计 (23)

总结 (33)

参考文献 (34)

所谓变频就是运用电力电子器件(如功率晶体管GTR、绝缘栅双极型晶体管IGBT)将50Hz市电变换为顾客所规定交流电或其她电源。它分为直接变频(又称交-交变频),即把市电直接变成比它频率低交流电,大量用在大功率交流调速中;间接变频(又称交-直-交变频),即先将市电整流成直流,再变换为规定频率交流。它又分为谐振变频和方波变频。前者重要用于中频加热,方波变频又分为等幅等宽和SPWM变频。惯用办法有正弦波(调制波)与三角波(载波)比较SPWM 法、磁场跟踪式SPWM法和等面积SPWM法等。

本设计所设计题目属于间接变频调速技术。它重要涉及整流某些、逆变某些、控制某些及保护某些等。逆变环节为三相SPWM逆变方式。

1.1 研究目与意义

在工业发展初级阶段,人们重要使用集中传动。作为动力鼠笼电动机,是不需要调速。它只需要满足各种生产条件对它提出起动和稳速运营规定就可以,调速任务是由皮带和齿轮来完毕。随着生产规模不断扩大,对生产持续性和流程化规定愈来愈高,发展电机调速技术已经是势在必行了。直流调速系统,由于其良好调速性能,很长时期内在调速领域内占据首位。但是由于直流电动机自身有机械换向器,给直流调速系统导致某些固有、难于解决问题。

随着交流传动电动机调速理论问题突破和调速装置(重要指变频器)性能完善,交流电动机调速系统性能差缺陷已经得到了克服,当前,交流调速系统性能已经可以和直流系统相媲美,甚至可以超过直流系统。由于交流调速不断显示其自身优越性和巨大社会效益,使变频器具备越来越旺盛生命力。各种性能优越新型电力半导体器件浮现,如既能控制导通又能控制关断门极可关断晶闸管GTO;具备良好功率转换效率和适于在高频大功率状况下工作MOSFET;既有MOS管栅极驱动电压功率小和驱动线路简朴,又有双极性功率晶体管导通饱和压降小长处绝缘栅双极性大功率管IGBT;以及内部既有大功率开关器件,又有各种驱动电路和过压、过流等保护电路智能型功率模块IPM等器件应用,不但

使交流调速系统控制装置体积小,效率高,并且还更容易实现各种功能复杂但在构造上简朴控制方案,更加充实和推动了变频器理论进一步发展。

能完毕各种复杂信号和信息解决集成芯片浮现,如能产生脉宽调制信号专用集成电路以及各种单片机和计算机系统用微解决器和接口芯片大量问世,为高质量控制创造了良好条件。建立在电机统一理论和机电一体化理论基本上各种先进控制方案,通过迅速检测电流实现PWM控制变频技术,通过直接控制转矩来迅速控制转速转速自调节技术,以及具备很强抗干扰能力变构造控制系统等等,都极大地丰富了电机调速领域内容。

总之,交流电机调速技术发展,特别是变频器传动自身固有优势,必将使之应用于社会生产各个领域,以体现出不同功能,达到不同目,收到相应效益。因而,本论文通过对变频器研究,对于交流变频调速系统理论应用,有着实际意义和一定应用价值。

1.2 本次设计方案简介

1.2.1 变频器主电路方案选定

变频器最早形式是用旋转发电机组作为可变频率电源,供应交流电动机。随着电力半导体器件发展,静止式变频电源成为了变频器重要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。

1.交-交型变频器:它功能是把一种频率交流电直接变换成另一种频率可调电压交流电(转换先后相数相似),又称直接式变频器。由于中间不通过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率1/3~1/2,因此不能高速运营。

2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调交流,又称间接变频器,交-直-交变频器

是当前广泛应用通用变频器。它依照直流某些电流、电压不同形式,又可分为电压型和电流型两种:

(1)电流型变频器

电流型变频器特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。

(2)电压型变频器

电压型变频器特点是中间直流环节储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相称于电压源,故称电压型变频器。

由于电压型变频器是作为电压源向交流电动机提供交流电功率,因此其重要长处是运营几乎不受负载功率因数或换流影响,它重要合用于中、小容量交流传动系统。与之相比,电流型变频器施加于负载上电流值稳定不变,其特性类似于电流源,它重要应用在大容量电机传动系统以及大容量风机、泵类节能调速中。

由于交-直-交型变频器是当前广泛应用通用变频器,因此本次设计中选用此种间接变频器,在交-直-交变频器设计中,虽然电流型变频器可以弥补电压型变频器在再生制动时必要加入附加电阻缺陷,并有着不必附加任何设备即可以实现负载四象限运营长处,但是考虑到电压型变频器通用性及其长处,在本次设计中采用电压型变频器。

1.2.2 系统原理框图及各某些简介

本文设计交直交变频器由如下几某些构成,如图1.1所示。

图1.1 系统原理框图

系统各构成某些简介:

供电电源:电源某些因变频器输出功率大小不同而异,小功率多用单相220V,中大功率采用三相380V电源。由于本设计中采用中档容量电动机,因此采用三相380V电源。

整流电路:整流某些将交流电变为脉动直流电,必要加以滤波。在本设计中采用三相不可控整流。它可以使电网功率因数接近1。

滤波电路:因在本设计中采用电压型变频器,因此采用电容滤波,中间电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变某些将直流电逆变成咱们需要交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。

电流电压检测:普通在中间直流端采集信号,作为过压,欠压,过流保护信号。

控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路重要功能是接受各种设定信息和指令,依照这些指令和设定信息形成驱动逆变器工作信号。这些信号通过光电隔离后去驱动开关管关断。

1.2.3 选用电动机原始参数

在这次设计中,采用中档容量电动机,详细数据如下:

额定功率P e=3KW,

额定电压U e=380V;

额定电流I e=6.1A,

转速n e=2880/min;

Y接法,

f e=50H z.

2交流异步电动机变频调速原理及办法

2.1 异步电机变频调速原理

交流异步电动机是电气传动中使用最为广泛电动机类型。依照记录,国内异步电动机使用容量约占拖动总容量八成以上,因而理解异步电动机调速原理十分重要。

交流异步电动机是电气传动中使用最为广泛电动机类型。依照记录,国内异步电动机使用容量约占拖动总容量八成以上,因而理解异步电动机调速原理十分重要。

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

第一节 交流异步电动机变频调速原理

第一节 交流异步电动机变频调速原理 根据电机学原理,交流异步电动机的转速可表示为: )1(**60s p f n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ; p 一 电动机磁极对数; f 一 电源频率,单位:Hz ; s 一 转差率,10<

I 一 定子绕组的相电流; r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。 交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其 有效值计算如下: E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数; f 一 电源频率; Φ 一 磁通量 。 由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部 分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。其中定 子绕组的相电流 I 由两部分构成: 21I I I += (2-1-4) 电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负 载的电磁力。 由式 (2-1-1)知,调整电源频率f 时,可以调节速度n 。 当电源频率f 下降时,由 式 (2-1-3)知,感应电动势随之比例减小;在相电压U 保持不变的情况下,由式(2-1-2) 知,定子绕组的相电流I 相应增大。在很多情况下,电机的负载是基本恒定的,因此用于产 生电磁力的电流2I 是基本不变的,于是1I 将增大;1I 的增大将直接导致主磁通的增大。由 式 (2-1-3),主磁通的增大,将引起感应电动势E比例增大;由式(2-1-2),感应电动势 E的增大将使定子电流I 减小。不难理解,通过这样的负反馈,电机将最终稳定在一个新的 工作点。 这样的控制方法看起来似乎没有问题。但实际情况是主磁通容量上限与电机的铁芯有 关。电机的铁芯受制于重量、体积、成本等因素的考虑,不可能做的很大。对于电机设计来 说,设计目标之一就是:当电机处于额定工作状态下时,主磁通接近容量上限。上述的变频 调速方法工作在额定频率以下时,将会导致铁心磁饱和,引起电流波形畸变,有效力矩下降; 严重时,将导致电机发热过快,振动和噪音加大;工作在额定频率以上时,铁心处于弱磁状 态,电磁力矩不足,电机的机械特性变软(转差率s 变大),带载能力下降。 结论:通过只调节电源频率来调节速度的方法不可取。

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从而改变电机转速,这种方法称为变频 调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数; m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为 ()()2 22 2 11 1 111 2 12222111211222p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ?? ?? ??? ??? ?? ??? ''??= = ?''????'+++'+++ ? ? ? [1][8]

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

交流异步电动机变频调速系统

摘要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。 关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....

目录 摘要................................ 错误!未定义书签。第一章前言.......................... 错误!未定义书签。 1.1 设计的目的和意义................. 错误!未定义书签。 1.2变频器调速运行的节能原理......... 错误!未定义书签。第二章交流异步电动机............... 错误!未定义书签。 2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。 2.2变频变压(VVVF)调速时电动机的机械特性 (6) 2.3变压变频运行时机械特性分折 (7) 第三章变频技术简介和控制方法 (11) 3.1 变频调速技术简介 (11) 3.2变频器工作原理及分类 (12) 3.3 交流调速的基本控制方法 (18) 3.4脉冲宽度调制(PWM)技术 (21) 第四章异步电动机变频调速系统设计的仿真和实现 (24) 4.1 MATLAB的编程环境 (24) 4.2仿真结果 (29) 结论 (30) 致谢.............................. 错误!未定义书签。参考文献............................ 错误!未定义书签。

三相异步电动机变频调速课程设计

目录 1三相异步电动机基本原理 (1) 1.1电动机的结构及原理 (1) 1.1.1 电动机的结构 (1) 1.1.2工作原理 (3) 2异步电动机的机械特性 (4) 2.1 固有机械特性 (4) 2.2 人为机械特性 (5) 2.2.1降低定子电压的人为特性 (5) 2.2.2增加转子电阻时的人为特性 (5) 2.2.3改变定子频率时的人为特性 (5) 3电动机的调速指标 (7) 4 异步电机的变频调速 (8) 5具体调速的设计 (10) 6结论 (11) 7设计体会 (12) 参考文献 (13)

摘要 原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动 重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛 关键字:恒转矩调速;恒功率调速;三相异步电动机。

1.三相异步电动机的基本原理 当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动。 1.1电动机的结构及原理 1.1.1结构 三相异步电动机的种类很多,可是三相异步电动机结构基本是相同的,它们都由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。此外,还有端盖、轴承、接线盒、吊环等其他附件 结构如下图: 图1-1-1-1 封闭式三相笼型异步电动机结构图 1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子;8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 (1)、定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口、半开口和开口槽三种:适用于不同电机。 定子绕组:定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

三相异步电动机变频调速的课程设计

课程报告 课程名称:三相异步电动机变频调速的实现学生姓名:刘佐威王一哲王宇洋赵馨雨专业班级: 12级电气一班 2016 年 1月 4日

摘要 变频调速是一种典型的交流电动机调速方法,交流电动机采用变频调速技术不仅能够实现无级调速,而且可以根据负载的不同,通过适当调节电压和频率的关系,使电机始终在高效率区运行,并且保证良好的动态性能,因而被广泛使用。 目前,世界上有60%左右的发电量是通过电动机消耗的。据统计,我国各类电动机的装机容量已超过4亿kW,其中异步电动机约占90%,拖动风机、水泵及压缩机类机械的电动机约1.3亿kW。在目前4亿kW的电动机负载中,约有50%的负载是变动的,其中的30%可以使用电动机调速。虽然,有专门为变频调速系统而设计的变频调速电机,但是由于变频调速电机价格较贵,所以在大多数有调速要求的系统中都是变频器和普通交流异步电机组成的调速系统[4]。但是,在实际生产中,还只是凭借经验确定交流异步电机运行的频率范围,而对普通交流异步电机在频率改变时,电机的各项性能指标的大小和变化情况还没有定量研究。在本文中,我们以Y100L1-4普通三相交流异步电机和松下VF-8X变频器组成的变频调速系统为测试对象,测试普通交流异步电机在频率改变时的各项性能指标,以这些实验数据为依据,进而分析确定普通交流异步电机变频调速的最佳调速范围。在测试中所有的实验均按照国标中三相异步电机型式实验的相关规定进行。 课程目的 笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 课程意义 这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。 课程内容 在这次课程设计中,我们的主要工作在于 1. 电机的结构与工作原理 2. 变频器的结构与原理 3. 变频器的调速方法及工作过程

7、交流电动机调速及变频原理

交流电动机调速及变频原理 一、交流异步电动机调速的基本类型 交流调速系统的主要类型 交流电机主要分为异步电机(即感应电机)和同步电机两大类,每类电机又 有不同类型的调速系统。现有文献中介绍的异步电机调速系统种类繁多,可按照不同的角度进行分类。 1、交流异步电动机调速的基本类型 由异步电动机的转速公式:min)/)(1(60r s p f n -= 可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数p 调速。 (2)改变电源频率1f 调速。 (3)改变转差率s 调速。 异步电动机的调速方式: 1.1 变频调速 交流变频调速技术的原理是把工频50Hz 的交流电转换成频率和电压可调的交流电,通过改变交流异步电动机定子绕组的供电频率,在改变频率的同时也改变电压,从而达到调节电动机转速的目的。

它与直流调速系统相比具有以下显著优点: (1)变频调速装置的大容量化。 (2)变频调速系统调速范围宽,能平滑调速,其调速静态精度及动态品质好。 (3)变频调速系统可以直接在线起动,起动转矩大,起动电流小,减小了对电网和设备的冲击,并具有转矩提升功能,节省软起动装置。 (4)变频器内置功能多,可满足不同工艺要求;保护功能完善,能自诊断显示故障所在,维护简便;具有通用的外部接口端子,可同计算机、PLC 联机,便于实现自动控制。 (5)变频调速系统在节约能源方面有着很大的优势,是目前世界公认的交流电动机的最理想、最有前途的调速技术。其中以风机、泵类负载的节能效果最为显著,节电率可达到20%~60%。 1.2变极调速 磁极对数 p 的改变,取决于电动机定子绕组的结构和接线。通过改变定子绕组的接线,就可以改变电动机的磁极对数。 1.3 变转差率调速 1.3.1、改变定子电压调速 ??交流调压调速 异步电动机的机械特性方程式: ])()/[(/32'21212' 211' 221l l e L L s R R s R pU T +++=ωω

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

YZP、YZPF起重专用变频调速三相异步电动机

YZP、YZPF系列起重专用变频调速三相异步电动机 一、概述 YZP、YZPF系列起重专用变频调速三相异步电动机是本公司总结YZPB、YZPBF系列冶金及起重用变频调速三相异步电动机的成功经验而开发的起重机专用变频调速三相异步电动机。充分吸收了近年来国内外变频调速方面的先进技术,特别适用于起重机高起动转矩和频繁起动的要求。能与国内外各种变频装置配套,构成交流调速系统,具有较高的精度和高的动态性能。电动机基本技术要求符合IEC34-1和GB755国际和国家标准要求,安装尺寸符合IEC72国际标准。 二、型号说明 异步电动机极数 起重用铁芯长度代号 变频调速机座长度代号 强迫风冷中心高(㎜) 三、使用条件 海拔小于1000M,环境温度小于40℃,相对湿度小于90%,对不同环境温度及安装海拔高度按下表选取电机功率。

四、电机的工作制、冷却方式、防护等级及安装型式 1.YZP系列电机的基准工作制为S3,负载持续率为40%;YZPF系列电机的工作制为S3,负载持续率为60%。 不同工作制下功率折算表 YZP系列电机 YZPF系列电机 2.YZP系列冷却方式为IC411(全封闭、自带风扇冷却);YZPF系列冷却方式为IC416(全封闭,轴向风冷却)。 3.电机的防护等级为IP54,也可根据用户要求制成IP55、IP56。

五、电动机结构及安装型式 电动机的结构及安装型式为IMB3、IMB6、IMB7、IMB8、IMV5、IMV6、IMB5、IMV1、IMV3、IMB35、IMV15、IMV36,并按下表的规定制造。 六、产品性能 1.电动机额定电压为380V,变频范围1~100Hz,其中1~50Hz为恒转矩调速,50~100Hz为恒功率调速。 2.电动机的绝缘等级为F级,也可根据用户要求制成H级。 3.电机的低速性能好,低频运行时转矩平滑,无爬行现象。 4.过载能力强,额定电压、额定频率时,能承受2倍额定转矩历时1min。 5.电动机接线方式,280及以下机座号为Y接,315及以上机座号为△接。 6.低速起动性能好,低频时起动转矩可达到额定转矩的150%。 7.根据用户要求可带各种高分辩率的传感器(光电编码器,测速发电机,超速开关等)可带电磁制动器,齿轮减速器等附件。

异步电动机变频调速

异步电动机变频调速 第一节异步电动机基本知识 1、概述 由于大功率电力电子技术(GTO、IGBT、IGCT等器件)和计算机技术的迅速发展,异步电动机也可象直流电动机一样,其速度可在大的速度范围内进行调节。因而,在工业电力拖动和铁道电力牵引等行业,大量采用异步电动机代替直流电动机,以降低设备的投资和维修成本。 2、异步电动机基本方程和特性 2.1、转速方程式 异步电动机的转速方程为:n=60f1/p(1-s)=n1(1-s) 式中:n-电动机转速(rpm) f1-定子供电频率(Hz) s-转差率 p-电动机极对数 n1-定子旋转磁场的同步速度(rpm) 2.2电压方程式 U1=E1+IZ U1≈E1=4.44 f1WK1Φ(V) U1-定子每相电压(V) E1-定子每相反电势(V) W-定子每相绕组匝数 K1-基波绕组系数 Φ-每极气隙磁通(韦伯) 2.3 等效电路图 异步电动机等效电路图如图1: 图1 异步电动机等效电路图 r1-定子绕组电阻x1-定子绕组漏抗 r m-定子激磁电阻x m-定子激磁电抗 r’2-转子绕组电阻(归算到定子側) x’2-转子绕组漏抗(归算到定子側) r2-负载等效电阻

2.4 机械特性 异步电动机转矩-转速特性如图2所示: 图2 异步电动机转矩-转速特性 第二节鼠笼式异步电动机的起动和调速 1、鼠笼式异步电动机传统的起动方法 在各种旋转电机中,鼠笼式异步电动机是最为简单的一种,它有很多的优点。 从使用的角度耒看,它价格低廉、构造简单、坚实可靠、维护容易;从性能上耒看,它漏磁通较小,功率因数较高,过载能力较大。其缺点是起动特性较差,即在额定电压下起动时,起动电流大,起动时的功率因数很低,起动时的转矩小。 为了降低在额定电压下起动时的起动电流,传统的方法有: 1)在定子线路中串联电抗器起动,如图3所示: 图3 串联电抗器起动 其缺点是如降低起动电流50%,则起动转矩将降低75%(与额定电压下起动

交流电动机变频调速

第一变频调速技术的发展及应用 近十年来,随着电力电子技术、微电子学、计算机技术、自动控制技术的迅速发展,电力传动领域正发生着交流调速取代直流调速和计算机数字控制技术取代模拟控制技术的革命。交流变频调速以其优异的调速和起、制动性能,高效率、高功率因数和节电效果,被国内外公认为最有发展前途的调速方式,成为当今节电、改善工艺流程以及提高产品质量和改善环境、推动技术进步的一种主要手段。 一、我国变频调速技术的发展概况 在电气传动领域,人们关心的是如何合理地使用电动机以节约电能和有目的地控制机械的运转状态(位置、速度、解速度等),在实现电能-机械能之间的转换过程中达到优质、高产、低能的目的。近几年来交流调速中最活跃、发展最快的就是变频调速技术,是交流调速的基础和主干内容,其根本原因在于变频调速在节能和调速特性等方面优良的特性优于其他调速方式,当然,电力电子器件发展、计算机技术、自动控制技术的迅速发展也为它的实现提供了基础。 我国关于变频器的研究开始于20世纪60年代初期,当时典型的技术是交-交变频器供电的交流变频调速传动;继此之后80年代主体技术为电压或电流型六脉冲逆变器供电的交流变频调速传动;从90年代中期至今,随着电力电子器件、调速技术以及控制技术的发展,BJT(IGBT)PWM逆变器供电的交流变频调速传动空前发展,并得到广泛的应用。 目前国内变频调速方面主要的产品状况如下。 (1)在中、小功率变频调速中主要是IGBT的PWM逆变器供电的交流变频调速设备。产品应用的范围从单机到全生产线;控制方式从简单的U/f控制到高调速性能的矢量控制,但目前U/f控制占主体,矢量控制数量还较少。 (2)电流源型晶闸管逆变器供电的交流变频调速设备。 (3)交-交变频器供电的交流变频调速设备。 二、国外变频调速技术的现状 当前国外交流变频调速技术高速发展,主要有以下几个特点: (1)近几年来不断涌现出SCR,GTO,IGBT,IGCT等高电压、大电流的大功率电力电子器件以及大功率器件的并联、串联技术的发展应用,使得高电压、大功率变频器产品的生产及应用得到很大的发展。 (2)矢量控制、磁链控制、直接转矩控制、模糊控制等新的控制理论为高性能的变频器提供了理论基础;16位、32位高速处理微处理器,数字信号处理器(DSP),精简指令集计算机(RISC)和高级专用集成电路(ASIC)技术的快速发展,使得变频器朝高精度、多功能化方向发展。国外产品已实现控制全数字化、产品系列化、功能多样化,产品已进入很成熟的阶段。 (3)由于相关的基础工业和各种制造业的高速发展,已经使变频调速装置相关配套件的生产社会化、专业化,产品可靠性更高。 二、变频调速技术未来发展趋势 交流变频调速技术是强、弱电混合,机电一体化的综合性技术。它分为功率级和控制级两大部分。功率级部分是要解决高电压、大电流方面的技术问题和新型电力电子器件的应用技术问题;控制级部分是要解决数字化控制的硬、软件开发问题。鉴于这两方面,未来变频调速技术的发展方向主要有以下几点: (1)各种控制方法的深入研究与实现,进一步提高变频调速性能。 (2)进一步提高变频器的功率因数,降低网侧和负载侧的谐波,以减少对电网的污染和电动机的转矩脉冲。

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

相关主题