搜档网
当前位置:搜档网 › 风机电气控制系统

风机电气控制系统

风机电气控制系统
风机电气控制系统

风机电气控制系统新誉风电公司

目录

1.电气控制系统概述(可参考控制系统使用说明书)

2.风机发电控制方法

3.风机监视控制

4.接线原理图

5.机舱柜和塔筒柜

6.安全系统的概念

7.风机故障(故障等级、引起的停机种类、故障清除的种类)8.风机的自耗功率

9.风机的操作

1.电气控制系统概述

电气控制系统包括如下内容(其中塔筒柜和机舱柜一起构成风机主控系统):

塔筒柜、机舱柜、变桨控制系统、变流器、发电机的控制和监视部分、齿轮箱的电气部分、液压站和高速轴刹车的电气部分、偏航电气部分、风机的传感器部分。

塔筒柜部分包括控制器PLC(带中央处理器模块)、控制开关、电网检测、UPS 电源、HMI触摸屏(人机界面)、变流器控制接口。

机舱柜部分包括控制器PLC的远程输入输出模块(不带中央处理器)、控制开关、保护电路、与发电机控制和监视的接口电路、与齿轮箱电气部分的接口电路、液压站和高速轴刹车电气接口电路、偏航控制电路、风机传感器接口、与变桨系统的接口电路。

变桨系统包括变桨控制柜和伺服执行系统,变桨系统作为主控制系统的执行机构,其任务是根据风机主控制器的指令完成执行变桨操作,以及在非安全的情况下(如与风机主控失去通讯,电网故障,安全系统故障等)完成快速收桨动作。变桨系统本身是一套伺服系统。整个系统包括伺服驱动器(3套独立的)、电机、备用电池柜(三套独立的)及其他部件如限位开关、传感器、配电柜等。

发电机和变流器是实现机械能往电能转换的机构,控制系统通过控制发电机的转矩和转速来控制风机发电功率。

齿轮箱、液压站和高速轴刹车的电气接口是用来检测这些部件的状态并控制这些部件的运行。

偏航电气部分是用来控制系统的偏航动作的。

风机的传感器是用来检测风速、风向、风机振动、环境温度、风机的扭缆状态、风轮的锁定状态等。

机舱柜和塔筒柜的功能描述见操作说明书

2.风机发电控制方法

在低风速,转子的速度在定义的范围内是受控制的,这是通过改变发电机的力矩命令,这样的控制能够使风机最大化的捕获风能。在中风速,达到额定转速时,转矩能动态的调节转子速度来达到额定值。在很低的风速下,使用一个类似的控制形式来调节速度到最小的运行值。在高风速时,转矩要求达到额定值,要靠变桨控制来调节风轮转子的速度。力矩轻微变化,速度围绕设定点反比变化,来保持额定功率。

图2.1:运行曲线

图2.1显示了风机的转矩-速度运行的曲线。在1100到1810rpm 之间的曲线是个二次曲线,通过设定发电机的力矩命令(Qd )与测量的发电机的转速(ωg )的平方成比例,能够获得最佳叶尖速比:

2

g

d K Q ωλ=

式中

()3

352/G Cp R K λλπρλ=

ρ=空气密度 R = 叶轮半径 λ=期望的叶尖速比

()λCp =此叶尖速比时的功率系数

G=齿轮箱速比

因为风轮转子有个限定的惯量范围,既然风轮转子不能变速变得足够快以至于能跟上风速的变化,那么就不可能时刻维持在最高点Cp处。然而,如果风轮不是特别重以及Cp-λ曲线没有尖峰,上面描述的策略能使风机工作的相当好。

在图2.2中呈现了稳定状态下的电功率,转子速度和变桨角度的轨道曲线。

图2.2 :稳定状态下的电功率,转子速度和变桨角度

3.风机监视控制

监督控制算法包括风机正常启动和关闭的过程,也包括过速或者过载触发,以及变桨系统或偏航子系统故障的检测逻辑。我们假设电网掉电、发电机故障和变流器系统的故障都直接传给风机控制器,控制器将按照电网故障来执行停机操作。

3.1 停机过程

下表列出了七种不同的发电机停机过程。前五种由发电机控制器执行,后两种由安全系统执行。

表3.1 发电机停机程序

我们注意到,正常停机程序使用功率变桨-速度和转矩-速度控制环来控制停机,其他地方的停机过程都是开环的。

变桨系统必须在快速变桨时变桨率能够达到8o/s。

正常变桨率设置在4o/s。需要注意的是,我们经常使用正常变桨率,而不是快速变桨率,这样能够减少负面极端空转负载。

在变桨运行下的变桨速度实际上是由变桨系统的能力和变桨动作的实际阻力(受控于变桨轴承的和变桨电机转动惯量)决定的。目前蓄电池收桨的速度为12o/s。

3.2 速度范围和触发等级

根据资料,在发电控制设计的模拟说明了在IEC61400-1的第二版本设计的风机的湍流等级,发电机控制器能保持瞬时发电机速度低于稳定状态最大值的105%,高于稳定状态最小速度值的98%。研究目的是选择下面的速度范围和触发等级。

表3.2 速度范围和出错等级

软件过速触发导致快速关闭程序,安全系统过速差错导致安全系统关闭程序。

3.3 过功率触发等级

运行在IEC61400-1,版本2规定的设计湍流时,最大瞬时功率为1650kW。过功率等级设置如下表。

表3.3 功率差错等级

软件过功率触发会导致快速关闭程序。安全系统过功率会导致安全系统关闭程序。

3.4 电网掉电和电气故障

电网掉电、任何发电机或功率转换系统的故障都会导致电网掉电保护关闭程序。

3.5 偏航控制算法和故障的触发

发电机应装配有两个风向标和两个机舱方向传感器。

偏航控制算法在发电运行中,会监视10分钟内的平均偏航错误,如果超过8o,就会命令偏航系统以0.546o/s的速率运动15秒(让机舱回转8o)。

如果发电机正在运行,3秒内的偏航错误超过45o,发电机将进入正常关闭程序。

在完成偏航调整的任何5秒后测量的偏航速率大于0.0066o/s时,也会报警。这表明偏航出现了过速故障或偏航电机在没有接到启动命令时启动了。

当偏航电机完成调整完10秒后,机舱位置被储存起来。假设机舱转在任何位置直到需要进行进一步调整,当机舱转到与刚才存储的位置相差大于5度的位置时报警。这表明偏航系统的缓慢运动被探测到了。

上面的报警保证了偏航失控故障在5秒内被读取到,偏航超过规定值5度就可以被检测到。

偏航系统的故障会导致启动正常停机程序。

4.接线原理图

接线图的讲解

5.机舱柜和塔筒柜

原理图的讲解

6.安全系统的概念

安全系统是用来保证风机在故障的情况下风机仍然能够保持在安全的状态。安全系统的任务是保证风机的行为即便是在风机故障的情况下也符合安全概念。是独立于控制系统。

安全系统的等级比控制系统高,安全系统在与安全相关的极限值被超过或者是控制系统不能保证风机在安全范围内运行时起作用。其目的是保证风机处于安全状态。

安全系统一旦激活,安全系统将立刻执行它的任务并使风机进入安全状态。总的来说,它将启动所有的制动系统来使风轮减速。安全系统被触发后,必须要手动复位才能再次启动风机。

6.1 安全系统动作

6.1.1刹车系统

叶片变桨系统

机械/液压刹车系统

6.1.2发电机和电气系统

安全系统一旦激活,发电机和变流器将立即脱网。

6.1.3偏航系统

偏航将立刻被禁止,并且立刻实施偏航刹车。

6.1.4风机控制器

风机控制器并不直接和安全系统停机有关,它将记录这个事件。

6.2 安全系统传感器

?过速

?振动

?扭缆

?控制器watchdog

?急停按钮

7.风机报警(报警等级、引起的停机种类、报警清除的种类)

7.1报警等级

7.2报警的清除

有MR手动和AT自动两种。

7.3报警显示

触摸屏显示和SCADA显示。

7.4报警

alarm对照表

8.风机的自耗功率

第 11 页共 16 页

第 12 页共 16 页

第 13 页共 16 页

9.风机的操作:

1)风机的启动方法

调试完成后的风机,把钥匙切换到run,确保风机的紧急停止按钮(变流器上有一个,塔筒柜面板上一个,机舱柜面板上一个,机舱里面还有一个移动式的)处于非激活状态(非按下的状态),确认风机的安全链处于正常的闭合状态(从触摸屏的报警页面中可以看出安全链的状态,从塔筒柜的继电器10k1的指示灯可以看出安全链是否闭合,如果指示灯亮表示安全链是闭合的),并且检查触摸屏的报警页面,如果没有停机级别(N=normal shutdown, E=emergency shutdown, P=pitch battery shutdown, G=gridloss shutdown, F=fast shutdown)及静止启动级别(I=inhibit start)的报警,风机将自动的运行,如果平均风速大于风机的切入风速3米/秒(而且偏航误差在30度之内),风机将启动,如果风速持续在3米/秒以上,风机将转速将加速并自动的并网进入发电运行状态。

2)风机的停机的操作

在风机启动后(不管是在启动过程中,还是在并网发电的过程中),如果想让风机停止运行,则将钥匙切换到off,则风机将执行正常停机程序。如果将钥匙切换到manual位置,则风机将执行快速停机程序。

3)风机控制柜上面元器件的作用及操作方法

指示灯ups power ok,塔筒控制柜ups正常工作指示,亮代表正常工作,不亮代表有ups故障。

指示灯run,进入并网发电状态指示,亮代表已经进入并网发电状态,其他情况下不亮。

指示灯malfunction,代表风机有停机等级的报警,报警并不代表有故障,例如偏航误差大(不属于故障)也会报警。

按钮reset safety loop,复位安全链按钮,安全链断开后,如果安全链回路上的设备都恢复正常,安全链不会自动的闭合,必须按此“复位安全链”按钮

第 14 页共 16 页

转换开关 run – off – manual,run代表自动运行位,off代表关闭风机,manual代表风机处于手动位。调试完成后,要想运行风机,必须将转换开关切换到run位。Manual位时可以手动的对风机的偏航和变桨进行手动的调节和试验,出于安全方面的考虑,手动变桨的时候,在同一时刻只允许一个桨叶偏离顺桨位置。

按钮emergency stop,紧急停机按钮,按下此停机按钮(除非出现紧急情况,否则在风机运行过程中请勿按此按钮),风机的安全链将断开,风机将进入紧急停机程序,变桨系统将执行蓄电池收桨动作,在风机运转过程中紧急停机时,风机的载荷会很大。

机舱柜转换开关Hub light off – on,轮毂照明灯开关,切换到on代表打开轮毂照明灯,off位代表关闭轮毂照明灯。

塔筒柜1F5 1F6,风机照明开关,1F5与1F6组合成带漏电功能的保护开关。

塔筒柜6Q1,爬梯助力器的供电开关

4)风机维修和维护时注意点

在人员对机组进行维护和维修的时候,如果有停机的必要(例如人员要进入机舱或轮毂),首先要将塔筒柜的转换开关切换到off位置,让风机停止运行。如果人员要进入轮毂工作,还必须锁定风轮(在风机停止的情况下,用风轮锁定销锁定),风轮锁定后再施加高速轴液压刹车(施加液压刹车的方法:按下机舱柜或塔筒柜上面的紧急停机按钮)。

5)高速轴液压刹车的使用方法(施加刹车及松开刹车的方法)

施加刹车,按下机舱柜或塔筒柜的紧急按钮即可。

松开刹车,松开机舱柜和塔筒柜的紧急按钮,然后再复位安全链,在安全链闭合的同时刹车将自动松开。

维护和维修过程中如果使用了高速轴液压刹车,风机将出现brake applied报警(禁止启动级别),这个报警一旦出现,必须人为的确认及手动复位来清楚这个报警,那么在维护人员在离开和运行风机之前必须手动复位将这个报警消除掉。清除方法:使用触摸屏的Alarm页面(报警页面)的reset按钮。

第 15 页共 16 页

6)风机报警记录的读取,触摸屏界面的讲解。

附件:

1)风机控制系统电气系统手册(E:\1.5 MW Wind turbine\production document\手册),包括控制系统、变流器、HMI、Scada,变桨的请见调试\附件\encoder calibration

2)风机现场调试大纲

3)故障对照表

第 16 页共 16 页

风机控制柜说明书

防排烟风机控制箱操作说明书 一、产品功能 本设备为防排烟风机控制设备,具有消防联动开关信号启动、消防联动DC24V信号启动、防火阀闭锁启停功能、过流声光报警、电源电压过压、欠压、错相、缺相报警等功能。 二、防排烟风机控制箱通电前的检查 1、通电前请检查电源进线、电源出线是否正确连接。 2、检查所有端子或元器件是否有松动现象,如有松动现象,请重新拧紧或重新插好,如 继电器等插拔式元件。 3、仔细核对外接线的端子号,查看电源回路是否有短路和接错的现象。 三、防排烟风机控制箱操作文字说明 1、带双电源的防排烟风机控制箱(以下简称控制箱),确认两路进线是否正确可靠接入,接着实验双电源是否能够自动转换,接入相序是否有错相报警,如有报警请调换进线接线或调换相序继电器XXJ上的采样线L1,L2,L3任意2根线既可; 2、闭合断路器QF1,控制箱上电,门板面板上绿色指示灯亮。 3、在启动前,检查防火阀接入处是否接入防护阀信号,若没有防火阀信号请您短接端子排 上111和113;检查风机负载线是否正确接入。 4、手自动转换开关置于手动位置,操作启动按钮,查看合闸指示灯是否灯亮;操作停止按 钮,查看合闸指示灯是否灯灭,同时观看风机运转情况。 5、手自动转换开关置于自动位置,当发生消防命令时,应启动风机,合闸指示灯亮,消防 联动报警灯亮及报警,这是正常现象。消防联动信号若是无源短接信号请接到101和125上,若是DC24V信号请接到端子的“+”和“-”上; 6、运行过程中若出现过流报警,请您调节电动机保护器至合适位置;过流报警可操作“消 音”按钮消除报警声,黄色指示灯亮。 四、故障诊断 五、控制箱端子接线说明 1、防火阀闭锁点为无源闭点信号1JX1,2;线号为“111”“113”

风机控制系统课件

三期风机控制系统概述 何为风机控制系统:风机所有的监视和控制功能都通过控制系统来实现,它们通过各种连接到控制模块的传感器来监视、控制和保护,从而进行对风力机组进行控制(风机的远程操作、自动控制)极其以及运行数据通过远程通讯模块或因特网的PC机进行历史数据的调用(日分析)。 一、控制系统的基本功能: 并网运行的FD型风力发电机组的控制系统具备以下功能: (1)根据风速信号自动进入启动状态或从电网切出。 (2)根据功率及风速大小自动进行转速和功率控制。 (3)根据风向信号自动偏航对风。 (4)发电机超速或转轴超速,能紧急停机。 (5)当电网故障,发电机脱网时,能确保机组安全停机。 (6)电缆扭曲到一定值后,能自动解缆。 (7)当机组运行过程中,能对电网、风况和机组的运行状况进行检测和记录,对出现的异常

情况能够自行判断并采取相应的保护措施,并能够根据记录的数据,生成各种图表,以反映风力发电机组的各项性能。 (8)对在风电场中运行的风力发电机组还应具备远程通信的功能。 控制系统的组成:主要由硬件(躯干)、软件(大脑)、光纤(运输管道)。 CAN协议:控制器局域网CAN( Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络(咱们风机就是基于这种网络,例如报故障PLC CAN节点不能运行)。 终端电阻:保证驱动能力;长距离传输线时防止信号反射(通讯干扰时除了考虑屏蔽线,还可以考虑这)。 FastBus 基于光缆Bachmann 主PLC 与远地I/O 特殊快速通讯总线

光纤(运输管道): 风机到站内通讯光缆连接图: 此连接图属于风机旧号,对于每一台风机内都有一个转换机或者两个,光纤架空线在35KV

风机电气控制系统word精品文档15页

风机电气控制系统新誉风电公司

目录 1.电气控制系统概述(可参考控制系统使用说明书) 2.风机发电控制方法 3.风机监视控制 4.接线原理图 5.机舱柜和塔筒柜 6.安全系统的概念 7.风机故障(故障等级、引起的停机种类、故障清除的种类)8.风机的自耗功率 9.风机的操作

1.电气控制系统概述 电气控制系统包括如下内容(其中塔筒柜和机舱柜一起构成风机主控系统): 塔筒柜、机舱柜、变桨控制系统、变流器、发电机的控制和监视部分、齿轮箱的电气部分、液压站和高速轴刹车的电气部分、偏航电气部分、风机的传感器部分。 塔筒柜部分包括控制器PLC(带中央处理器模块)、控制开关、电网检测、UPS 电源、HMI触摸屏(人机界面)、变流器控制接口。 机舱柜部分包括控制器PLC的远程输入输出模块(不带中央处理器)、控制开关、保护电路、与发电机控制和监视的接口电路、与齿轮箱电气部分的接口电路、液压站和高速轴刹车电气接口电路、偏航控制电路、风机传感器接口、与变桨系统的接口电路。 变桨系统包括变桨控制柜和伺服执行系统,变桨系统作为主控制系统的执行机构,其任务是根据风机主控制器的指令完成执行变桨操作,以及在非安全的情况下(如与风机主控失去通讯,电网故障,安全系统故障等)完成快速收桨动作。变桨系统本身是一套伺服系统。整个系统包括伺服驱动器(3套独立的)、电机、备用电池柜(三套独立的)及其他部件如限位开关、传感器、配电柜等。 发电机和变流器是实现机械能往电能转换的机构,控制系统通过控制发电机的转矩和转速来控制风机发电功率。 齿轮箱、液压站和高速轴刹车的电气接口是用来检测这些部件的状态并控制这些部件的运行。 偏航电气部分是用来控制系统的偏航动作的。 风机的传感器是用来检测风速、风向、风机振动、环境温度、风机的扭缆状态、风轮的锁定状态等。 机舱柜和塔筒柜的功能描述见操作说明书

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

智能风机控制器

第一章绪论 1.1课题背景 目前对于电器产品中冷却风扇的要求越来越高,电机作为冷却风扇的驱动源既要高效节能,又要静音。传统上广泛使用的是交流电机(如:罩极式电机、电容式启动电机等),虽然其结构简单,成本低。但其所固有的体积大,效率低等缺点,已越来越不适应家电产品小型化和高效化的要求。因此,效率高、体积小的直流无刷电机在冷却风扇系统中得到了应用。但是,目前在使用无刷风扇电机作为冷却风扇驱动源的系统中,电动机的转速是恒定的,而不是根据热负荷的大小相应的调整电机转速,因而造成了电能的无用消耗[1]。投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺即可满足冷却要求。那么直流无刷风扇是一个不错的选择目前已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小,像模拟/数字转换器(ADC)、脉冲宽度调制(PWM)等。单片机在检测和控制系统中得到了广泛的应用。温度检测、电机转速控制等方面,都有单片机的应用。温度控制集成电路的迅速发展,也使温度检测技术越来越智能化了,这促使了冷却散热电子产品技术有了长足的发展。 1.2 研究的目的和意义 随着电子技术的飞速发展,当今的电子设备如不考虑热设计,通常会产生过热现象。强迫空气冷却作为比较经济方便的冷却手段在电子设备热设计中得到了普遍应用。而运用强迫空气冷却电子设备的首要任务是选择合适的风扇来提供足够的冷却空气。大多数风扇的使用寿命都在几千小时左右,多数功率设备都存在负荷变化的特点,在停止工作或负荷较轻时可能并不需要风扇,而仅靠散热片的被动散热就能满足散热需求;是否满足散热需求的标准就是温度,在工作温度高于一定程度时,风机开始工作,提供主动散

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

排烟风机电气控制原理图的优化教案资料

排烟风机电气控制原理图的优化 上海铠绎建筑设计有限公司的研究人员刘海波,在2015年第5期《电气技术》杂志上撰文,排烟风机入口处总管上设置的280℃排烟防火阀在关闭后应直接联动控制风机停止,但图集10D303-2《常用风机控制电路图》中此部分控制原理图,在应用于室外安装的风机时可能存在一定的不安全因素,本文对此不安全因素进行分析,并对《图集》此部分控制原理图进行优化设计。《建筑设计防火规范》 GB50016-2006 第9.4.8条第四款规定:“在排烟风机入口处的总管上应设置当烟气温度超过280℃时能自行关闭的排烟防火阀,该阀应与排烟风机连锁,当该阀关闭时,排烟风机应能停止运转”。《高层建筑设计防火规范》GB50045-95(2005年版)第8.4.7条也有类似的规定。为了满足规范要求,电气专业在设计排烟风机控制箱系统图时需要设计这个连锁 控制。然而大多数设计人员设计控制电路原理图时均会引用图集10D303-2《常用风机控制电路图》(以下简称《图集》),但这种不加修改的引用《图集》做法,可能会给设计人员带来一定的麻烦。笔者有次在现场处理风机运行问题时,手无意碰触到了风阀,竟然发生了电击事故(还好不严重),经过检查发现防火阀接线端子被雨水淋湿,整个防火阀带电。这台风机的控制原理图正是按《图集》照搬而来的。经

过分析发现问题出在两个方面:①安装于室外的防火阀信号接线端子缺少必要的防水及防护措施;②风机控制箱“风阀连锁”信号线缆引出了AC220V电源。问题①为暖通专业产品选择问题,问题②为电气设计安全问题。笔者认真研读《图集》,发现此部分控制原理图,在应用于室外安装的风机时存在一定的电气安全隐患。为减少安全隐患,避免触电事故,本文就问题②对《图集》此部分控制原理图提出自己的修改优化意见,并望能起到抛砖引玉的作用。1 问题分析及优化1.1消防兼平时两用双速风机的控制原理图图1为《图集》P28页中消防兼平时两用双速风机的控制原理图(图中省略了主要设备及材料表、接线端子的表示,下同),图中KH为280℃防火阀现场联锁常闭触点(或称微动开关),由接线端子X1:5、X1:6引出两根线缆接至现场280℃防火阀常闭触点接线桩上。大家是否注意到,引出的线缆带有AC220V 电源,这样阀门接线桩也就带有AC220V电源,并且不管风机是否运行还是停止的状态均带电。试想想,如果本阀长期位于室外,而又没有必要的防护措施,就会存在安全隐患,甚至发生严重的触电伤亡事故。众所周知,消防风机经常露天放置在屋面上,并且少有防护措施,其入口总管处的280℃防火阀也少有防水及防触电措施。可想而知没有必要的防护措施,下雨接线端子进水后就会造成整个金属阀门带电(AC220V),这时只要有人员碰触到阀门就会带来触电危

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

关于锅炉房补风风机电气控制的建议73

关于锅炉房补风风机电气控制的建议 摘要:通过对燃气锅炉工况的学习和分析,对锅炉房补风风机及事故风机的控 制方式进行改进和优化,并对平时兼事故两用风机供电电源要求提出见解。 关键词:锅炉房;补风风机;事故风机;运行控制方式;供电电源 燃气锅炉在民用建筑中被广泛采用,尤其在大型商业和酒店项目中,作为供暖、空调、生活热水、洗衣房蒸汽等热负荷的主要热源,燃气蒸汽锅炉有着较高 的使用频率。如何使锅蒸汽炉发挥更高效率,电气工程师怎样配合才能让锅炉更 加节能,就要从了解锅炉房工况原理开始。 1 燃气蒸汽锅炉设备联合工况分析 燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料作燃料,在炉内燃 烧放出来的热量,加热炉内的水,并使其汽化成蒸汽的热能转换设备。水在炉 (锅筒)中不断被炉里气体燃料燃烧释放出来的能量加热温度升高并产生带压蒸汽。由于水的沸点随压力的升高而升高,炉是密封的,水蒸气在里面膨胀受限而 产生压力从而形成热动力。 锅炉燃烧系统由燃气燃油燃烧器、锅炉本体、节能器、烟囱等部分组成。根 据锅炉额定热功率的大小,燃烧器火力调节方式通常分为两类,第一类为分档调 节方式,此模式下燃烧器火力分为大火和小火,通常应用在热功率较小的锅炉上。第二类为比例调节方式,此模式的燃烧器火力可以分为十档甚至更多档,例如按10%,20%……90%,100%逐级加大,反之锅炉卸载时逐级减小,通常应用在热功 率较大的锅炉上。 燃气锅炉在运行过程中,必须连续不断地将空气送人炉膛,并将燃烧产物排 出炉膛和烟道。这种燃烧空气风量补充过程不仅是维持燃烧的基本条件,同时也 对传热有重要影响,更是锅炉正常工作必不可少的环节之一。锅炉燃烧器不同火 力所需的燃烧空气风量亦不同。风量补充过多或过少均会影响锅炉系统的安全、 经济运行。因此做好燃气锅炉房的燃烧空气风量补充系统设计,对锅炉的运行起 着关键性作用。暖通工程师通常会设置机械补风风机,来满足锅炉燃烧所需的空 气量。补风风机设计工况往往考虑的是100%负荷状态下的情况,机械补风风机 按100%负荷下的燃烧空气量设计选型,而锅炉运行工况绝大多数情况下是处在75%左右的负荷状态,即该部分负荷状态的运行时间占比最大。当部分负荷运行时,需要机械补风风机提供的燃烧空气风量也需对应减少。若此时仍继续补入100%负荷状态的燃烧空气量,将会造成风量的浪费,等效为电量的浪费。同时, 风量过大造成锅炉间正压加大,燃烧器运行工况偏离100%负荷设计和调试下的 工况,出现燃烧空气量与燃气量的混合比例变化,炉膛内压力增大,燃烧不经济 不安全。 锅炉房的总送风量分为平时兼事故补风风量,以及锅炉燃烧补风量。其中, 平时兼事故排风和补风风量根据规范要求,基本为定值。而锅炉燃烧补风量及烟 气量均与锅炉的实时供热量相关。当锅炉房平时兼事故通风系统与锅炉房内实时 最大负荷对应的锅炉燃烧补风量之和的大小,不能满足消除机房余热要求时,就 需要加大平时兼事故通风系统的风量。 因此,如能提供一种能使机械补风风机风量随负荷变化的控制装置,将节约 风机和燃耗器运行电量,提高经济运行效率,改善锅炉运行环境,提高锅炉房运 行安全性。电气专业以此为切入点,对燃烧空气风量补充系统进行优化控制设计。 2 锅炉房补风风机控制原理分析

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.sodocs.net/doc/134759422.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

步进电机控制电路

北京工业大学电子课程设计报告 (数电部分) 题目:步进电机

目录 一、设计题目------------------------------------------------------------------------------------------------3 二、设计任务和设计要求 1.设计题目------------------------------------------------------------------------------------------------3 2.设计技术指标及设计要求----------------------------------------------------------------------------3 三、电路设计------------------------------------------------------------------------------------------------4 1.脉冲发生电路-------------------------------------------------------------------------------------------4 2.环形脉冲分配电路-------------------------------------------------------------------------------------5 3.控制电路-------------------------------------------------------------------------------------------------6 4.驱动电路-----------------------------------------------------------------------------------------------10 5.步进电机-----------------------------------------------------------------------------------------------11 四、电路的组装和调试------------------------------------------------------------------------------------12 1.电路的组装----------------------------------------------------------------------------------------------12 2.电路的调试----------------------------------------------------------------------------------------------13 五、收获和体会---------------------------------------------------------------------------------------------14 六、附录------------------------------------------------------------------------------------------------------15 1.列表-------------------------------------------------------------------------------------------------------15 2.参考资料-------------------------------------------------------------------------------------------------15 3.部分芯片管脚图----------------------------------------------------------------------------------------16

风电主控系统

风电主控系统 风机的控制系统是风机的重要组成部分,它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系统(变频器)几部分组成。 各部分的主要功能如下: 监控系统(SCADA):监控系统实现对全风场风机状况的监视与启、停操作,它包括大型监控软件及完善的通讯网络。 主控系统:主控系统是风机控制系统的主体,它实现自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能。它对外的三个主要接口系统就是监控系统、变桨控制系统以及变频系统(变频器),它与监控系统接口完成风机实时数据及统计数据的交换,与变桨控制系统接口完成对叶片的控制,实现最大风能捕获以及恒速运行,与变频系统(变频器)接口实现对有功功率以及无功功率的自动调节。 变桨控制系统:与主控系统配合,通过对叶片节距角的控制,实现最大风能捕获以及恒速运行,提高了风力发电机组的运行灵活性。目前来看,变桨控制系统的叶片驱动有液压和电气两种方式,电气驱动方式中又有采用交流电机和直流电机两种不同方案。究竟采用何种方式主要取决于制造厂家多年来形成的技术路线及传统。 变频系统(变频)器:与主控制系统接口,和发电机、电网连接,直接承担着保证供电品质、提高功率因素,满足电网兼容性标准等重要作用。 从我国目前的情况来看,风机控制系统的上述各个组成部分的自主配套规模还相当不如人意,到目前为止对国外品牌的依赖仍然较大,仍是风电设备制造业中最薄弱的环节。而风机其它部件,包括叶片、齿轮箱、发电机、轴承等核心部件已基本实现国产化配套(尽管质量水平及运行状况还不能令人满意),之所以如此,原因主要有: (1)我国在这一技术领域的起步较晚,尤其是对兆瓦级以上大功率机组变速恒频控制技术的研究,更是最近几年的事情,这比风机技术先进国家要落后二十年时间。前已述及,我国风电制造产业是从2005年开始的最近四年才得到快速发展的,国内主要风机制造厂家为了快速抢占市场,都致力于扩大生产规模,无力对控制系统这样的技术含量较高的产品进行自主开发,因此多直接从MITA、Windtec等国外公司采购产品或引进技术。

常用电动机控制电路原理图全解

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

风机变频控制系统

变频风机恒温系统 一、关于变频风机恒温系统原理 1)系统原理 变频风机恒温系统是指在环境温度变化的情况下,总保持风 管网温度基本恒定,这样,既可满足用户对温度的需求,又 不使电动机全速转动,造成电能的浪费。根据给定温度信号 和反馈温度信号,控制变频器调节马达转速,从而达到控制 系统温度的目的。变频风机恒温系统如图所示: 2)温度控制信号算法处理 在该控制系统中,温度信号的检测采用热电偶对(TC)E 型,热电偶对采集到的温度变送信号经温度控制器PID运算后输出为4—20mA电流信号,对应变频器的运行频率为0—50HZ;通常情况下风管网允许正常温度为某 一值P1,而正常工作条件下管网允许最高温度为某一值P1+ P X,(P X为温控

器预设值)两者对应的模拟电流为4mA,20mA(对应变频器的运行频率为0—50HZ)则有如下函数关系: P= P1+P X*(I p—4)/(20-4) 在上式中,P为某一时刻时管网温度。 类似地,变频器控制信号电流函数关系为 If= [ (20—4) *(P—P1)]/ P X+4 该系统为一单回路PID系统,由于系统控制要求不十分苛刻,所以采用PI 控制即可实现目标。

二、系统主要配置: 1 温度控制器DTA4848C、 2 台达VFD-B变频器、 3 热电偶对(TC)E 型、 4 断路器BM60-SN 3P 5 接触器S-P12 AC220V 三、系统功能 系统控制面板布局及功能 面板布局如下图所示:

1、“自动/手动”开关:切换自动与手动两种状态。将开关转向“自动”,表明 系统工作在自动状态;将开关转向“手动”,表明系统工作在手动状态。 (注:只有自动控制信号引入时自控才有效) 2、“启动”与“停止”按钮:用于控制风机的启动与停止。按“启动”按钮启 动风机,此时启动指示灯亮,按“停止”按钮,停止风机,此时停止指示灯亮。(注:“启动”与“停止”按钮只在自动/手动按钮打到手动时才起 作用)

风机系统培训总结-李勇

风机系统培训总结 入公司近3年的时间,不断在接受老员工的各方面的培训,一直在努力学习各种专业知识,提高工作能力,强化安全意识,在每次培训中,我学习到了很多知识,这一次非常有幸到河北省保定市中国国电联合动力风能学院参加风机系统培训,到了工厂,技术人员技术员对风机的结构和特点,风机的维护保养内容,注意事项,故障类型及处理方法各方面进行了详细的分解和说明。以及带我们参观了风机的整个组装流程,下面对具体内容进行总结。 一、1.5MW恒频、变桨、双馈型风力发电机技术 变速恒频发电技术主要优点在于风轮以变速运行。可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。 二、传动链系统 转动链系统的主要组成:主轴、齿轮箱、联轴器、发电机

主轴是把来自风轮轮毂的旋转机械能传递给齿轮箱或直接传递给发电机。此外主轴的另一个目的是把载荷传到机舱的固定系统上。除了承受来自风轮的启动载荷,主轴还要承受重力载荷以及轴承和齿轮箱的反作用力。 齿轮箱是风机中非常的重要部件,其主要作用是将主轴的低转速高扭矩转化成高转速低扭矩然后通过联轴器传递给发电机。齿轮箱除传动部件外还包括润滑系统、冷却系统、加热系统和检测系统等。 联轴器将齿轮箱输出轴的转矩传递到发电机转子上并且补偿齿轮箱和发电机轴的对中偏差。 三、偏航系统 偏航系统主要由扭揽开关、偏航系统信号采集装置、偏航电机、偏航软启动器等组成。

风机风门控制系统最佳操作法(工程师培训)

7000风机风门伺服控制系统 最佳操作法 一、概述: 风机在首钢钢铁生产中占有重要地位。风门控制系统在整个风机控制系统中又是重中之重,如果控制不好,可能导致风机系统给高炉送风不稳定、不正常停机等,如发生喘振、风门控制失灵,将造成机毁人亡的重大事故。近年来我们对6#、7#风机风门控制系统进行了全面技术改造,运行两年来,系统稳定可靠,保证了风机生产顺行。 二、系统硬件配置及原理图: 1、硬件配置: BGC D-6121B伺服控制器一台 DI511/01 位置传感器一台 CST--113 位置变送器一台 MG 76-031 伺服阀一台 专用套管一只及配套阀座及缸体一套 2、系统原理图如图1:

BGC D-6121B采用直行程位置传感器DI511/01测量风门实际开度并将电流信号4-20mA送入CST-113位置变送器中,经电流转换成对应的4-20mA送至BGC D-6121B伺服控制器中,作为反馈信号,伺服控制器输出0-100mA驱动电液伺服阀MG 76-031,在伺服阀的控制下,动力油作用于伺服油缸,带动阀门达到预期阀位,从而达到轴流压缩风机风门的自动调节。 三、操作及调试方法: 1、DI511 由红(A)、蓝(B)、白(C)、绿(E)、屏蔽线(D)组成 红、蓝之间加24VDC供电 白、蓝之间输出4-20mA 绿、蓝之间可用于温度监视 连接用五线制航空插头,电缆选用10米EH144/03专用电缆,测量管选用15/12/210 DI511信号输出如图2:

图2. DI511输出信号 2、CST—113位置变送器主板有两列微型开关,在调试时,应根据阀位的开关要求置于不同位置,如选择不好,将影响整个调试工作。以6#风机为例: 第二列开关1—8置于OFF ,9—10置于ON,实现开阀4mA,关阀20mA。 第一列开关1—2置于ON,3—10置于OFF。执行一个电流输出。选择应用的配置如下: (1)测定输出灵敏度S CC mA/mm 输出灵敏度是根据传感器所测量的距离和所要求的输出电流量程来决定,灵敏度是通过所取的最大所需电流(例如17mA)和由传感器所测量的距离来计算,距离大小可用来划分电流值(例如130mm)。 本系统输出的灵敏度S CC = 17 / 130 = 0.13 (2)测定输入灵敏度S I/P mA/mm,此项指标由所选位置传感器的型号不同而不同。本系统选用DI511,所以S I/P选用0.1mA/mm。(3)测定速率K T = S CC / S I/P,速率K T是一个增益,为了得到所要求的输出信号,必须采用输入信号和增益系数K T。由输出灵敏度除以输入灵敏度: K T =S CC / S I/P = 0.13mA/mm / 0.1mA/mm = 1.3 (4)微型开关的配置: 一旦增益知道后,微型开关的配置根据下图表在电路板中进行整定。

相关主题