搜档网
当前位置:搜档网 › 数值分析习题

数值分析习题

数值分析习题
数值分析习题

习题1

1. 填空题

(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免

误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字.

3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.

4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.

95123450304051104000003346087510., ., , ., .x x x x x -==?===?

5. 证明1.2.3之定理1.1.

6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形)

7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.

8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.

9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有

r r xf x f x k x k f x εε'≈=

()

(())(),()

其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2

x π

≈时是病态问题.

11. 定义多元函数运算

1

1

1,,(),n n

i i i i i i S c x c x εε====≤∑∑其中

求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

111 11212 11-cos23 14 00x

y x x x

y x x

y x x y p p q p q -=

-++===

>>(),()()()

(),()

(),

(,,)

习题2

1. 填空题

(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元

素的绝对值太小会发生 ;

(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 . 平方

根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 ;

(3) 直接LU 分解法解线性方程组时的计算量以乘除法计为 , 追赶法解对角占优

的三对角方程组时的计算量以乘除法计为 ; (4) ,???

?

??=2011A =1A , =2A , =)(A ρ ; (5) 1100>???

?

??=t t A , )(A ρ , 2cond ()A = ; (6) 0>>>???

?

?

??=a b c c b a A , )(A ρ , 2cond ()A = ; 2.用Gauss 消元法求解下列方程组b Ax =

?????

??=???

?

? ??---=101,

112221111)1(b A , ??

??

?

?

?

??--=???????

??=1111,4321343223431234

)2(b A 3.用列主元消元法解下列方程组b Ax =.

?????

??=???

?

?

??---=674,

5150710623)1(b A ?

?????

?

??--=??????? ??---=6720,5616103423221020)2(b A 4. 用Gauss -Jordan 消元法求:

1

01101

2111-???

?

? ??-- 5.用直接LU 分解方法求1题中两个矩阵的LU 分解,并求解此二方程组.

6.用平方根法解方程组b Ax =

321422131116,A b ???? ? ?== ? ? ? ?????

7. 用追赶法解三对角方程组b Ax =

???????

? ??=???????? ??--------=00001,2100012100012100012100012b A

8.证明:

(1)单位下三角阵的逆仍是单位下三角阵.

(2)两个单位下三角阵的乘积仍是单位下三角阵.

9.由1

11211----=n L L L L ,(见(2.18)式),证明:

?????????

?

??=

-11

1111

,32

1323121n n n n n l l l l

l l l L

10.证明向量范数有下列等价性质:

∞∞≤≤≤≤≤≤x

n x x

x

n x x x n x x 212

12)

3()2()1(

11.求下列矩阵的()12,,,A A A A ρ∞.

()

()

5131312110212326;

.A A ??

??

?

== ? ?-??

???

12.求()

2cond A

()()10099129998cos sin ;

.sin cos A A θ

θθθ-??

??

== ?

???

??

13.证明:

(1)若A 是正交矩阵,即T A A I =, 则()2cond 1A =;

(2)若A 是对称正定阵, 1λ是A 的最大特征值, n λ是最小特征值,则

()1

2cond n

A λλ=

. 习题3

1. 填空题:

(1) 当A 具有严格对角线优势或具有对角优势且 时,线性方程组Ax =b 用

Jacobi 迭代法和Gauss -Seidel 迭代法均收敛;

(2) 当线性方程组的系数矩阵A 对称正定时, 迭代法收敛.

(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 小于1; SOR 法收敛

的必要条件是 ;

(4) 用迭代法求解线性方程组,若q = (B ), q 时不收敛, q 接近 时收

敛较快, q 接近 时收敛较慢; (5)

1112,A ??= ???

J B = ;S B = ; ()J B ρ= ; ()S B ρ= .

2.用Jacobi 迭代法和Gauss -Seidel 迭代法求解方程组

(1) ????? ??-=????? ??????? ??453210*********x x x ; (2) ????

? ??=????? ??????? ??---716141115111

8321x x x

各分量第三位稳定即可停止.

3.用SOR 法解方程组,取0.9ω=,与取1ω= (即Gauss-Seidel 法)作比较.

1233215573132573x x x -?????? ??? ?-= ??? ? ??? ?-??????

. 4.下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收

敛性

(1)?

???

? ??211231125; (2)???? ??2321;

(3)212121212??

?

? ?-??; (4)??????? ??----210012*********

2; (5)??????

?

?

?------------101111511111011115 ; (6)11

22112

21122111?? ? ? ???. 5.方程组

0,0,2211212122211211≠≠???

?

??=???? ?????? ??a a b b x x a a a a

证明用Jacobi 迭代法收敛的充要条件是:

122

1121

12<=

a a a a r . 6.设

为实数;a a a a a a a A ,111???

?

? ??=

(1)若A 正定,a 的取值范围;

(2)若Jacobi 迭代法收敛,a 的取值范围.

习题4

1. 填空题:

(1) 幂法主要用于求一般矩阵的 特征值,Jacobi 旋转法用于求对称矩

阵的 特征值;

(2) 古典的Jacobi 法是选择 的一对 元素将其消为零; (3) QR 方法用于求 矩阵的全部特征值,反幂法加上原点平移用于一个近似特

征值的 和求出对应的 . 2.用幂法求矩阵.

⑴????? ??111132126, ⑵????

? ??---20101350144 按模最大的特征值和对应的特征向量,精确到小数三位.

3.已知: ???

?

?

??---=13212911

11111A

取t =15,作原点平移的幂法,求按模最大特征值.

4. ???

?

? ??=10141101414A

用反幂法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.

5.若A 的特征值为t n ,,,,21λλλ 是一实数,证明:t i -λ是tI A -的特征值,且特征向量不变.

6.已知()321,,T

x =求平面反射阵H 使()00,*,T

y Hx ==,即使x 的1,3两个分量化零.

7. ???

?

? ??=612133231A

试用Jacobi 旋转法求作一次旋转,消去最大的非对角元,写出旋转矩阵,求出θ角和结果.

8.设 ()()()()???

?

??=????222322333100T T T 已知λ是1T 的特征值,相应的特征向量为()T

a a a 321,,,证明λ也是T 的特征值,相应的特

征向量为()T

a a a 0,0,,,321.

9. 证明定理4.5.

10. 证明(4.21)中的s A 和1+s A 相似.

习题5

1.填空题

(1) 用二分法求方程3

10x x +-=在[0,1]内的根,迭代一次后,根的存在区间

为 ,迭代两次后根的存在区间为 ;

(2) 设()f x 可微,则求方程()x f x =根的Newton 迭代格式为 ;

(3) 2

()(5)x x C x ?=+-,若要使迭代格式1()k k x x ?+=

局部收敛到α=

C 取

值范围为 ;

(4) 用迭代格式1()k k k k x x f x λ+=-求解方程3

2

()10f x x x x =---=的根,要使迭

代序列

{}k x 是二阶收敛,则k λ= ;

(5) 迭代格式1221

3k k k

x x x +=

+收敛于根α= ,此迭代格式是 阶收敛的.

2.证明Newton 迭代格式(5.10)满足

12()

lim

2()k k k

f f εαεα+→∞''=-'

3. 方程3

2

91860, [0,)x x x x -+-=∈+∞的根全正实根,试用逐次扫描法(h =1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.

4.用二分法求下列方程的根,精度0.001ε=.

(1) 3

40 [2,1]x x x -+=∈-- (2) 1020 [0,1]x e x x +-=∈

5.用迭代法求3

250x x --=的正根,简略判断以下三种迭代格式:

(1) 3152

k k x x +-=; (2) 125

2k k x x +=- ;

(3) 1k x +=在02x =附近的收敛情况,并选择收敛的方法求此根.精度4

10ε-=.

6. 方程x e x

-=

(1) 证明它在(0,1)区间有且只有一个实根; (2) 证明 ,,,101==-+k e

x k

x k ,在(0,1)区间内收敛;

(3) 用Newton 迭代法求出此根,精确到5位有效数字. 7.对方程3

310x x --=,分别用

(1) Newton 法0(2)x =;(2) 割线法01(2, 1.9)x x ==求其根.精度4

10ε-=.

8.用迭代法求下列方程的最小正根

(1) 5

420x x --=; (2) 2tan 0x x -=; (3) 2sin x x = 9.设有方程 2

30x

x e -=

(1) 以1h =,找出根的全部存在区间;

(2) 验证在区间[0,1]上Newton 法的区间收敛定理条件不成立; (3) 验证取00.21x =, 用Newton 法不收敛;

(4) 用Newton 下山法,取00.21x =求出根的近似值,精度4

10ε-=.

10.分别用Jacobi 法,Gauss —Seidel 法求解非线性方程组

22

230250

x y x y +-=??+-=? 在(1.5,0.7)附近的根,精确到4

10-.

11.分别用Newton 法,简化Newton 法求解非线性方程组

sin cos 0

1

x y x y +=??

+=?

在(0,1)附近的根,精确到4

10-.

习题6

1.填空题

(1) 设5

3

()1f x x x x =+++,则[0,1]f ,[0,1,2]f = ,

[0,1,2,3,4,5]f = ;[0,1,2,3,4,5,6]f = .

(2) 设01(),(),

,()n l x l x l x 是以节点0,1,2,…,n 的Lagrange 插值基函数,则

()n

j

j jl x ==∑ ;0

()n

j

j jl k ==∑ .

(3) 设(0)0,(1)16,(2)46,[0,1]f f f f ====则 ,[0,1,2]f = ,

()f x 的二次Newton 插值多项式为 .

2.已知函数2

)(x e

x f -=的数据如下

试用二次,三次插值计算=0.35,=0.55的近似函数值,使其精度尽量地高. 3.利用x sin 在3

,

4,6,0π

ππ=x 及

2π处的值,求5

sin π

的近似值,并估计误差. 4

计算积分?

=

x

dt t

x f 0

)(, 当)(x f =0.45时的x 的取值. 5.试用Newton 插值求经过点(-3,-1),(0,2),(3,-2),(6,10)的三次插值多项式. 6.求满足)()(),()(1100x f x P x f x P ==及)()(00x f x P '='的次数不超过2次的插值多项式)(x P ,并给出其误差表达式.

7.设i x 是互异节点,)(x l j 是Lagrange 插值基函数(n j ,,2,1,0 =),证明

(1)

1)(0≡∑=n

j j

x l

(2)

k n

j j

k j x x l x

≡∑=0)( (n k ,,2,1,0 =);

(3)

0)()(0

≡-∑=n

j j k j

x l x x

(n k ,,2,1,0 =).

8.设有如下数据

9.试构造一个三次Hermite 插值多项式使其满足

5.0)1( ,2)1( ,5.0)0( ,1)0(='=='=f f f f

10.已知函数)(x f 的数据表

分别用

的近似值. 11.对函数()sin f x x =进行分段线性插值,要求误差不超过5

105.0-?,问步长h 应如何选取.

12

用三转角插值法求满足下述条件的三次样条插值函数 (1) 0000.1)25.0(='S ,6868.0)53.0(='S (2) 2)25.0(-=''S , 6479.0)53.0(=''S 13. 证明定理6.6.

习题8

1.填空题

(1) 1n +个点的插值型数值积分公式

()()n

b

j j a

j f x dx A f x =≈∑?

的代数精度至少

是 ,最高不超过 .

(2) 梯形公式有 次代数精度,Simpson 公式有 次代数精度. (3) 求积公式

20

()[(0)()][(0)()]2

h

h

f x dx f f h h f f h α''≈++-?

中的参数α=

时,才能保证该求积公式的代数精度达到最高,最高代数精度为 .

2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度. (1) )2()()0()(21020h f A h f A f A dx x f h

++≈? (2)

)](3)(2)1([)(211

1

x f x f f A dx x f ++-≈?

-

(3)

11231

11()(1)33f x dx A f A f A f -??

??=-+-+ ? ???

??

? (4) )1()0()()(32111

1f A f A x f A dx x f ++≈?- (5)

)()()(212

x f x f dx x f +≈?

3.分别利用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分 (1) ?+1

024dx x x

(n =8)

(2)

?

1

0dx x (n =10)

(3) ?-1

2

dx e x

(n =10)

(4)

(n =6)

(5)

?

20

sin π

dx x

x

(n =8)

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

2012数值分析试卷答案

昆明理工大学2012级硕士研究生试卷 科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号: 考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。 一、 填空题(每空2分,共40分) 1.设*0.231x =是真值0.228x =的近似值,则*x 有 位有效数字,*x 的相对误差限 为 。 2.设 133)(47+++=x x x x f ,则=]2,,2,2[710 f ,=]2,,2,2[810 f 。 3. 过点)0,2(),0,1(-和)3,1(的二次拉格朗日插值函数为 )(2x L = , 并计 算=)0(2L 。 4.设 32()3245f x x x x =+-+在[]1,1-上的最佳二次逼近多项式为 , 最佳二次平方逼近多项式为 。 5.高斯求积公式 )()()(1101 0x f A x f A dx x f x +≈? 的系数0A = , 1A = ,节点0x = , 1x = 。 6.方程组 b Ax =,,U L D A --=建立迭代公式f Bx x k k +=+)()1(,写出雅可比迭代法和 高斯-赛德尔迭代法的迭代矩阵, =Jacobi B ,=-Seidel Gauss B 。 7.0 0100A ??? =? ???,其条件数2()Cond A = 。 8.设?? ? ???=2113A ,计算矩阵A 的范数,1||||A = , 2||||A = 。

9.求方程 ()x f x =根的牛顿迭代格式是 。 10.对矩阵??? ? ? ??=513252321A 作LU 分解,其L=________________, U= __________________。 二、计算题(每题10分,共50分) 1. 求一个次数不高于4次的多项式P (x ), 使它满足:1)1(,0)0(,0)0('===p p p ,1)1(,'=p ,1)2(=p 并写出其余项表达式(要求有推导过程)。 2. 若用复合梯形公式计算积分 dx e x ? 1 ,问区间[0, 1]应分成多少等分才能使截断误差不超过 5102 1 -?? 若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等份? 由下表数据,用复合辛普森公式计算该积分的近似值。 3. 线性方程组b Ax =,其中???? ??????=18.04.08.014.04.04.01A ,T b ]3,2,1[=,(1)建立雅可比迭代法和 高斯-赛德尔迭代法的分量形式。(2)问雅可比迭代法和高斯-赛德尔迭代法都收敛吗 ? 4. 已知如下实验数据4,,1,0),,( =i y x i i , 用最小二乘法求形如x a a y 10+=的经验公式,并 计算最小二乘法的误差。 5. 用改进的欧拉公式(预估-校正方法),解初值问题0)0(,10022=+=y y x dx ,取步长,1.0=h 计算到2.0=x (保留到小数点后四位) 。 三、证明题(共10分) 1. 如果 A 是对称正定矩阵,则A 可唯一地写成T LL A =,其中L 是具有正对角元的下三角 阵。

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析题库答案

1. 正方形的边长大约为100cm ,应怎样测量才能使面积误差不超过1cm 2? 2. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m, 1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.

3.为使π的相对误差小于0.001%,至少应取几位有效数字? 4.设x的相对误差界为δ,求n x的相对误差界. 5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算 p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?

6. 已知33348 7.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并估计截断误差. 7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并估计误差. 8. 已知 1 6243sin ,sin π ππ== =请用抛物插值求sin50的值,并估计误差

9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x 10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式 . 11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,

试用二次牛顿插值多项式计算(2.15)f 的近似值,并讨论其误差 12. 设],[)(b a x f 在上有四阶连续导数,试求满足条件)2,1,0()()(==i x f x P i i 及 )()(11x f x P '='的插值多项式及其余项表达式. 13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944?? ???? ,上的三次埃尔米特

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

数值计算(数值分析)试题与答案

++中的待定系数 A f (1)(0)

武汉理工大学研究生课程考试标准答案 用纸 课程名称:数值计算(A)任课教师: 一. 简答题,请简要写出答题过程(每小题5分,共30分) 3.14159265358979的近似值 绝对误差和相对误差分别是多少? 3分)

2分) 2.已知()8532f x x x =+-,求01 83,3, ,3f ????,019 3,3,,3f ????. (5分) 3.确定求积公式 1 0120 ()(0)(1)(0)f x dx A f A f A f '≈++? 中的待定系数,使其代 数精度尽量高,并指明该求积公式所具有的代数精度。 解:要使其代数精度尽可能的高,只需令()1,, , m f x x x =使积分公式对尽可能 大的正整数m 准确成立。由于有三个待定系数,可以满足三个方程,即2m =。 由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A = 解得1201/3,1/6,2/3.A A A === (3分) 此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求

积公式的最高代数精度为2次。 (2分) 4.求矩阵101010202A -?? ??=?? ??-?? 的谱半径。 解 ()()1 01 01 0132 2 I A λλλλλλλ--= -=--- 矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分) 5. 设10099,9998A ?? = ??? 计算A 的条件数()(),2,p cond A P =∞. 解:** 1 9899-98999910099-100A A A A --????=?== ? ?-?? ?? 矩阵A 的较大特征值为198.00505035,较小的特征值为-0.00505035,则 1222 ()198.00505035/0.0050503539206cond A A A -=?==(2分) 1 ()199******** cond A A A -∞∞ ∞ = ?=?= (3分) 二.计算题,请写出主要计算过程(每小题10分,共50分)

数值分析习题第四章

第四章 习题 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()? --++-≈h h h f A f A h f A dx x f 1010; (2)()()()()? --++-≈h h h f A f A h f A dx x f 221010; (3)()()()()[]3/3211 121?-++-≈x f x f f dx x f ; (4)()()()[]()()[]h f f ah h f f h dx x f h '0'2/020 +++≈? 解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得 ()()??? ???? =+=+-=++---3 1121 110132 02h A A h A A h h A A A 解得h A h A A 34 31011===-,。 所求公式至少具有2次代数精度。又由于 ()() ()() 4 4 4 3 33 3 3 33h h h h dx x h h h h dx x h h h h ? ?--+ -≠ +-≈ 故()()()()? --++-≈h h h f A f A h f A dx x f 1010具有三次代数精度。 (2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()2 1x x x f ,,=准确成立,得()()??? ???? =+=+-=++---3 1121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34 316424381011-=- =-===-, 故()()()[]()03 43 822hf h f h f h dx x f h h - +-≈ ? - 因()?-=h h dx x f 220 而 ()() []03 83 3 =+-h h h 又[ ]4 45 5 6224 3 83 165 2h h h h h dx x h h += ≠= ? -

相关主题