搜档网
当前位置:搜档网 › 设计基本加速度和水平地震影响系数的关系

设计基本加速度和水平地震影响系数的关系

设计基本加速度和水平地震影响系数的关系
设计基本加速度和水平地震影响系数的关系

今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“、。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。

一、关于设计基本地震加速度

关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下:

可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。

此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半()与8度半()的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。

写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。

设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值

二、关于地震影响系数

地震影响系数的由来:

不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG

以上公式的α即为地震影响系数,其实就是加速度除以了一个小 g(重力加速度);G为质点的重量。

对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿第二定律——在加速度和质量一定的情况下,物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同。牛顿第二运动定律可以用比例式来表示,即或;也可以用等式来表示,即F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s2为单位时,F=ma成立。)

最后总结一句话:地震影响系数来源于牛二。

知道了地震影响系数的由来,下面顺藤摸瓜,就要总结一下α(地震影响系数)的定义公式。

α(T)= K ×β(T),

公式里有三个系数

第一个是建筑结构的地震影响系数α

第二个是地面的地震系数κ

第三个是地震时结构加速度对于地面加速度的放大系数β

建筑结构的地震影响系数α,是指多次地震作用下,不同结构自震周期T,相同ζ阻尼比的理想简化的单质点体系的结构加速度反应与重力加速度之比,是多次地震反应的包络线,是所谓标准反应谱或平均反应谱。它是地面的地震系数k 与结构物加速度的放大倍数β的乘积。

地面的地震系数κ是地震时地面峰值加速度与重力加速度之比K=a/g。

以上是地震影响系数的由来,那在实际设计中,地震影响系数是如何计算与确定的呢。

关于这个问题的理论出处在抗规中,在抗规条中有这样的表示:建筑结构的地震影响系数应根据地震烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定。其水平地震影响系数最大值应按表采用。

以上说法可以根据地震影响曲线中第一波下降段的地震影响系数的函数表达式来体现。

α=(Tg/T)rη

max

等式左边——α即为地震影响系数。

等式右边——T为结构自震周期。

Tg为场地特征周期,由设计地震分组与场地类别决定。

η

2

指的是阻尼调整系数。

α

max

为地震影响系数最大值。由地震烈度决定。

在上面的公式解释时,我把地震影响系数公式中各参数的影响因素一一列出,可以明显发现,这些影响因素与抗规条中的因素完全一致,看划线部分即可,完美的统一。

该部分规范内容截图如下:

建筑结构的地震影响系数应根据烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定。其水平地震影响系数最大值应按表采用;特征周期应根据

场地类别和设计地震分组按表采用,计算罕遇地震作用时,特征周期应增加。注:周期大于的建筑结构所采用的地震影响系数应专门研究;

三、关于地震影响系数、地震影响系数最大值、水平地震影响系数最大值和竖向地震影响系数最大值之间的关系。

以地震影响曲线中第一波下降段的地震影响系数的函数表达式为例

α=(Tg/T)rη

max

由以上公式不难看出,地震影响系数最大值α

max

是求地震影响系数的基础。

实际上地震影响系数,就是通过阻尼、结构自振周期和场地特征周期对地震影响系数最大值的衰变。而地震影响系数最大值又分两类1、水平地震影响系数最大值,查表可得;2、竖向地震影响系数最大值,没表可查,可取水平地震影响系数最大值的65%。

简单的说总结为一句话:地震影响系数分为水平地震影响系数和竖向地震影响系数,分别由相应的水平和竖向地震影响系数最大值通过一系列的因素衰变得来。通过得到的地震影响系数(水平或竖向),根据F=αG的基本原理,求得结构总水平或竖向地震作用标准值。

更简单的说就是:利用水平地震影响系数最大值α

hmax

或竖向地震影响系数最大

值α

vmax

,利用公式

α=(Tg/T)rη

max

求水平或竖向地震影响系数α,通过水平或竖向地震影响系数α,通过公式F=αG求得结构总水平或竖向地震作用标准值F。

水平地震影响系数最大值是如何取值的呢?以水平地震为例,通过《水平地震影响系数最大值表》取值。

细心点就会发现,水平地震影响系数最大值是对于多遇地震和罕遇地震两条分列的,这里体现了一个非常深刻但一般设计人员又不很注意的基本设计方法,即两阶段设计法。

四、关于抗震设计的最基本的理念

谈到两阶段设计,已经涉及到结构设计的基本指导思想了

干脆从抗震设计的基本思想和原则说起。

设防原则:小震不坏,中震可修,大震不倒

设计方法:两阶段设计

现在想想设防原则这三句话是我们当年大学考试中必考的一条。其实设防原则也称作抗震设计的三水准要求,完完全全的一个意思,总结如下表所示:

相比之下,两阶段的设计方法大学中鲜见考试,但今天来看确实是真正的设计基础理念之所在。(感慨颇多啊呵呵),啥叫两阶段设计呢,列表如下(上学上多了,现在出方案不是表格就是图纸,今天还被领导就此质问------“为啥不写成汇报?”,我当时其实想说“图纸与数据才是工程师最好的语言”,但还是忍住没说-----跟领导犟嘴是很不成熟的表现。)

两阶段设计只是理念,设计的时候到底怎样应用于实际呢,我认为下面的理解才体现对这条的理解是否到位:

第一阶段为弹性分析,包括截面设计和变形计算;

大部分建筑的第二阶段设计主要由概念设计和构造措施来保证。我上面用加粗的形式标出了各种地震的叫法,这里先要有个总结。

小震,等于多遇地震,指的是低于本地区设防烈度的地震。

大震,等于罕遇地震,指的是高于本地区设防烈度的地震。

中震,没有对应于上面的多遇罕遇的官方称谓,我自己取名为基本地震,指的是相当于本地区设防烈度的地震。

也可以从地震烈度的角度描述一下三种地震影响。

多遇(小震)烈度:建筑所在地区在设计基准期(50年)内出现频度最高的烈度。也称为常遇烈度、小震烈度。其超越概率为%,重现期为50年。

基本(中震)烈度:建筑所在地区在设计基准期(50年)内,一般场地条件下可能遭受的具有10%超越概率的地震烈度值成为该地区的基本地震烈度。

罕遇(大震)烈度:建筑所在地区在设计基准期(50年)内具有超越概率2%~3%的地震烈度。

既然为两阶段设计,而这两阶段又分别是小震和大震。就不难理解为啥水平地震影响系数会按多遇地震和罕遇地震分列两行了。

这样在第一阶段弹性设计时,通过《水平地震影响系数最大值表》的多遇地震一行取值最大水平地震影响系数。进而得到对应的水平地震影响系数,进行下一步结构计算。

在第二阶段弹塑性设计阶段,主要的工作就是,通过《水平地震影响系数最大值表》的罕遇地震一行取值最大水平地震影响系数。进而得到完整的反应谱,对已经成型的结构进行谱分析,检验其是否满足第二阶段大震不倒的设计。五、关于地震特性数据

刚毕业时老是对抗震设计琐碎的参数感到无从记忆,理不出头绪。现在我头脑要清楚许多,因为我把地震特性数据,就概括为三个参数:

①抗震设防烈度

②设计地震分组

③场地类别

抗震设防烈度决定了地震最大影响系数与设计基本地震加速度。

设计地震分组(其实就是代表距震源的远近)与场地类别又决定了场地特征周期。

这样通过这三个参数,基本上就把所有的重要的参数串到了一起,再闭上眼睛,按照这些关系想想对应的表格,心里立刻就出现了很清晰的数据脉络。

重量(G)与质量(m)的关系:G=mg (其中,g为重力加速,值为s2)

下面详细说明一下:

△质量的概念:物体所含物质的多少叫做质量.

质量的物理量符号:m;

质量的单位:质量的国际单位制:千克(kg),也称公斤(kg);

质量的特点:质量是物体本身的一种属性;质量不随物体的形状、状态、位置、温度等而改变(亦即质量的大小与物体的形状、状态、位置、温度等无关);

△重量的概念:重量是重力在日常生活中的其它称谓.地面附近的物体,由于地球的吸引而使物体受到的力,叫做重力,也叫重量.

重量的物理量符号:G;

重量的单位:重量的国际制单位(SI制):牛顿(N);

重量的特点:重量即重力,是由于地球的吸引而使物体受到的力.对给定的物体在确定的位置,物体所受的重力与它所处的运动状态、速度大小无关.物体的重量随着重力加速度的变化而有变化.

水平地震影响系数最大值计算

按《中国地震动参数区划图GB18306-2015》水平地震影响系数最大值计算 一、基本概念和公式: 1、多与地震、基本地震、罕遇地震、极罕遇地震的地震动峰值加速度的关系: αmax=K*αmax基本 αmax:多遇或罕遇或极罕遇地震的峰值加速度 αmax基本:基本地震动峰值加速度 K:比例系数,按GB18306-2015第6.2条取值 多遇地震取1/3 罕遇地震取1.9 极罕遇地震取2.9 罕遇或极罕遇地震的峰值加速度的K取值见高孟潭主编《GB18306-2015<中国地震动参数区划图>宣贯教材》第230页12.2.3节) 2、地震动峰值加速度最大值根据场地类别的调整: αmax=Fa*αmaxⅡ(GB18306-2015附录E.1) αmax:按场地类别调整后的地震动峰值加速度 αmaxⅡ:Ⅱ类场地的地震动峰值加速度 FA:场地地震动峰值加速度调整系数按GB18306-2015附录E表E.1。 3、水平地震影响系数最大值计算:

γmax=β*αmax γmax:水平地震影响系数最大值 β:动力放大系数,按GB18306-2015附录F.1取2.5 4、综上所述,综合计算公式可以写为:γmax=β* Fa*K*αmax 基本 专业文档供参考,如有帮助请下载。. 二、示例: 1、确定7度015g地区、Ⅲ类场地的多遇地水平系数最大值:1)、确定FA: 7度0.15g地区、Ⅱ类场地基本地震动峰值加速度为:αmax基本=0.15。 7度0.15g地区、Ⅱ类场地多遇地震动峰值加速度:0.15*1/3=0.05。查中国地震动参数区划图GB18306-2015附录表E.1,加速度为0.05时的Ⅲ类场地FA=1.30。 注意:按Ⅱ类场地基本地震峰值加速度0.15,查得Ⅲ类场地的FA=1.0 的用法是不正确的. 2)、则7度0.15g区、Ⅲ类场地多遇地水平系数最大值为: γmax=β* Fa*K*αmax 基本 =2.5* 1.30*(1/3)*0.15 =0.1625 2、确定8度0.2g地区、Ⅲ类场地的多遇地水平系数最大值:

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

设计地震分组

本附录仅提供我国抗震设防区各县级及县级以上城镇的中心地区建筑工程抗震设计时所采用的抗震设防烈度、设计基本地震加速度值和所属的设计地震分组。 注:本附录一般把“设计地震第一、二、三组”简称为“第一组、第二组、第三组”。 A.0.1首都和直辖市1抗震设防烈度为8度设计基本地震加速度值为0.20g:北京(除昌平门头沟外的11个市辖区),平谷,大兴,延庆,宁河,汉沽。2抗震设防烈度为7度,设计基本地震加速度值为0.15g:密云,怀柔,昌平,门头沟,天津(除汉沽、大港外的12个市辖区),蓟县,宝坻,静海。3抗震设防烈度为7度,设计基本地震加速度值为0.10g:大港,上海(除金山外的15个市辖区),南汇,奉贤4抗震设防烈度为6度,设计基本地震加速度值为0.05g:崇明,金山,重庆(14个市辖区),巫山,奉节,云阳,忠县,丰都,长寿,壁山,合川,铜梁,大足,荣昌,永川,江津,綦江,南川,黔江,石柱,巫溪*注:1首都和直辖市的全部县级及县级以上设防城镇,设计地震分组均为第一组;2上标*指该城镇的中心位于本设防区和较低设防区的分界线,下同。 A.0.2河北省 1抗震设防烈度为8度,设计基本地震加速度值为0.20g: 第一组:廊坊(2个市辖区)唐山(5个市辖区),三河,大厂,香河,丰南,丰润,怀来,涿鹿 2抗震设防烈度为7度,设计基本地震加速度值为0.15g: 第一组:邯郸(4个市辖区)邯郸县,文安,任丘,河间,大城,,涿州,高碑店,涞水,固安,永清,玉田迁,安卢,龙滦县,滦南,唐海,乐亭,宣化,蔚县,阳原,成安,磁县,临漳,大名,宁晋,下花园 3抗震设防烈度为7度设计基本地震加速度值为0.10g: 第一组:石家庄(6个市辖区),保定(3个市辖区),张家口(4个市辖区),沧州(2个市辖区),衡水邢台(2个市辖区),霸州,雄县,易县,沧县,张北,万全,怀安,兴隆,迁西,抚宁昌,黎青县,献县,广宗,平乡,鸡泽,隆尧,新河,曲周,肥乡,馆陶,广平,高邑,内丘,邢台县,赵县,武安,涉县,赤城,涞源,定兴,容城,徐水,安新,高阳,博野,蠡县,肃宁,深泽,安平,饶阳,魏县,藁城,栾城,晋州,深州,武强,辛集,冀州,任县,柏乡,巨鹿,南和,沙河,临城,泊头,永年,崇礼,南宫* 第二组:秦皇岛(海港、北戴河),清苑,遵化,安国4抗震设防烈度为6度,设计基本地震加速度值为0.05g: 第一组:正定,围场,尚义,灵寿,无极,平山,鹿泉,井陉,元氏,南皮,吴桥,景县,东光 第二组:承德(除鹰手营子外的2个市辖区),隆化,承德县,宽城,青龙,阜平,满城,顺平,唐县,望都,曲阳,定州,行唐,赞皇,黄骅,海兴孟村盐山,阜城,故城,清河,山海关,沽源,新乐,武邑,枣强,威县 第三组:丰宁,滦平,鹰手营子,平泉,临西,邱县 A.0.3山西省1抗震设防烈度为8度设计基本地震加速度值为0.20g:第一组:太原(6个市辖区),临汾,忻州,祁县,平遥,古县,代县,原平,定襄,阳曲,太谷,介休,灵石,汾西,霍州,洪洞,襄汾,晋中,浮山,永济,清徐2抗震设防烈度为7度,设计基本地震加速度 值为0.15g:第一组:大同(4个市辖区),朔州(朔城区),大同县,怀仁,浑源,广灵,应县,山阴,灵丘,繁峙,五台,古交,交城,文水,汾阳,曲沃,孝义,侯马,新

设计基本加速度和水平地震影响系数的关系

今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“、。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半()与8度半()的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。

写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小 g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿第二定律——在加速度和质量一定的情况下,物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同。牛顿第二运动定律可以用比例式来表示,即或;也可以用等式来表示,即F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s2为单位时,F=ma成立。) 最后总结一句话:地震影响系数来源于牛二。 知道了地震影响系数的由来,下面顺藤摸瓜,就要总结一下α(地震影响系数)的定义公式。 α(T)= K ×β(T), 公式里有三个系数

第五节 多自由度体系的水平地震作用

第五节 多自由度体系的水平地震作用 一、振型分解反应谱法 多质点弹性体系地震反应同单质点弹性体系一样,可以通过运动方程的建立和求解来实现。 假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性原理,将求解n 个多自由度弹性体系的地震反应分析分解成n 个独立等效的单自由度体系的最大地震反应,分别利用标准反应谱,求得结构j 振型下,质点i 的F ,再按一般力学方法,求j 振型水平地震作用产生的作用效应(弯矩、剪力、轴力和变形),最后,按一定法则将各振型的作用效应进行组合,(但应注意,这种振型间作用效应的组合,并非简单的求代数和。)便可确定多自由度体系在水平地震作用下产生的作用效应。由于各个振型在总的地震效应中的贡献总是以自振周期最长的基本振型(第一振型)为最大,高振型的贡献随振型阶数增高而迅速减小。实际上,即使体系的自由度再多,也只计算对结构反应起控制作用的前k 个振型就够了,一般需考虑的振型个数k=2—3,即取前2—3个振型的地震作用效应进行组合,就可以得到精度很高的近似值,从而大胆减少计算工作量。 1、振型的最大地震作用 第j 振型I 质点最大地震作用 i ji j j ji G X F γα= 式中: j α —— 相应于第j 振型自振周期T 的地震影响系数 j γ —— j 振型的振型参与系数 ∑∑===n i ji i n i ji i j X m X m 121γ ji X —— j 振型i 质点的水平相对位移——振型位移 i G —— 集中于i 质点的重力荷载代表值 上述方法繁琐,工作量大,计算不方便,因此工程中为了简化计算,在满足一定条件下,可采用近似的计算法,即底部剪力法。 2、振型组合 (1)SRSS (平方和开方法) ∑=2 j S S (2)CQC (完整二次项组合法) 二、底部剪力法 1、 适用条件: (1) 高度不超过40m ; (2) 以剪切变形为主(房屋高宽比小于4) (3) 质量和刚度沿高度分布比较均匀 (4) 近似于单质点体系

地震作用与结构周期之间联系思考

地震作用与结构周期之间联系思考 从地震影响系数与结构周期的关系及底部剪力法来看,结构周期越长,在结构产生的地震作用就越小;但从振型分解法可只取前面数个振型来计算地震作用及振型是按结构周期从大到小排列来看,似乎给人的感觉又是结构周期越长,在结构产生的地震作用就越大.你如何看待? 重申一下反应谱意义,反应谱是具有不同动力特性的结构对一个地震动过程的动力最大反应的结果,反应谱曲线不反映具体的结构特性,只反映地震动特性(地震动过程不同成分频率含量的相对关系),是地震动特性与结构动力反应的“桥梁”. 由地震加速度反应谱可计算单自由度体系水平地震作用:F=mSa(T),然而实际地震动无法预知,可谓千奇百怪,为了便于设计规范给出了加速度设计反应谱,该谱为地震系数(地震烈度与地面地震动加速度关系)与动力放大系数(结构最大加速度与地面最大加速度之比,正规化的反应谱)的乘积值,在特定的结构阻尼比下,依据场地、震中距将地震动分类,计算动力放大系数取平均后平滑处理即得设计反应谱. 底部剪力法是简化算法,针对地震反应可用第一振型(呈线性倒三角形)表征的结构,即地震影响系数与振型参与系数(其中的水平相对位移可用质点高度代替)假定只有一个,可对应于振型分解反应谱法中的第一振型.当两结构的基本周期不一致时,在“总质量一致”的条件下,周期大者地震影响系

数有减小的趋势(不一定减小,取决于基本周期大小),总水平地震剪力有减少的趋势,而各层处的水平地震作用不一定减小,除非结构满足“层高一致、质量分布一致”的条件.综上,底部剪力法是一种近似计算方法,两结构在总质量一致的条件下,周期大者总地震作用近似有减小的趋势(不一定减小,取决于基本周期范围),严格来讲未必,实际上规范的0.85与层质量、层高有关系. 相对于底部剪力法,振型分解反应谱法计算地震反应精度较高,将多自由度体系解耦为广义单自由度体系,实质上是按结构的振型将地震作用进行分解,求解分解地震作用下单位质量的反应,然后再依据振型规则将反应叠加为结构总反应.每一振型对应于一个振型周期,由于低振型>高振型,前振型周期所对应的地震影响系数(反应谱值)有减小的趋势,但每一振型下的各层的地震作用还与振型参与系数(反映了本振型在单位质量地震作用中所占的分量)、各层对应的振型向量值(取决于结构质量与刚度的分布)并不是所有层均是第一振型下值大)及本层质量有关.结构的总地震反应(注意是所有质点地震反应的代数和)以低阶振型反应为主,高阶振型反应对结构总地震反应的贡献较小,这一点毋庸置疑,振型各层地震作用具有方向性,总地震反应代数相加,低阶振型与0线交点要少于高阶振型,即同一结构下低阶总地震反应要大于高阶,即使反应谱值小,而各层地震作用则不一定,取决于质量与刚度的分布.

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

附件:吉林省市(县)抗震设防烈度、设计基本地震加速度一览表 烈度 地 区加速度ⅧⅦⅥ0.20g0.15g0.10g0.05g 长春长春、九台榆树、德惠、农安 吉林吉林、舒兰、永吉蛟河、桦甸、磐石 四平伊通、公主岭、梨树、四平白城大安白城镇赉、洮南、通榆 松原松原、前郭尔罗斯乾安扶余、长岭 辽源东丰、东辽、辽源 延边延吉、汪清、图们、珲春、 龙井、和龙、安图 白山抚松、靖宇

通化辉南、梅河口 吉林省乡镇抗震设防烈度区划一览表 地区区划 乡 镇 名称 地震动峰值加速度分区 ⅦⅥ 0.15 0.1 0.05 镇(乡)镇(乡)镇(乡) 长春长春市 大屯镇、永春镇、新立城镇、净月镇、泉眼镇、四家乡、 兴隆山镇、奋进乡、双德镇、玉潭镇、幸福乡、劝农山 镇、齐家镇、新安镇、三道镇、英俊乡、奢岭办事处、 城西乡、石溪乡、鹿乡镇、云山办事处、平湖办事处 佟家乡、太平镇、长 岭乡、山河办事处、 合心镇、兰家镇、土 顶镇 九台市 土门岭镇、西营城镇、沐石河镇、其塔木镇、饮马河镇、 龙家堡镇、卡伦湖镇、东湖镇、苇子沟镇、胡家回族乡、 卢家乡、二道沟乡、加工河乡、波泥河乡、莽卡满族乡、 九郊乡、庆阳乡、三台乡 城子街镇、六台乡、 上河湾镇、纪家镇、 春阳乡、鸡鸣乡、兴 隆镇 农安市 杨树林乡、哈拉海 镇、高家店镇、小城 子乡、黄鱼圈乡 三盛玉乡、永安乡、万顺乡、榛柴岗乡、新农乡、柴岗 镇、万金塔乡、青山口乡、靠山乡 伏龙泉镇、鲍家镇、 开安镇、合隆镇、烧 锅镇、华家镇、新刘 家外地人、巴吉垒镇、 前岗乡、滨河乡、龙 王乡、三岗乡、黄金

水平地震影响系数最大值计算

水平地震影响系数最大 值计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

按《中国地震动参数区划图GB18306-2015》水平地震影响系数最大值计算 一、基本概念和公式: 1、多与地震、基本地震、罕遇地震、极罕遇地震的地震动峰值加速度的关 系: αmax =K*αmax 基本 αmax :多遇或罕遇或极罕遇地震的峰值加速度 αmax基本:基本地震动峰值加速度 K:比例系数,按GB18306-2015第条取值 多遇地震取1/3 罕遇地震取 极罕遇地震取 2、地震动峰值加速度最大值根据场地类别的调整: αmax=Fa*αmax Ⅱ(GB18306-2015附录) αmax:按场地类别调整后的地震动峰值加速度 αmax Ⅱ:Ⅱ类场地的地震动峰值加速度 FA:场地地震动峰值加速度调整系数按GB18306-2015附录E表。 3、水平地震影响系数最大值计算: γmax=β*αmax γmax:水平地震影响系数最大值 β:动力放大系数,按GB18306-2015附录取 4、综上所述,综合计算公式可以写为:γmax=β* Fa*K*αmax 基本 二、示例:

1)、确定FA: 7度地区、Ⅱ类场地基本地震动峰值加速度为:αmax 基本=。 7度地区、Ⅱ类场地多遇地震动峰值加速度:*1/3=。 查中国地震动参数区划图GB18306-2015附录表,加速度为时的Ⅲ类场地FA =。 注意:按Ⅱ类场地基本地震峰值加速度,查得Ⅲ类场地的FA=的用法是不正确的. 2)、则7度区、Ⅲ类场地多遇地水平系数最大值为: γmax=β* Fa*K*αmax 基本 =* *(1/3)* = 2、确定8度地区、Ⅲ类场地的多遇地水平系数最大值: 1)、确定FA: 8度地区、Ⅱ类场地基本地震动峰值加速度为:αmax 基本=。 8度地区、Ⅱ类场地多遇地震动峰值加速度:*1/3=。 查中国地震动参数区划图GB18306-2015附录表,用插值法确定加速度为 时的Ⅲ类场地 Fa=)、则8度区、Ⅲ类场地多遇地水平系数最大值为: γmax=β* Fa*K*αmax 基本 =* *(1/3)* =

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自 重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载, 50%楼面活荷载, 纵、 横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b x h=500mm X 500mm ) :4X 25X 0.5X 0.5X 3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 3.16kN/m 7.6m 0.3m 2 1.495kN/m (3m 0.3m) 3.16 6.6 0.5 4 1.495kN/m (6.6m 0.25m) 2 147.16kN 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 8.1.1.4 屋面板自重 2 顶层无窗墙(190 厚):14.25 0.19 20 0.02 2 39 0.6 6.6 31.25KN 带窗墙(190厚): 3.9 14.25 0.19 20 0.02 2 0.6 6.6 2 1 5 1 8 14.25 0.19 20 0.02 0.45 2 3 82.98 KN 女儿墙: 14.25 0.19 20 0.02 2 1.6 6.6 37.04KN 2 墙自重:114.23 KN

6.5kN/m 6.6m ( 7.6m 2 3m) 780.78kN

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1 半层柱自重:同第五层,为 48.75 KN 则整层为48.75>2=97.5 KN 8.1.2.2 楼面梁自重: 3.3kN/m 7.6m 0.3m 2 1.6kN/m (3m 0.3m) 3.3 6.6 0.5 4 1.6kN / m (6.6m 0.25m) 2 154.3kN 8.1.2.3 半墙自重:同第五层,为 27.66KN 则整层为2X27.66X4=221.28 KN 8.1.2.4 楼面板自重:4^6.6X (7.6+3+7.6) =480.48 KN 8.1.2.5 第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: G 2-4 953.56 50% 2.5 6.6 7.6 2 3.5 6.6 3 1113.61KN 活载:Q 2-4=(2.5 6.6 7.6 2 3.5 6.6 3) 50% 160.05KN 8.1.3第一层重力荷载代表值计算 层高 H=4.2m ,柱高 H 2=4.2+0.45+0.55=5.2m ,楼面板厚 h=100mm 8.1.3.1 半层柱自重: (b X h=500mm X 500mm ) :4X 25 X 0.5X 0.5X 5.2/2=65 KN 则柱自重: 65+48.75=113.75 KN 8.1.3.2 楼面梁自重:同第2层,为154.3 KN 8.1.3.3 半层墙自重(190mm ): 14.25 0.19 20 0.02 2 42 0.6 6.6 2 二层半墙自重(190mm ): 27.66 KN 则墙自重为:(31.14+27.66)X 4=235.2 KN 1.5 1.8 2 14.25 0.19 20 0.02 0.45 31.14KN

地震影响系数

地震影响系数是城市小区规划和工程地震安全评价的一个重要参数,由于受地下岩体条件影响,难以准确确定地震影响系数,常规方法得到的地震影响场难以满足城市和重大工程抗震的精度要求.如何分析基岩条件对地震影响系数的影响是地震安全评价的关键工作之一。《建筑抗震设计规范》采用加速度反应谱计算地震作用。取加速度反应绝对最大值计算惯性力作为等效地震荷载F, F=αG,α为地震影响系数,G为质点的重量。规范中用曲线形式给出了α的确定方法,α曲线又称为地震影响系数曲线(图1)。α为地震影响系数,是多次地震作用下不同周期T,相同ζ阻尼比的理想简化的单质点体系的结构加速度反应与重力加速度之比,是多次地震反应的包络线,是所谓标准反应谱或平均反应谱。它是两项的乘积即地震系数k(地震动峰值加速度与重力加速度之比)和结构物加速度的放大倍数β(结构反应加速度反应谱与地震动最大加速度之比)。α:地震影响系数,α(T)=S a(T)=K ×β(T), S a(T)为加速度设计反应谱,K为地震系数K=a/g,β(T)为放大系数谱。αMAX地震影响系数最大值。 T:结构自振周期 Tg:特征周期,根据场地类别和近震、远震按下列表采用(表3)。α下限不应小于最大值的 20%;截面抗震验算时,水平地震影响系数最大值应按表2采用。

各类建筑结构的地震作用,应按下列原则考虑: 一、一般情况下,可在建筑结构的两个主轴方向分别考虑水平地震作用并进行抗震验算,各方向的水平地震作用应全部由该方向抗侧力构件承担; 二、有斜交抗侧力构件的结构,分别考虑各抗侧力构件方向的水平地震作用; 三、质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的扭转影响; 四、8度和9度时的大跨度结构、长悬臂结构,9度时的高层建筑,应考虑竖向地震作用。

抗震设防烈度加速度和设计地震分组

附录 A 我国主要城镇抗震设防烈度、设计基本地震加速度和设计地震分组 本附录仅提供我国抗震设防区各县级及县级以上城镇的中心地区建筑工程抗震设计时所采用的抗震设防烈度、设计基本地震加速度值和所属的设计地震分组。 注:本附录一般把“设计地震第一、二、三组”简称为“第一组、第二组、第三组”。 A.0.1首都和直辖市 1抗震设防烈度为8 度,设计基本地震加速度值为0.20g: 第一组:北京(东城、西城、崇文、宣武、朝阳、丰台、石景山、海淀、房山、通州、顺义、大兴、平谷),延庆,天津(汉沽),宁河。 2抗震设防烈度为7 度,设计基本地震加速度值为0.15g: 第二组:北京(昌平、门头沟、怀柔),密云;天津(和平、河东、河西、南开、河北、红桥、塘沽、东丽、西青、津南、北辰、武清、宝坻),蓟县,静海。 3抗震设防烈度为7 度,设计基本地震加速度值为0.10g:第一组:上海(黄浦、卢湾、徐汇、长宁、静安、普陀、闸北、虹口、杨浦、闵行、宝山、嘉定、浦东、松江、青浦、南汇、奉贤);第二组:天津(大港)。 4抗震设防烈度为6 度,设计基本地震加速度值为0.05g:第一组:上海(金山),崇明;重庆(渝中、大渡口、江北、沙坪坝、九龙坡、南戽、北碚、万盛、双桥、渝北、巴南、万州、涪陵、黔江、长寿、江津、合川、永川、南川),巫山,奉节,云阳,忠县,丰都,壁山,铜梁,大足,荣昌,綦江,石柱,巫溪*。 注:黑体字加下划线的指该城镇的中心位于本设防区和较低设防

区的分界线,下同。 注:上标* 指该城镇的中心位于本设防区和较低设防区的分界线,下同。 A.0.2河北省 1抗震设防烈度为8 度,设计基本地震加速度值为0.20g: 第一组:唐山(路北、路南、古冶、开平、丰润、丰南),三河,大厂,香河,怀来,涿鹿; 第二组:廊坊(广阳、安次)。 2抗震设防烈度为7 度,设计基本地震加速度值为0.15g:第一组:邯郸(丛台、邯山、复兴、峰峰矿区),任丘,河间,大城,滦县,蔚县,磁县,宣化县,张家口(下花园、宣化区),宁晋*; 第二组:涿州,高碑店,涞水,固安,永清,文安,玉田,迁安,卢龙,滦南,唐海,乐亭,阳原,邯郸县,大名,临漳,成安。 3抗震设防烈度为7 度设计基本地震加速度值为0.10g: 第一组:张家口(桥西、桥东),万全,怀安,安平,饶阳,晋州,深州,辛集,赵县,隆尧,任县,南和,新河,肃宁,柏乡; 第二组:石家庄(长安、桥东、桥西、新华、裕华、井陉矿区),保定(新市、北市、南市),沧州(运河、新华),邢台(桥东、桥西),衡水,霸州,雄县,易县,沧县,张北,兴隆,迁西,抚宁,昌黎,青县,献县,广宗,平乡,鸡泽,曲周,肥乡,馆陶,广平,高邑,内丘,邢台县,武安,涉县,赤城,走兴,容城,徐水,安新,高阳,博野,蠡县,深泽,魏县,藁城,栾城,武强,冀州,巨鹿,沙河,临城,泊头,永年,崇礼,南宫; 第三组:秦皇岛(海港、北戴河),清苑,遵化,安国,涞源,承德(鹰手营子)。

设计基本加速度和水平地震影响系数的关系

设计基本加速度和水平地震影响系数的关系

————————————————————————————————作者: ————————————————————————————————日期: ?

设计基本加速度和水平地震影响系数的关系 今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计 基本地震加速度-----“0.05g、0.1g。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 项目GBJ11-89 GB50011-2001及2010 地震影响表征采用设防烈度采用设计基本地震加速度、设计特征周期表证 设计基本 地震加速度(g) 无 6度7度8度9度 0.05 0.1(0.15) 0.2 (0.3) 0.4 设计特征周期按设计近震或远震 和场地类别确定 按设计地震分组和场地类别确定:表5. 1.4-1 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半(0.15g)与8度半(0.3g)的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。 写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定

第八章 水平地震作用下的内力和位移计算

第8章水平地震作用下的内力和位移计算 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 第五层重力荷载代表值计算 层高H=,屋面板厚h=120mm 半层柱自重 (b×h=500mm×500mm):4×25×××2= 柱自重: 屋面梁自重 () () kN m m m kN m m m kN m m m kN 16 . 147 2 ) 25 .0 6.6( / 495 .1 4 5.0 6.6 16 .3 ) 3.0 3( / 495 .1 2 3.0 6.7 / 16 .3 = ? - ? + ? - ? + + ? + ? - ? 屋面梁自重: 半层墙自重 顶层无窗墙(190厚):()KN 25 . 31 6.6 6.0 2 9.3 2 02 .0 20 19 .0 25 . 14= ?? ? ? ? ? - ? ? ? + ? 带窗墙(190厚): () () KN 98 . 82 3 45 .0 02 .0 20 19 .0 25 . 14 2 8.1 5.1 6.6 6.0 2 9.3 2 02 .0 20 19 .0 25 . 14 = ? ? ? ? ? ? ? ? ? ? ? ? ? - ? + ? ? ? - ? ? ? ? ? ? - ? ? ? + ? 墙自重:KN

女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+??? 第五层重量 ++++= KN 顶层重力荷载代表值 G 5 = KN 第二至四层重力荷载代表值计算 层高H=,楼面板厚h=100mm 半层柱自重:同第五层,为 KN 则整层为×2= KN 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 半墙自重:同第五层,为则整层为2××4= KN 楼面板自重:4××(+3+)= KN 第二至四层各层重量=+++= KN 第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 第一层重力荷载代表值计算 层高H=,柱高H 2=++=,楼面板厚h=100mm 半层柱自重:

设计基本地震加速度结构设计

设计基本地震加速度结构设计 1建筑设计 1.1工程概况 建筑设计在现有的自然环境与总体规划的前提下,根据设计任务书的要求,综合考虑使用功能、结构施工、材料设备、经济艺术等问题,着重解决建筑内部使用功能和使用空间的合理安排,内部和外表的艺术效果,各个细部的构造方式等,创造出既美观又实用的建筑。 建筑设计应考虑建筑与结构等相关的技术的综合协调,以及如何以更少的材料、劳动力、投资和时间来实现各种要求,使建筑物做到适用、经济、坚固、美观。 本方案采用框架结构,框架结构是由梁、柱、节点及基础组成的结构形式,横梁和立柱通过节点连成一体,形成承重结构,将荷载传至基础。其特点是承重系统与非承重系统有明确的分工,支承建筑空间的骨架与梁,柱是承重系统,这种结构形式强度高,整体性好,刚度大,抗震性好,开窗自由。 设计标高:室内外高差:450mm。 地震烈度:6度,设计基本地震加速度为0.05g,Ⅱ类场地,设计地震分组为第二组。 耐火等级:二级。 =0.60kN/m2。 基本风压:ω 雪压:0.20 kN/m2,地面粗糙度类别为B类。 不上人屋面活荷为0.5kN/m2,走廊活荷载为2.5kN/m2,卫生间楼面活荷载为2.0 kN/m2,教室楼面活荷为2.0 kN/m2,楼梯活荷载为3.50kN/m2。 1.2 总平面布局和平面功能分区 1.2.1 总平面布局

该建筑物总长度为87.6m,总宽度为17.7m,总高度为18.45m,共五层,总建筑面积为7752m2,主体结构采用现浇钢筋混凝土框架结构。 图1.1 建筑平面图 1.2.2 平面功能分区 根据设计资料的规划要求,本办公楼建筑要求的主要功能有:门卫室,办公室,会议室,男女厕所等。 (1)使用部分的平面设计 使用房间面积的大小,主要由房间内部活动的特点,使用人数的多少以及设备的因素决定的,本建筑物为办公楼,主要使用房间为办公室,各主要房间的具体设置在下表一一列出,如下表: 表1-1 序号房间名称数量单个使用面积 1 办公室79 52.45 2 会议室 5 65.53 3 办公设备用房 5 65.53 4 门房 1 25.36 5 男女厕所10 20.04 (2)窗的大小和位置 房间中窗的大小和位置主要是根据室内采光通风要求来考虑。采光方面,窗

地震等级计算方法是什么

地震等级计算方法是什么 一般情况下仅就烈度和震源、震级间的关系来说,震级越大震源越浅、烈度也越大。一般震中区的破坏最重,烈度最高,这个烈度称为震中烈度。从震中向四周扩展,地震烈度逐渐减小,不同级别地震的破坏力有多大呢?震级是表征地震强弱的量度,通常用字母M表示,它与地震所释放的能量有关。一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。震级每相差1.0级,能量相差大约32倍;每相差2.0级,能量相差约1000倍。也就是说,一个6级地震相当于32个5级地震,而1个7级地震则相当于1000个5级地震。目前世界上最大的地震的震级为9.5级, 计算公式为:M=lg(A/T)max+ σ ( Δ ) 式中:A ----地震面波最大地动位移,取两水平分向地动位移的矢量和,μm; T ----相应周期,S;

Δ----震中距,(度)。 测量最大地动位移的两水平分量时,要取同一时刻或周期相差在1/8周之内的震动。若两分量周期不一致时,则取加权和: T=(T N ×A N +T E× A E )/(A N +A E ) 式中:A N ------南北分量地动位移,μm; A E ------ 东西分量地动位移,μm; T N ------ A N 的相应周期,S; T E ------ A E 的相应周期,S;

量规函数σ(Δ)为:σ( Δ )=1.66lg Δ +3.5 不能使用与表一中给出的值相差很大的周期来测定地震震级M。地震震级M应根据多台的平均值确定。 中国使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,由于其与震源的物理特性没有直接的联系,因此多用矩震级来表示。 二、震级认定 社会应用,应以国务院地震行政主管部门认定的地震震级M 为准。 表一不同震中距(Δ)选用地震面波周期(T)值

设计基本加速度和水平地震影响系数的关系

设计基本加速度和水平地震影响系数的关系 今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“0.05g、0.1g。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是 是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半(0.15g)与8度半(0.3g)的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。 写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿

时程分析加速度最大值与水平地震影响系数最大值

时程分析加速度最大值与水平地震影响系数最 大值 地震作用超越概率取值原则建筑抗震类别小震中震大震甲类 63、5%(100年)10%(100年)2%(100年)乙类 63、5%(50年)10%(50年)2%(50年)丙类 63、5%(50年)10%(50年)2%(50年)丁类 63、5%(50年)10%(50年)2%(50年)表2 时程分析所用的地震加速度最大值(cm/s2,gal)建筑抗震类别抗震设防烈度小震中震大震甲类6度 0、05g22801357度 0、10g501353157度 0、15g801954508度 0、20g1102556308度 0、30g1803758309度 0、40g 乙、丙、丁类6度 0、05g18451257度 0、10g35982207度0、15g551473108度 0、20g701964008度 0、30g1102945109度0、40g140392620表3 水平地震影响系数最大值建筑抗震类别抗震设防烈度小震中震大震甲类6度 0、05g0、0 50、1 60、317度 0、10g0、1 10、 30、77度 0、15g0、1 80、4

41、018度 0、20g0、3 50、5 71、418度 0、30g0、4 10、8 41、889度 0、40g 乙、丙、丁类6度 0、05g0、0 40、1 10、287度 0、10g0、0 80、2 20、507度 0、15g0、1 20、3 40、728度 0、20g0、1 60、4 50、908度 0、30g0、2 40、6 81、209度 0、40g0、3 20、901、40

相关主题