搜档网
当前位置:搜档网 › 同位素应用

同位素应用

同位素应用
同位素应用

应用编辑

同位素示踪法在生物化学和分子生物学中的应用

放射性同位素示踪法在生物化学和分子生物学领域应用极为广泛,它为揭示体内和细胞内理化过程的秘密,阐明生命活动的物质基础起了极其重要的作用。近几年来,同位素示踪技术在原基础上又有许多新发展,如双标记和多标记技术,稳定性同位素示踪技术,活化分析,电子显微镜技术,同位素技术与其它新技术相结合等。由于这些技术的发展,使生物化学从静态进入动态,从细胞水平进入分子水平,阐明了一系列重大问题,如遗传密码、细胞膜受体、RNA-DNA逆转录等,使人类对生命基本现象的认识开辟了一条新的途径。下面仅就同位素示踪技术在生物化学和分子生物学中应用的几个主要方面作一介绍。

物质代谢的研究

体内存在着很多种物质,究竟它们之间是如何转变的,如果在研究中应用适当的同位素标记物作示踪剂分析这些物质中同位素含量的变化,就可以知道它们之间相互转变的关系,还能分辩出谁是前身物,谁是产物,分析同位素示踪剂存在于物质分子的哪些原子上,可以进一步推断各种物质之间的转变机制。为了研究胆固醇的生物合成及其代谢,采用标记前身物的方法,揭示了胆固醇的生成途径和步骤,实验证明,凡是能在体内转变为乙酰辅酶A的化合物,都可以作为生成胆固醇的原料,从乙酸到胆固醇的全部生物合成过程,至少包括36步化学反应,在鲨烯与胆固醇之间,就有二十个中间物,胆固醇的生物合成途径可简化为:乙酸→甲基二羟戊酸→胆固醇又如在研究肝脏胆固醇的来源时,用放射性同位素标记物3H-胆固醇作静脉注射的示踪实验说明,放射性大部分进入肝脏,再出现在粪中,且甲状腺素能加速这个过程,从而可说明肝脏是处理血浆胆固醇的主要器官,甲状腺能降低血中胆固醇含量的机理,在于它对血浆胆固醇向肝脏转移过程的加速作用。

物质转化的研究

物质在机体内相互转化的规律是生命活动中重要的本质内容,在过去的物质转化研究中,一般都采用用离体酶学方法,但是离体酶学方法的研究结果,不一定能代表整体情况,同位素示踪技术的应用,使有关物质转化的实验的周期大大缩短,而且在离体、整体、无细胞体系的情况下都可应用,操作简化,测定灵敏度提高,不仅能定性,还可作定量分析。在阐明核糖苷酸向脱氧核糖核苷酸转化的研究中,采用双标记法,对产物作双标记测量或经化学分离后分别测量其放射性。如在鸟嘌呤核苷酸(GMP)的碱基和核糖上分别都标记上14C,在离体系统中使之参入脱氧鸟嘌呤核苷酸(dGMP),然后将原标记物和产物(被双标记GMP 掺入的dGMP)分别进行酸水解和层析分离后,测定它们各自的碱基和戊糖的放射性,结果发现它们的两部分的放射性比值基本相等,从而证明了产物dGMP的戊糖就原标记物GMP的戊糖,而没有别的来源,否则产物dGMP的碱基和核糖的比值一定与原标记物GMP的两部分比值有显著差别。这个实验说明戊糖脱氧是在碱基与戊糖不分记的情况下进行的,从而证明了脱氧核糖核苷酸是由核糖核苷酸直接转化而来的,并不是核糖核苷酸先分解成核糖与碱基,碱基再重新接上脱氧杭核糖。无细胞的示踪实验可以分析物质在细胞内的转化条件,例如以3H-dTTP为前身物作DNA掺入的示踪实验,按一定的实验设计掺入后,测定产物DNA 的放射性,作为新合成的DNA的检出指标。

动态平衡的研究

阐明生物体内物质处于不断更新的动态平衡之中,是放射性同位素示踪法对生命科学的重大贡献之一,向体内引入适当的同位素标记物,在不同时间测定物质中同位素含量的变化,就能了解该物质在体内的变动情况,定量计算出体内物质的代谢率,计算出物质的更新速度和更新时间等等。机体内的各种物质都在有大小不同的代谢库,代谢库的大小可用同位素稀释法求也。

生物样品中微量物质的分析

在放射性同位素示踪技术被应用之前,由于制备样品时的丢失而造成回收率低以及测量灵敏度不高等问题,使得对机体正常功能起很重要作用的微量物质不易被测定。近年来迅速发展、应用愈来愈广泛的放射免疫分析(radioimmunoassay)技术是一种超微量的分析方法,它可测定的物质300多种,其中激素类居多,包括类固醇激素,多肽类激素,非肽类激素,蛋白质物质,环核苷酸,酶,肿瘤相关的抗原,抗体以及病原体,微量药物等其它物质。最近邻序列分析法

(Nearest neighbour-sequence analysis method)

放射性同位素示踪技术,是分子生物学研究中的重要手段之一,对蛋白质生物合成的研究,从DNA复制、RNA转录到蛋白质翻译均起了很大的作用。最近邻序列分析法应用同位素示踪技术结合酶切理论和统计学理论,研究证实了DNA分子中碱基排列规律,在体外作合成DNA的实验:分四批进行,每批用一种不同的32P标记脱氧核苷三磷酸,32P标记在戊糖5'C的位置上,在完全条件下合成后,用特定的酶打开5'C-P键,使原碱基上通过戊糖5'C 相连的32P移到最邻近的另一单核苷酸的3'C上。用最近邻序列分析法首次提出了DNA复制与RNA转录的分子生物学基础,从而建立了分子杂交技术,例如以噬体T2-DNA为模板制成[32P]RNA,取一定量T2-DNA和其它一些DNA加入此[32P]RNA中,经加热使DNA双链打开,并温育,用密度梯度离心或微孔膜分离出DNA-[32P]RNA复合体测其放射性,实验结果只有菌体T2的DNA能与该[32P]RNA形成放射性复合体。从而证明了RNA与DNA模板的碱基呈特殊配对的互补关系,用分子杂交技术还证实了从RNA到DNA的逆转录现象。此外,放射性同位素示踪技术对分子生物学的贡献还表现在:⑴对蛋白质合成过程中三个连续阶段,即肽链的起始、延伸和终止的研究;⑵核酸的分离和纯化;⑶核酸末端核苷酸分析,序列测定;⑷核酸结构与功能的关系;⑸RNA中的遗传信息如何通过核苷酸的排列顺序向蛋质中氨基酸传递的研究等等。为了更好地应用放射性同位素示踪技术,除了有赖于示踪剂的高质量和核探测器的高灵敏度外,关键还在于有科学根据的设想和创造性的实验设计以及各种新技术的综合应用。

在生命科学中的应用

同位素示踪方法的应用,使人们可以从分子水平动态地观察生物体内或细胞内生理、生化过程,认识生命活动的物质基础。例如,用C、O等同位素研究光合作用,可以详细地阐明叶绿素如何利用二氧化碳和水,什么是从这些简单分子形成糖类等大分子的中间物,以及影响每步生物合成反应的条件等。又如,通过采用C、H、P等同位素对核酸同蛋白质相互关系的研究,不但可以了解生物体内生成核酸和蛋白质的复杂过程,甚至可以了解生物遗传是如何实现的,乃至探讨人工改造遗传特征的可能性,因而产生了分子遗传学及遗传工程等新学科(见同位素示踪在生命科学中的应用)。

在工业上的应用

在工业生产中,示踪原子为使用多种高效能的检验方法及生产过程自动控制的方法提供了可能性,解决了不少技术上和理论上的问题。下面列举几种主要应用。确定扩散速度金属间扩散的速度随温度而变。如用电镀的方法将Ag、 Cu或 Zn沉积在另一种金属片的表面上,在特定温度中处理一定时间后,再从该金属片依序切下许多薄层,用探测仪器或放射自显影法测定每层的放射性,便可确定银、铜或锌在上述金属片内扩散的速度,以及温度对各种金属穿透深度的影响。

测定机械磨损用中子照射使易磨损部位的材料活化,通过测定磨下的碎屑的放射性,即可测定磨损量。

测定流体流速某一时刻在流管上端某处注入少量示踪剂,在流管下端另一处测定示踪剂的到达时间,再根据两处的距离即可测定流体的流速。如测定石油在输油管中的流速等。

合金结构分析在一定比例的镍、铬、钨混合物中,加入少量放射性W,经熔炼后,将合金表面磨光,上面覆盖底片,进行放射自显影。所得图谱显示,钨在合金中分布成树枝状的斑纹。用这种方法,可以研究金属在不同冶炼过程中(或合金在热处理前后)的结构变化。在医学上的应用

在医学上,同位素示踪主要用于诊断疾病。例如,利用同位素示踪剂被稀释的原理测定水容量、血容量;利用示踪剂移动及其速度测定血流量、肾功能、心脏功能、血栓形成、消化道失血;利用组织器官摄取示踪剂的数量检查甲状腺功能、发现肿瘤;利用示踪剂在组织器官的分布获得脏器影像、胎盘定位;利用示踪剂同相应被测物质对某一试剂竞争结合的原理或体内元素被粒子、光子等活化的原理测定体内或血、尿等标本中的微量成分;利用示踪剂在体内被代谢的程度或速度测定胃肠道吸收、肝功能、红细胞生成及其寿命。已用于医学的同位素不下一百余种,其中最常用的有Tc、I、I、I、P、Cr、Fe、H、In 等(见核医学)。在农业及畜牧业上的应用

示踪方法广泛应用于农业科学研究,并产生了巨大的经济效益。最主要的成果有施肥途径和肥效的研究;杀虫剂、除莠剂对昆虫和杂草的生物作用;植物激素,生长刺激素对农作物代谢和功能的影响;激素、维生素、微量元素、饲料、药物对家畜生长和发育的影响;以及用同位素标记昆虫、寄生虫、鱼及动物等所发现的这些大小动物的生命周期、迁徙规律、交配和觅食习性等(见放射性同位素在农业上的应用)。

其他应用

在物理、化学等自然科学和日益受到重视的环境科学中,示踪方法也得到广泛应用。下面是一些主要的应用例子。超薄厚度的测定例如在用暗视野检查的电子显微镜标本上,常用真空蒸发的方法涂一层镉的薄膜。加微量具有放射性的Cr到镉中,测定一定面积薄膜的放射性。另外把含有不同重量的同一标记物的溶液在相同面积上蒸干并计数,作为标准。比较薄膜样品和标准的放射性,就可测出薄膜的重量,从而求出其厚度。此法可测出厚度薄至2.5×10m的量级。

溶解度的测定把已知放射性比活度(见放射性)的Ba标记的硫酸钡溶于水中;当溶液达到饱和以后,取出一小部分来测量其放射性比活度。从测得的放射性比活度,就可算出单位体积内硫酸钡的含量或硫酸钡的溶解度。

化学反应的历程例如在酯类的水解过程中,究竟是酰基-氧键(a)断裂,还是烷基-氧键(b)断裂呢,用含有的氢氧化钠水溶液进行皂化后发现,标记原子进入到水后生成酸分子,而不进入到醇分子中去。这充分证明了,反应中被打开的是酰基-氧键,即是在a处断开的。

环境污染的检查例如在制造荧光灯等接触汞的工业,需要探测空气中汞的浓度,以保证工人不会发生汞中毒。很方便的方法,就是用Hg来标记汞,然后用探测仪器测量车间空气中的放射性,检查汞有否超过最高允许浓度。

放射性核素也可用作监测沿海污染的手段。例如,以Br标记的溴化铵作为示踪剂,模拟释放到海洋中去的污水。将此示踪剂被注入到污水出口处,它的扩散和途径,反映了污水在大海中的稀释和运输。在不同水路测出的放射性位置及强度,代表特定情况下的水流图案。最后,依靠稀释曲线、水流方向及速度以及污染指示剂的消失率等数据,编成海岸不同位置的污染统计资料。

水利学考察海洋湍流和大风对水流泥沙迁徙的影响是水利学工作经常需要考察的对象之一。有一种方法是将 Sc吸附在离子交换树脂,其大小接近于天然砂粒,然后将其投入河口或海岸附近水中,用放射性探测仪器追踪,便可研究各种自然条件的变化(如刮风)对砂流的影响,乃至泥砂淤积的地点和速度等。

放射性同位素应用与发展

放射性同位素应用与发展 一百年前天然放射性的发现,引起了人类对宇宙认识和知识更新的一场伟大变革。正是由于这场科学思想上的革命,在经历了半个世纪的探索和奋斗后,终于打开了核能的巨大宝库。当今全世界有437座核电站在运行,另有30座核电站在建造,核电已占世界总发电量的17%。 放射性元素及放射性同位素的应用业已遍及医学、工业、农业和科学研究等各个领域。在很多应用场合,放射性同位素至今尚无代用品;在很多其它应用场合,它要比现有可替代的技术或流程更有效、更便宜。目前,世界上总共有32个国家拥有核电。与此相比,放射性同位素几乎已在全球所有国家使用。其中有50个国家拥有进行同位素生产或分离的设施。其中一些国家的同位素生产部门已成为经济活动中一个相当重要的组成部分。 放射性同位素(以下简称同位素)主要由研究反应堆和回旋加速器生产。同位素生产设施还包括了核动力厂、同位素分离装置和非专门从事同位素生产的普通加速器。 全球有将近300台放射性同位素生产装置或设备。重要的同位素生产设施大约只有50个国家拥有。大量共享的生产设施属于经济合作和发展组织(OECD)。此外,主要的同位素生产国家还有中国、印度、俄罗斯和南非。 正在运行的研究堆在全世界有300个,但只有将近100个堆用作同位素生产(占运行时间的5%或更多一些)。其中包括6个高通量堆,主要生产60Co和252Cf。俄罗斯的2个快中子堆生产89Sr。大多数同位素由研究堆生产,主要有99Mo、60Co、192Ir和131I等。亚洲正在建造或计划建造新的研究堆,同位素生产能力期望会迅速增加。而欧洲和北美,现有的反应堆在老化,一旦关闭,还没有计划用新的装置来取代他们。目前有几个核电厂,如加拿大、阿根廷的压管式重水堆和俄国的RBMKS堆正在生产60Co。另一些国家包括法国、俄国、英国和美国在用一些研究堆生产民用氚。 全世界有180多台加速器在生产放射性同位素。其中约有50台回旋加速器致力于放射性药物生产。他们生产的主要同位素是201Tl以及少量的123I、67Ga和111In。还有大约125台回旋加速器致力于PET工作。由于这类应用正在扩展,全球估计每年要建造25台。由PET回旋加速器生产的主要同位素有18F、11C、13N和15O。此外,还有一些非专门从事同位素生产的普通加速器。 同位素分离设施包括工厂,车间和热室。在这里放射性同位素从裂变产物或放射性废料中提取出来。4家具有工业规模的设施(在比利时、加拿大、荷兰和南非运行)和几个小的车间(在阿根廷、澳大利亚、挪威、俄罗斯和中国运行)正在从事由裂变产物中提取99Mo。 另一些设施(包括热室)正在生产137Cs和85Kr。这些设施的大多数在印度、俄罗斯和美国运行。大约10个热室(在法国、德国、俄罗斯、英国和美国)采用很成熟的流程,从乏燃料中分离出超铀元素和α发射体。 在科学研究中,同位素的应用已深入到了生物医学、遗传工程、材料科学和地球科学。医学应用在同位素诸多有益应用领域里最为活跃。广泛而又多样的工业应用覆盖了众多的工业部门。辐射育种、昆虫不育和食品保藏等技术促进了农业的可持续发展。另一些应用还包括环境污染的监测与去除以及正在扩大的安全检查体系等。

氢氧碳稳定同位素在植物水分利用策略研究中的应用

第22卷 第4期世 界 林 业 研 究Vol.22 No.4 2009年8月World Forestry Research Aug12009 氢氧碳稳定同位素在植物水分利用策略研究中的应用3 徐 庆1 冀春雷1 王海英1 李 旸2 (1中国林业科学研究院森林生态环境与保护研究所,北京100091; 2中国林业科学研究院木材工业研究所,北京100091) 摘要:综述了氢氧碳稳定同位素的概念、示踪原理及其应用于定量确定植物水分来源、水分利用格局和水分利用效率等方面研究进展。同时展望了全球气候变化条件下,氢氧碳多种稳定同位素联合示踪先进技术在定量研究植物水分利用策略以及植被对全球气候变化的响应机制研究中的应用前景。 关键词:氢氧碳稳定同位素,植物水分来源,水分利用效率,水分利用策略 中图分类号:S718.51 文献标识码:A 文章编号:1001-4241(2009)04-0041-06 Use of St able Isotopes of Hydrogen,O xygen and Carbon to I den ti fy W a ter Use Stra tegy by Pl an ts Xu Q ing1 J i Chunlei1 W ang Haiying1 L i yang2 (1Research I nstitute of Forest Ecol ogy,Envir on ment and Pr otecti on,Chinese Academy of Forestry,Beijing 100091,China;2Research I nstitute of Wood I ndustry,Chinese Academy of Forestry,Beijing100091,China) Abstract:Stable is ot op ic technol ogy is a ne w method t o deter m ine s ources and utilizati on patterns of p lant water.The main advantage of this technol ogy is that it can p r ovide results of relatively high ac2 curacy and sensitivity.The pur pose of this paper is t o p resent an overvie w of the concep ts and theory of stable is ot ope tracing,and the methods of using stable is ot opes of hydr ogen,oxygen and carbon t o quantify s ources of p lant water and pattern and efficiency of p lant water use.This paper uses s ome exa mp les t o demonstrate how the stable is ot op ic technol ogy may be used t o address different issues re2 lated t o p lant water use strategies,and p r ovides s ome pers pectives on app licati ons of the advanced technol ogy of si m ultaneously tracing multi p le stable is ot opes(hydr ogen,oxygen and carbon)in stud2 ying mechanis m s of potential vegetati on res ponses t o gl obal cli m ate change. Key words:stable is ot opes of hydr ogen,oxygen and carbon,water s ource of p lant,water use effi2 ciency,water use strategy 水是植物生命活动中最活跃的成分之一,对植物生长发育、数量和分布具有显著影响,尤其在干旱和半干旱地区,水成为植物生长的主要限制因子[1]。全球气候变化的一个重要方面是区域降雨格局的变化[2],植物吸收和利用水分的模式一定程度上决定了生态系统对环境水分状况发生改变时的响应结果[3],因此,对植物水分利用策略及水分来源的了解,将有助于我们了解和预测降雨格局变化导致未来植被时空变化的规律[4],有助于林业科技人员根据生境选择合适的造林树种进行植被建设和恢复工作。氢氧碳稳定同位素示踪技术有较高的灵敏度与准确性,为定量研究植物水分来源,水分利用格局和水分利用效率等提供了新的技术手段。 3收稿日期:2009-04-30 基金项目:国家自然基金项目(30771712);“十一五”林业科技支撑项目(2006BAD03A04);948项目(2006-4-04) 作者简介:徐庆,女,中国林业科学研究院森林生态环境与保护研究所副研究员,博士,研究方向:稳定同位素生态学,E-mail:xu2 qing@https://www.sodocs.net/doc/1115180778.html,

03 第三章(氢氧同位素)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 03 第三章(氢氧同位素) Theory, Technique and Application of Environmental Isotopes第三章氢氧稳定同位素Theory, Technique and Application of Environmental Isotopes 1/ 49

轻元素稳定同位素的基本特点1.原子量低,一般小于36。 2.同位素相对质量差大。 3.形成共价键,键性与同位素分馏有很大关系。 4.化学价可变,在化合价变化过程中会发生大的同位素分馏 5.小丰度同位素的相对丰度为千分之几到百分之几,便于精确测定。 研究稳定同位素的组成特征、变化机理、分馏原理并应用它们作为地球化学示踪剂研究各种地质过程Theory, Technique and Application of Environmental Isotopes

---------------------------------------------------------------最新资料推荐------------------------------------------------------ Outline1.氢氧同位素概述 2.天然水的氢氧同位素组成及分布特征3.氢氧稳定同位素的应用Theory, Technique and Application of Environmental Isotopes 3/ 49

降水过程中氢氧稳定同位素理论关系研究

降水过程中氢氧稳定同位素理论关系研究 作者:王永森, 陈建生, 汪集旸, 童海滨, 陈亮, WANG Yong-sen, CHEN Jians-heng,WANG Ji-yang, TONG Hai-bin, CHEN Liang 作者单位:王永森,WANG Yong-sen(河海大学水文水资源与水利工程科学国家重点实验室,江苏 南京210098;河海大学水文水资源学院,江苏 南京 210098), 陈建生,CHEN Jians-heng(河海大 学科学研究院,江苏 南京,210098), 汪集旸,WANG Ji-yang(中国科学院地质与地球物理研 究所,北京,100029), 童海滨,TONG Hai-bin(河海大学水文水资源学院,江苏 南京,210098) , 陈亮,CHEN Liang(河海大学岩土工程科学研究所,江苏 南京,210098) 刊名: 水科学进展 英文刊名:ADVANCES IN WATER SCIENCE 年,卷(期):2009,20(2) 被引用次数:2次 参考文献(11条) 1.YURTSEVER Y Worldwide survey of isotopes in precipitation 1975 2.RENE M P;PETER K S;HUGH E W Seasonal and spatial variation in the stable isotopic composition (δ18O and δD) of precipitation in south Florida[外文期刊] 2008(3/4) 3.CRAIG H Isotopic variations in meteoric waters 1961 4.章新平;姚檀栋大气降水中氧同位素分馏过程的数学模拟 1994(02) 5.HELENE Celle-Jeanton;ROBERTO G;YVES T Oxygen-18 variations of rainwater during precipitation:application of the Rayleigh model to selected rainfalls in Southern France[外文期刊] 2004(1-4) 6.STEWART M K Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops:Application to atmospheric processes and evaporation of lakes[外文期刊] 1975 7.Mook W G Environmental Isotopes in the Hydrological Cycle:Theory,Methods,Review 2001 8.顾慰祖;陆家驹;谢民乌兰布和沙漠北部地下水资源的环境同位素探讨[期刊论文]-水科学进展 2002(03) 9.GAT J R;AIREY P L Stable water isotopes in the atmosphere/biosphere/lithosphere interface:Scaling-up from the local to continental scale,under humid and dry conditions[外文期刊] 2006(1/2) 10.YAMANAKA T;TSUJIMURA M;OYUNBAATAR D Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle[外文期刊] 2007(1) 11.FRUEDMAN I Deuteriun content of natural water and other substances[外文期刊] 1953 本文读者也读过(10条) 1.王锐.刘文兆.宋献方.WANG Rui.LIU Wen-zhao.SONG Xian-fang长武塬区大气降水中氢氧同位素特征分析[期刊论文]-水土保持学报2008,22(3) 2.何闻2004年《水科学进展》在中国科技期刊中的统计与排序[期刊论文]-水科学进展2005,16(6) 3.温学发.ZHANG Shi-Chun.孙晓敏.YU Gui-Rui.WEN Xue-Fa.ZHANG Shi-Chun.SUN Xiao-Min.YU Gui-Rui叶片水H218O富集的研究进展[期刊论文]-植物生态学报2008,32(4) 4.高建飞.丁悌平.罗续荣.田世洪.王怀柏.李明.GAO Jianfei.DING Tiping.LUO Xurong.TIAN Shihong.WANG Huaibo.LI Ming黄河水氢、氧同位素组成的空间变化特征及其环境意义[期刊论文]-地质学报2011,85(4) 5.章新平.姚檀栋.田立德.刘晶淼乌鲁木齐河流域不同水体中的氧稳定同位素[期刊论文]-水科学进展2003,14(1) 6.徐庆.蒋有绪.刘世荣.安树青.段正峰.XU Qing.JIANG You-xu.LIU Shi-rong.AN Shu-qing.DUAN Zheng-feng卧龙巴郎山流域大气降水与河水关系的研究[期刊论文]-林业科学研究2007,20(3)

氢氧稳定同位素在水团混合计算中的应用初探

氢氧稳定同位素在水团混合计算中的应用初探 氢氧稳定同位素作为天然示踪剂,研究降水与地表水的混合作用、地表水与地下水的补给作用以及地表水之间的相互作用等过程中具有重要作用,通过二源线性混合模型可以计算二源和三源水团混合过程中端元的贡献率,而在计算多源混合过程中,则需要采用局部分析或者补充其他示踪剂等方式来综合计算。 标签:稳定同位素;水体贡献率;二源线性混合模型 近年來,河流和湖泊水体的富营养化问题日益严重,尤其对于大中型水库而言,库区干流水体营养状态良好,而支流大多保持中营养状态或者富营养化状态,部分支流呈现重度富营养化状态。研究表明,水体富营养化状态主要由营养物质的输入以及水动力条件的变化两方面导致,水作为营养物质的载体以及藻类植物的生长繁衍环境,其自身的运动转移过程直接影响到水体中营养盐的迁移和转化,以及对藻类植物生长繁殖过程的控制,因此计算水体内不同水团的混合比率对于研究水体富营养化状态有着重要意义。目前,氢氧同位素作为一种稳定示踪剂,在河川径流、降雨径流、水源划分以及植物体水分输出等研究方面应用较广[1],不同水体具有不同的氢氧同位素特征,因此可以利用氢氧稳定同位素来计算河流和湖泊不同水团混合过程中各水源的贡献率。 1 氢氧稳定同位素的天然示踪效果 氢氧同位素均称为稳定同位素,这是因为以水分子存在的D和18O在常温(低于40摄氏度)下非常稳定,很难与接触到的有机质或矿物发生反应,而影响其含量。氢氧稳定同位素在自然界中含量极低,一般的表达方式较为复杂,因此,国际上规定统一采用待测样品中某元素的同位素比值(R)与标准样品中的同位素的相应同位素比值(R标准)的相对千分差作为量度,记为δ(‰)值[2],即 δ=(R/R标准-1)×1000 式中:R是样品中元素的重轻同位素丰度之比,如(D/H)和(18O/16O);R标准是国际通用标准物的重轻同位素丰度之比,如(D/H)标准和(18O/16O)标准,一般水体中氢氧同位素测定标准采用国际原子能机构(IAEA)颁布的平均标准大洋水(Standard Mean Ocean Water,即SMOW),而后IAEA通过海水蒸馏后加入其他水配置的,非常接近SMOW的水样作为新的标准,称为VSMOW。由于水分蒸发和冷凝过程中同位素的分馏作用,使得自然界氢氧稳定同位素的分布具有如下效应:纬度效应、大陆效应、季节效应和高度效应,这也使得自然界中不同水体拥有不同的氢氧同位素特征。因此我们可以通过不同水团混合过程中端元水团氢氧同位素特征的变化来研究水团混合的详细过程,计算不同水团的混合比率等。 2 降雨与地表水的混合作用

同位素应用

应用编辑 同位素示踪法在生物化学和分子生物学中的应用 放射性同位素示踪法在生物化学和分子生物学领域应用极为广泛,它为揭示体内和细胞内理化过程的秘密,阐明生命活动的物质基础起了极其重要的作用。近几年来,同位素示踪技术在原基础上又有许多新发展,如双标记和多标记技术,稳定性同位素示踪技术,活化分析,电子显微镜技术,同位素技术与其它新技术相结合等。由于这些技术的发展,使生物化学从静态进入动态,从细胞水平进入分子水平,阐明了一系列重大问题,如遗传密码、细胞膜受体、RNA-DNA逆转录等,使人类对生命基本现象的认识开辟了一条新的途径。下面仅就同位素示踪技术在生物化学和分子生物学中应用的几个主要方面作一介绍。 物质代谢的研究 体内存在着很多种物质,究竟它们之间是如何转变的,如果在研究中应用适当的同位素标记物作示踪剂分析这些物质中同位素含量的变化,就可以知道它们之间相互转变的关系,还能分辩出谁是前身物,谁是产物,分析同位素示踪剂存在于物质分子的哪些原子上,可以进一步推断各种物质之间的转变机制。为了研究胆固醇的生物合成及其代谢,采用标记前身物的方法,揭示了胆固醇的生成途径和步骤,实验证明,凡是能在体内转变为乙酰辅酶A的化合物,都可以作为生成胆固醇的原料,从乙酸到胆固醇的全部生物合成过程,至少包括36步化学反应,在鲨烯与胆固醇之间,就有二十个中间物,胆固醇的生物合成途径可简化为:乙酸→甲基二羟戊酸→胆固醇又如在研究肝脏胆固醇的来源时,用放射性同位素标记物3H-胆固醇作静脉注射的示踪实验说明,放射性大部分进入肝脏,再出现在粪中,且甲状腺素能加速这个过程,从而可说明肝脏是处理血浆胆固醇的主要器官,甲状腺能降低血中胆固醇含量的机理,在于它对血浆胆固醇向肝脏转移过程的加速作用。 物质转化的研究 物质在机体内相互转化的规律是生命活动中重要的本质内容,在过去的物质转化研究中,一般都采用用离体酶学方法,但是离体酶学方法的研究结果,不一定能代表整体情况,同位素示踪技术的应用,使有关物质转化的实验的周期大大缩短,而且在离体、整体、无细胞体系的情况下都可应用,操作简化,测定灵敏度提高,不仅能定性,还可作定量分析。在阐明核糖苷酸向脱氧核糖核苷酸转化的研究中,采用双标记法,对产物作双标记测量或经化学分离后分别测量其放射性。如在鸟嘌呤核苷酸(GMP)的碱基和核糖上分别都标记上14C,在离体系统中使之参入脱氧鸟嘌呤核苷酸(dGMP),然后将原标记物和产物(被双标记GMP 掺入的dGMP)分别进行酸水解和层析分离后,测定它们各自的碱基和戊糖的放射性,结果发现它们的两部分的放射性比值基本相等,从而证明了产物dGMP的戊糖就原标记物GMP的戊糖,而没有别的来源,否则产物dGMP的碱基和核糖的比值一定与原标记物GMP的两部分比值有显著差别。这个实验说明戊糖脱氧是在碱基与戊糖不分记的情况下进行的,从而证明了脱氧核糖核苷酸是由核糖核苷酸直接转化而来的,并不是核糖核苷酸先分解成核糖与碱基,碱基再重新接上脱氧杭核糖。无细胞的示踪实验可以分析物质在细胞内的转化条件,例如以3H-dTTP为前身物作DNA掺入的示踪实验,按一定的实验设计掺入后,测定产物DNA 的放射性,作为新合成的DNA的检出指标。 动态平衡的研究 阐明生物体内物质处于不断更新的动态平衡之中,是放射性同位素示踪法对生命科学的重大贡献之一,向体内引入适当的同位素标记物,在不同时间测定物质中同位素含量的变化,就能了解该物质在体内的变动情况,定量计算出体内物质的代谢率,计算出物质的更新速度和更新时间等等。机体内的各种物质都在有大小不同的代谢库,代谢库的大小可用同位素稀释法求也。 生物样品中微量物质的分析

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术 [热考解读] 1.同位素示踪法 (1)同位素示踪法:用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。这种科学的研究方法叫做同位素示踪法,也叫同位素标记法。(2)应用:可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。还可用于疾病的诊断和治疗,如碘的放射性同位素可以用来治疗甲状腺肿大。 (3)使用注意事项:一次只能使用一种同位素标记 2.荧光标记法 荧光标记法(Fluorescent Labeling)是利用荧光蛋白或荧光蛋白基因作为标志物对研究对象进行标记的分析方法。 (1)常用的荧光蛋白为绿色和红色两种 ①绿色荧光蛋白(GFP)常用的是来源于发光水母的一种功能独特的蛋白质,分子量为27 kD,具有238个氨基酸,蓝光或近紫外光照射,发射绿色荧光。 ②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景。 (2)人教版教材中用到荧光标记法的地方 ①《必修1》P66“细胞融合实验”:这一实验很有力地证明了细胞膜的结构特点是具有一定的流动性。 ②《必修2》P30“基因在染色体上的实验证据”:通过现代分子生物学技术,运用荧光标记的手段,可以很直观地观察到某一基因在染色体上的位置。 (3)荧光标记法特别是在免疫学研究中也有重要的作用,例如免疫荧光抗体标记法。将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。 [命题设计] 1.(2018·山东青岛一模)同位素标记法常用于追踪物质运行和变化规律的研究,下列相关叙述不正确的是() A.给小鼠供应18O2,其呼出气体中可能含有C18O2 B.用含3H标记的尿嘧啶核糖核苷酸的营养液培养洋葱根尖,只能在分生区细胞中检测到放射性 C.用15N标记DNA分子,可用于研究DNA分子的半保留复制 D.用32P标记的噬菌体侵染大肠杆菌,保温、搅拌、离心后可检测到沉淀物中放射性很高

浅论放射性同位素示踪技术的应用

浅论放射性同位素示踪技术的应用-----《原子物理》课程论文 这学期通过学习XX老师的《原子物理》课程,我对原子物理其中一个领域—放射性同位素产生了很大的兴趣,这兴趣源于我在高中时期对生物学科中同位素示踪法的学习经历,当时我就感觉这一技术十分奇妙,但不明原理,《原子物理》课程让我认识并理解了物理和生物两大学科之间的这一联系。课堂上老师简明扼要地介绍了一些有关的应用,但是我仍不满足。老师只能作为课程的引路人,为学生指明入门方向,要想横向更加广泛地,纵向更加深入地了解这一课程的某个领域还是要学生在课外多方搜集资料,筛选整合有价值的信息,通过比较和研究,最终形成自己对这一领域的独特而深刻的认识,放射性同位素的应用浩瀚广博,即使仅仅只谈它的示踪技术应用,也远非我这篇小论文可以概述详尽的,所以我也只能用“浅论”这两个字。下面我就对放射性同位素示踪技术的应用进行浅显的介绍和论述。 具体论述前我们首先要明确相关的基本概念,无论结构多么复杂的物理学大厦,它的地基都是由一块块叫做“基本概念”的砖石筑成的。基本概念不明晰,我们就无法理解为什么放射性同位素具有如此广泛而丰富的应用。那么什么是“放射性同位素”呢?科学家发现,元素周期表中同一位元素的原子并不完全一样,有的原子重些,有的原子轻些;有的原子很稳定,不会变,有的原子有放射性,会变化,衰变后成了另一种元素的原子。我们把这些处于同一位的元素但有不同性质(质子数相同,但中子数不同)的原子称为同位素。同位素中有的会放出射线,因此称放射性同位素。 放射性同位素不断发出射线,它到哪里,人们就可以追踪到哪里,可作为示踪剂使用。示踪剂可以是示踪原子,也可以做成示踪化合物。因为加入示踪剂之后,就像贴上标记一样,所以又称之为标记化合物。人们已经用氚、碳-14、磷-32、硫-35、碘-125等许多核素合成了许许多多标记化合物。用放射性同位素示踪技术(以下简称示踪技术)作检测,具有灵敏度高、方法简便、干扰少、准确性好等优点,因此,在工农业生产、医疗、环保、国防和科学研究等许多领域有着十分广泛的应用,并且这种应用还在迅速扩展。 (一)示踪技术在生物学领域的应用 高中时期我们就曾经学过同位素示踪法在生物学科的应用,即用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。它可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能——在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等等。 (二)示踪技术在工业生产领域的应用 放射性示踪剂在工业生产中有着广泛的应用。石油蕴藏在地下,油层非均匀性质很严重,油水分布复杂。搞清地下油水分布的情况,对提高采油率有着十分重要的意义。如果用氚或碘-125、硫-35作示踪剂,注入油井中,打一些监测井进行监测,就可以知道地下油水的分布情况。再如,不同公司生产的石油往往共用一条输油管道,要想把哪个公司输送过来的石油分辨得一清二楚,也可找示踪剂来帮忙。例如在甲公司的石油中加入放射性碘做示踪剂,在乙公司的石油中加入放射性硫做示踪剂,当接收站测到放射性碘示踪剂信号时,就知道甲公司的石油过来了,就会自动打开甲公司的贮油槽。当测到放射性硫示踪剂信号时,就知道是乙公司的石油过来了,就会打开乙公司的贮油槽,保证不会认错货。 (三)示踪技术在科学研究领域的应用 用氚标记示踪剂可以帮助水利学家们研究江河中泥沙是怎么淤积的。利用氯-36示踪剂可以帮助人们了解地下水运动走向和渗透率的大小。利用碳-14示踪剂可以研究大洋水流的循环模式和全球气候变暖的原因,等等。磷-32、硫-35、碘-125、碳-14或氚作示踪剂,可以帮助医生从分子水平研究神经系统、内分泌系统疾病的机制,进行药物代谢,基因工程等研究。用磷-32或硫-35标记的核苷酸,可用于DNA(脱氧核糖核酸)和RNA(核糖核酸)分子序的测定。 (四)示踪技术在医学领域的应用 通过查阅相关医学文献,我发现在医学研究中,经常需要了解某种物质在机体内的分布情况和代谢规律,包括药物、抗体、细胞膜受体,基因片段以及蛋白质等各种分子。如何能够较为方便地在活体动物或人体条件下了解这些情况呢?示踪技术是一种较为常用的方法。随着放射性标记药物的品种不断增加,在体外探测体内放射性分布的设备不断进步,示踪技术应用越来越广泛。最早,我们为了解甲状腺的功能,给病人口服放射性碘,然后测定甲状腺部位的放射性高低,定量显示甲状腺的摄碘功能,这一方法沿用至今,对于甲状腺整体和甲状腺肿块局部功能的评价,用数字或图像的方式很容易获得。还可以用于

同位素医疗应用

3、放射性同位素在医学上的应用 疾病的研究和诊断 同位素标记和示踪技术在医学方面的应用,是目前从细胞水平进入到分子水平,对活体显示人体结构和病理变化的惟一方法。其研究领域已经深入到基因、核酸、蛋白质等,研究疾病发生、发展、转归与演变的过程,达到探索发病机制与正确诊断疾病的目的。 采用放射免疫分析方法,在体外对患者体液中生物活性物质进行微量分析,能够快速有效地进行疾病的体外诊断。 疾病的治疗 电离辐射具有杀灭癌细胞的能力。目前,放射治疗是癌症治疗三大有效手段之一,70%以上癌症患者都需要采用放射治疗。放射治疗可分为外部远距离照射、腔内后装近程照射、间质短程照射和内介入照射等。 体内放射性药物治疗是近来颇受医学界关注的临床手段。放射免疫的靶向治疗、受体介导的靶向治疗、放射性核素基因治疗以及放射性核素微粒肿瘤组织间定向植入治疗等,将会改变过去传统的治疗疾病的思维与规范,尤其是肿瘤疾病,核素治疗将成为化学治疗、手术治疗及放射治疗等综合治疗中的不可少的手段之一,在某些方面可代替外照射治疗或化疗。 放射免疫分析法 放射免疫分析法 radiommunoas-say 利用同位素标记的与未标记的抗原同抗体发生竞争性抑制反应的放射性同位素 体外微量分析方法。又称竞争性饱和分析法。1960年美国化学家R.S.耶洛和S.A.贝尔森提出此法,耶洛因此于1977年获得诺贝尔生理学或医学奖。 放射性标记抗原*Ag和未标记抗原(待测物)Ag与不足量的特异性抗体Ab竞争性结合,形成*Ag-Ab或Ag-Ab复合物。因为加入的*Ag和Ab的量是恒定的,当结合反应达到动态平衡后,若Ag量增多,生成的Ag-Ab量增多,*Ag-Ab生成量相对减少,游离的*Ag增多,即Ag与复合物的放射性成反比。反应达到平衡后,用有效的方法将*Ag-Ab和Ag-Ab复合物与游离的*Ag和Ag分离,测量其放射性,即可求得样品中抗原Ag的含量。 常用于标记抗原的放射性同位素有3H、125I、131I等。3H可以置换有机化合物中的氢,不影响原有化学性质,且半衰期长和能量低,便于防护。125I和131I原子的化学性质比较活泼,标记方法简便,多肽、蛋白质与小分子半抗原均可进行碘标记。一些不能直接用碘标记的半抗原,通过接上一个酪氨酸亦可用碘标记之。 放射免疫分析法是将检测放射性的高灵敏度与抗体抗原结合反应的惊人的特异 性结合在一起的微量分析法,优点是灵敏、特异、简便易行、用样量小,常可测至皮摩尔量。本法的缺点是有时会出现交叉反应、假阳性反应、组织样品处理不够迅速,不能灭活降解酶和盐,有时会影响结果等。 放射免疫分析法在内分泌学中用以测定胰岛素、生长激素、甲状旁腺激素、血管紧张素、催化素、黄体化激素、促卵泡成熟激素、前列腺素等,以鉴别、诊断、研究激素的生理和药理作用,以及研究激素和受体结合的机理。在传染病学方面广泛用于

室外水体蒸发氢氧同位素日变化特征

室外水体蒸发氢氧同位素日变化特征 为研究室外水体蒸发氢氧同位素变化特征,连续12个小时采集四川大学听荷池的水样,获得了水体蒸发氢氧稳定同位素与温度的关系。实验结果表明,水体蒸发实验中,温度越高,蒸发速度越快,在同样的蒸发时间内水体重同位素富集程度越大;室外水体自由蒸发实验中得出的蒸发线方程斜率较大地偏离了当地降水线,表明实验期间水体蒸发分馏作用较明显。该研究为进一步揭示水体蒸发分馏规律提供了可靠的实验依据。 标签:水体蒸发;氢氧同位素;日变化;实验研究 1 实验区概况 取样点位于成都市武侯区四川大学听荷池,北纬30°38’3.64〃,东经104°05’12.38〃,海拔大约为490m,池面积为1.2hm2,降水是听荷池水量的主要来源。成都市属于中亚热带湿润季风气候区,常年最多风向是静风,冬湿冷、春早、无霜期较长,四季分明,热量丰富,年平均气温16°C,最高气温38.6°C,最低气温-5.9°C,无霜期为287d,初霜期出现的时候大约为11月底,终霜期一般在2月,冬季的平均气温大概为5°C,平均气温比同纬度的长江中下游地区高1~2°C。冬春雨少,夏秋多雨,雨量充沛,多年平均降雨量约为900~1300mm,多集中在7~9月份。光、热、水基本同季,气候资源的组合合理,很有利于生物繁衍。风速小,风速为1~1.5m/s,晴天少,日照率在24~32%之间,年平均日照时数为1042~1412小时。 2 样品收集与分析 2.1 样品收集 2016年12月4日,在听荷池采集水样,气象数据为当时现场测量记录。 取样品之前,需要把塑料瓶放入7N的HNO3浸泡一整天,然后用超纯水清洗多次,接着放入烘箱将塑料瓶的水烘干,为了保证取样工具的洁净与干燥,以免污染样品。采取样品时,尽量将水样装满瓶子,这是因为考虑到液态水分子之间存在着范德华力,它会使水分子的运动速度远远小于气态情形,这样可以降低蒸发时的分馏作用。 取样采集:2016年12月4日,8:00至20:00,每个小时分别在听荷池东南西北角采集水样,每次取样的地点以及取样的深度基本上都没有变化。每次将取好的水样装入50ml的塑料瓶中,现场记录日期和温度等,用封口膜将瓶口封住,以免造成分馏。最后把装好的样品带回实验室进行分析。 2.2 样品处理及分析

同位素示踪法

“同位素示踪法”专题复习 同位素示踪法是利用放射性元素作为示踪剂对研究对象进行标记的微量分析方法,研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素。如3H、14C、15N、18O、32P、35S等。 一、3H练习 1.将植物细胞在3H标记的尿苷存在下温育数小时,然后收集细胞,经适当处理后获得各种细胞器。放射性将主要存在于:() A.叶绿体和高尔基体B.细胞核和液泡C.细胞核和内质网D.线粒体和叶绿体 2.用3H标记葡萄糖中的氢,经有氧呼吸后,下列物质中可能有3H的是() A、H2O B、CO2 C、C2H5OH D、C3H6O3 3.愈伤组织细胞在一种包含所有必需物质的培养基中培养了几个小时,其中一种化合物具有放射性(3H标记)。当这些细胞被固定后进行显微镜检,利用放射自显影技术发现放射性集中于细胞核、线粒体和叶绿体中。因此,可以肯定被标记的化合物是() A一种氨基酸B尿嘧啶核苷C胸腺嘧啶脱氧核苷酸D葡萄糖 4.(多选)下列生物学研究选择的技术(方法)恰当的是() A.用3H标记的尿嘧啶核糖核苷酸研究DNA的复制B.用利用纸层析法提取叶绿体中的色素 C.用标志重捕法进行鼠的种群密度的调查D.用无毒的染料研究动物胚胎发育的过程 5.为了促进有丝分裂物质对细胞分裂的促进作用,将小鼠的肝细胞悬浮液分成等细胞数的甲、乙两组,在甲组的培养液中加入3H标记的胸腺嘧啶脱氧核苷(3H-TdR);乙组中加入等剂量的3H-TdR加入促进有丝分裂物质。培养一段时间后,分别测定甲、乙两组细胞的总放射强度。据此回答下列问题: (1)细胞内3H-TdR参与合成的生物大分子是,该种分子所在的细胞结构名称是,。 (2)乙组细胞的总放射性强度比甲组的,原因是。 (3)细胞利用3H-TdR合成生物大分子的过程发生在细胞周期的期。

科普园地--同位素在医学上的应用

同位素在医学上的应用 放射性同位素用于医学领域已有90多年的历史,到本世纪30年代利用镭治疗肿瘤达到盛期,到50年代后,随着核技术和医学的相互结合,形成了一门年轻学科——核医学。核医学的发展是医学现代化的重要标志之一,它不仅为阐明代谢过程、探讨生命活动的物质基础及客观规律提供了灵敏、特异、快速和方便的研究手段,也为临床诊断、放射治疗、医学科学研究开辟了新的途径。 核医学按其内容分为临床核医学和基础核医学。前者主要任务是利用核技术诊断和治疗疾病;后者则主要是用核技术来研究疾病。 目前,世界上生产的放射性核素约有80%~90%用于医学,其中30多种核素大量用于临床。 一、放射治疗 放射性核素在医学上的应用,使多种类型恶性癌的疗效得到显著改善。50年代后,各国用60Co治疗机代替以前的镭治疗机,它的射线能量为1.33MeV,穿透力强,深部组织吸收剂量高,皮肤吸收剂量低,适用于深部肿瘤的治疗。近年来,也开始把快中子、质子束等应用于放射治疗。放射治疗系利用它衰变时放出的射线在机体内引起电离作用,破坏病变细胞来达到治疗目的。 采用各种放射源(60 Co,137Cs,192Ir等)直接或通过手术植入病人体腔内或肿瘤部位,实施短程放射治疗,具有使肿瘤部位有较高剂量,而周围正常组织损伤较小的优点。近年来,腔内后装技术的发展,缩短了治疗时间,提高了工作效率,医务人员也几乎可免受射线照射,更便于开展门诊治疗。 另外,可把放射性药物直接引入体内进行治疗,如198Au,90Y,177Lu等可治疗白血病,支气管癌等。用”’I治疗甲状腺癌和甲状腺功能亢进。用’于治疗真性红细胞增多症。 将32P、90Sr、60Co等β放射性核素制成适当活度的放射源,敷贴在体表疾患处,可治某些浅表疾病,如神经性皮炎、慢性湿疹、毛细血管瘤等。 二、临床诊断 核医学临床诊断检查可分为体内检查(功能测定与显像技术)和体外检查(竞争放射分析等)两部分。核医学临床诊断是利用放射性核素作示踪剂,并通过核仪器测定其在脏器中的分布和强度,可以诊断疾病。 1.体内检查(功能测定与显像技术) 应用放射性核素或其标记化合物,可以测定甲状腺、肾、心、肺和消化系统的功能,并能进行血液系统检查。举例如下: 甲状腺有摄取或浓集131I的功能,131I的摄取速度和摄取量与甲状腺功能状态有关。口服Na131I24/。时后,用核探测器在颈部(甲状腺部位)测量甲状腺摄取131I的情况,可以判断甲状腺的功能状态。 甲状腺吸131I率的正常值范围,常因测量技术和方法、地区以及年龄、性别等略有差异。以北京地区为例,采用闪烁探头远距离测量法;24小时甲状腺吸131I率正常值范围为25%~65%,小于25%为功能低下,大于65%可能为甲状腺功能亢进。 把24Na标记的盐水溶液注入人体,2小时后,测定体液中24Na的含量,可计算出病人体内体液的总量,如体液重量超过体重的6O%,表示人体浮肿。 选用合适的放射性药物(放射性核素或标记化合物)作示踪剂引入体内,采用闪烁扫描机、γ照相机或断层显像技术(ECT,包括单光子发射计算机断层仪SPECT和正电子发射计算机断层仪PECT),可以观察放射性在人体内的分布状况与动态变化,从而诊断脏器是

碳氢氧氮稳定同位素在生态学中的研究案例

碳氮氢氧稳定同位素示踪技术在生态系统研究案例稳定同位素作为示踪剂广泛应用于生态循环和大气循环中的相关研究。研究人员通过测量空气、植物和土壤中的稳定性同位素组成,进而研究传统生态学无法解释的复杂生态学过程,例如:碳同位素用于分析生态系统CO2循环,区分碳通量研究中各组分的贡献率,确定不同物种对全球生产力的分配和贡献;氢氧同位素用于分析植物对土壤水分的利用效率,进而区分土壤水分的蒸腾与蒸散;氮同位素用于分析植物及生态系统的氮素循环,通过反硝化细菌转化成N2O,根据15N在N2O分子的不同位置,可以示踪N素循环的不同化学反应过程。在这些生态研究中,要求使用的设备同时具备高环境耐受性、高精度、高测量速度及宽量程等特点。 美国Los Gatos公司采用专利的OA-ICOS技术(第4代CRDS技术)设计的一系列稳定同位素分析仪,具有操作温度范围宽、量程宽、高速、高精度的优点。能够满足实验室野外多点长期同步监测、不同高度长期同步监测等研究的需要。其与其他传统测量方法相比,改进了对外界温度、压力变化比较敏感的缺陷,具备无法比拟的优势,适用范围也大大得到扩展。 一、测量原理 LGR:采用OA-ICOAS技术,符合Beer-Lambert定律,通过测量光损失来确定未知物质的浓度;通过改变入射激光的波长,一次扫描测量需要的全部光谱,每秒300次测量,做平均,从而保证了多点连续监测的同步性以及高精度性。 特点:1、测量速度非常快,每秒300次全光谱扫描取平均,测量速度及精度远超传统质谱仪; 2、一次扫描测量全光谱,实时显示光谱曲线,即使温度压力的变化引起峰漂移 也不会影响到峰面积的变化; 3、离轴的光腔设计,避免反射光与入射光直接的相互干扰,信噪比低; 4、通过峰面积来计算位置物质的浓度,所以测量范围很宽; 二、 试验方案 1、碳氧稳定同位素示踪设计方案 1.1土壤-植物根系呼吸的区分 利用土壤、植物根系呼吸产生的CO2中13C同位素信息,可以区分它们各自在总呼吸中所占的比例,同时对18O同位素进行监测,使得多混合源的同位素区分成为可能。

同位素标记法在高中生物学中的应用总结

同位素标记法在高中生物学中的应用总结 同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。 1.分泌蛋白的合成与分泌(必修 1P40简答题) 20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。 2.光合作用中氧气的来源 1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O和C18O2,另一组提供H218O和CO2。

在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。 3.光合作用中有机物的生成 20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。为此,卡尔文荣获“诺贝尔奖”。 4.噬菌体侵染细菌的实验 1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。此实验有力证明了DNA是遗传物质。 5.DNA的半保留复制 1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链

相关主题