搜档网
当前位置:搜档网 › 2018北京高考数学(理科)word版

2018北京高考数学(理科)word版

2018北京高考数学(理科)word版
2018北京高考数学(理科)word版

绝密★本科目考试启用前

2018年普通高等学校招生全国统一考试

数学(理)(北京卷)

本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)

一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{}

{}2,2,0,1,2A x x B ==-<,则A B ?=

(A){}0,1(B){}1,0,1-(C){}2,0,1,2?-(D){}1,0,1,2-

(2)在复平面内,复数的共轭复数对应的点位于

(A)第一象限(B)第二象限(C)第三象限(D)第四象限

(3)执行如图所示的程序框图,输出的s 值为 (A)

12(B)56(C)7 6

(D)71225-67-

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单

音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为∫,则第八个单音的频率为

(C)(D)

(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为

(A)1 (B)2 (C)3 (D)4

(6)设a,b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的

(A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件

(7)在平面直角坐标系中,记d 为点(),P cos sin θθ到直线20x my --=的距离.当θ,m 变化时,d 的最大值为

(A)1 (B)2 (C)3 (D)4

(8)设集合(){},1,4,2A x y x y ax y x ay =

-≥+>-≤,则

(A)对任意实数(),2,1a A ∈(B)对任意实数(),2,1a A ?

(C)当且仅当0a <时,()2,1A ?(D)当且仅当3

2

a ≤时,()2,1A ?

第二部分(非选择题共110分)

二、填空题共6小题,每小题5分,共30分。

(9)设{}n a 是等差数列,且1253,36a a a =+=,则{}n a 的通项公式为________

(10)在极坐标系中,直线()0cos sin a a ρθρθ+=>与圆2cos ρθ=相切,则a =______

(11)设函数()()06f x cos x πωω??

??

?

=-

>.若()()4

f x f π

对任意的实数x 都成立,则ω的最小值为________

(12)若,x y 满足12x y x +≤≤,则2y x -的最小值是________

(13)能说明“若()()0f x f >对任意的(]0,2x ∈都成立,则()f x 在[]

0,2上是增函数”为

假命题的一个函数是________

(14)已知椭圆()2222:10x x M a b a b +=>>,双曲线22

22:1x x N m n

-=.若双曲线N 的两条渐

近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离

心率为________;双曲线N 的离心率为________

三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分) 在ABC ?中,17,8,7

a b cosB ===-

(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高

(16)(本小题14分)

如图,在三棱柱111ABC A B C -中,1CC ABC ⊥平面,,,,D E F G 分别1111,,,AA AC AC BB 的

中点,12AB BC AC AA ===

(I)求证:AC BEF ⊥平面

(Ⅱ)求二面角1B CD C --的余弦值; (I)证明:直线FG 与平面BCD 相交

(17)(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:

假设所有电影是否获得好评相互独立

(I)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取l 部,估计恰有1部获得好评的概率;

(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们]喜欢(1,2,3,4,5,6k =).写出方差123456,,,,,D D D D D D ξξξξξξ的大小关系.

设函数()()24143x

f x ax a x a e ?-++???+=

(I)若曲线()y f x =在点()(1,)1f 处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围

已知抛物线2:2C y px =经过点()1,2P .过点()0,1Q 的直线l 与抛物线C 有两个不同的交点,A B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N (I)求直线l 的斜率的取值范围:

(Ⅱ)设O 为原点,,QM QO QN QO λμ==,求证:1

1

λ

μ

+

为定值

(20)(本小题14分)

设n 为正整数,集合(){}{}

12,t ,,,0,1,1,2,,n A t t t k n αα==?∈=?·对于集合A 中的任意元素()12,,,n x x x α=??和()12,,,n y y y β=??,记

()()()()111122221,2

n n n n x y x y x y x y x M y x y αβ??=

+--++--+++--??

(I)当3n =时,若()()1,1,0,0,1,1αβ==,求(),M αα和(),M a β的值;

(Ⅱ)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,a β,当,a β相同时,

(),M a β是奇数:当,a β不同时,(),M a β是偶数.求集合B 中元素个数的最大值;

(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,a β,

(),0M a β=.写出一个集合B ,使其元素个数最多,并说明理由

(考生务必将答案答在答题卡上,在试卷上作答无效)

2018年北京市高考数学试卷(理科)

2018年北京市高考数学试卷(理科) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限 3.(5分)执行如图所示的程序框图,输出的s值为() A.B.C.D. 4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为() A. f B. f C. f D.f

5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个 数为() A.1 B.2 C.3 D.4 6.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为() A.1 B.2 C.3 D.4 8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)?A C.当且仅当a<0时,(2,1)?A D.当且仅当a≤时,(2,1)?A 二、填空题共6小题,每小题5分,共30分。 9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=. 11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为. 12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是. 13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在

2018年北京高考卷数学(理科)试题及答案

2018年普通高等学校招生全国统一考试(北京卷) 数学(理工类) 第一部分(选择题 共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合{} 2A x x =<,{} 2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数 i 1i -的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.执行如图所示的程序框图,输出的s 值为( ). A . 1 2 B .56 C .76 D .712 4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频 率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ). A B C . D . 5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .4 6.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则

2018年高考文科数学北京卷及答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页) 绝密★启用前 北京市2018年普通高等学校招生全国统一考试 文科数学 本试卷满分150分.考试时长120分钟. 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{||}2|x A x =<,2,0,{1,2}B =-,则A B = ( ) A .{}0,1 B .{}1,0,1- C .{}2,0,1,2- D .{}1,0,1,2- 2.在复平面内,复数1 1i -的共轭复数对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的s 值为 ( ) A .12 B .56 C .76 D .712 4.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的 比都等于f ,则第八个单音频率为 ( ) A B C . D . 6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( ) A .1 B .2 C .3 D .4 7.在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是 ( ) A .A B B .CD C .EF D .GH 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________ -------------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ----------------

2018年高考北京卷理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。学科:网 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B= (A){0,1} (B){–1,0,1} (C){–2,0,1,2} (D){–1,0,1,2} (2)在复平面内,复数 1 1i 的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为 (A)1 2 (B) 5 6 (C)7 6 (D) 7 12 (4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展

做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f (D )1272f (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 (6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 (8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ? (C )当且仅当a <0时,(2,1)A ? (D )当且仅当3 2 a ≤ 时,(2,1)A ? 第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分。

2018年北京市海淀区高三一模文科数学试题及参考答案

海淀区高三年级第二学期期中练习 数学(文科) 本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后,将答题纸交回。 第一部分(选择题,共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合{0,},{12}A a B x x ==-<< | ,且A B ?,则a 可以是 (A) 1- (B ) 0 (C ) 1 (D )2 (2)已知向量(1,2),(1,0)==-a b ,则+2=a b (A) (1,2)- (B ) (1,4)- (C ) (1,2) (D ) (1,4) (3)下列函数满足()()0f x f x -+=的是 (A) ()f x x = (B )()ln f x x = (C ) 1 ()1 f x x = - (D )()cos f x x x = (4)执行如图所示的程序框图,输出的S 值为 (A) 2 (B )6 (C ) 8 (D )10 (5)若抛物线2 2(0)y px p =>上任意一点到焦点的距离恒大于1,则p 的取值范围是 (A) 1p < (B ) 1p > (C ) 2p < (D ) 2p > (6)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为 (A) 1 (B ) 2 (C ) 1- (D ) 2-

(7)已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (8)已知直线l :(4)y k x =+与圆2 2 (2)4x y ++=相交于A ,B 两点,M 是线段AB 中点,则M 到直线3460x y --=的距离的最大值为 (A) 2 (B ) 3 (C ) 4 (D ) 5 第二部分(非选择题,共110分) 二、填空题共6小题,每小题5分,共30分。 (9)复数 2i 1i =+____. (10)已知点(2,0)是双曲线:C 22 21x y a -=的一个顶点,则C 的离心率为 . (11)在ABC ? 中,若2,6 c a A π ==∠= ,则sin C = ,cos2C = . (12)某几何体的三视图如下图所示,则该几何体的体积是____. ( (13)已知函数1 ()cos f x x x = +,给出下列结论: ①()f x 在(0,)2 π上是减函数; ②()f x 在(0,π)上的最小值为 2π ; ③()f x 在(0,2)π上至少有两个零点. 其中正确结论的序号为____.(写出所有正确结论的序号) (14)将标号为1,2,……,20的20张卡片放入下列表格中,一个格放入一张卡片.把每列标号最小的卡片选出,将这些卡片中标号最大的数设为a ;把每行标号最大的卡片选出,将这些卡片中标号最小的数设为b . 甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等.那么甲乙两位同学中说法正确的同学是___________. 主视图俯视图 左视图

2018北京高考数学(理科)word版

绝密★本科目考试启用前 2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合{} {}2,2,0,1,2A x x B ==-<,则A B ?= (A){}0,1(B){}1,0,1-(C){}2,0,1,2?-(D){}1,0,1,2- (2)在复平面内,复数的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限 (3)执行如图所示的程序框图,输出的s 值为 (A) 12(B)56(C)7 6 (D)71225-67-

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单 音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为∫,则第八个单音的频率为 (C)(D) (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A)1 (B)2 (C)3 (D)4 (6)设a,b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点(),P cos sin θθ到直线20x my --=的距离.当θ,m 变化时,d 的最大值为 (A)1 (B)2 (C)3 (D)4 (8)设集合(){},1,4,2A x y x y ax y x ay = -≥+>-≤,则 (A)对任意实数(),2,1a A ∈(B)对任意实数(),2,1a A ? (C)当且仅当0a <时,()2,1A ?(D)当且仅当3 2 a ≤时,()2,1A ?

(完整版)2019年北京市高考数学试卷(理科)含答案

2019年北京市高考数学试卷(理科) 一、选择题 共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 1.已知复数2z i =+,则 (z z =g ) A .3 B .5 C .3 D .5 2.执行如图所示的程序框图,输出的s 值为( ) A .1 B .2 C .3 D .4 3.已知直线l 的参数方程为13, (24x t t y t =+??=+? 为参数),则点(1,0)到直线l 的距离是( ) A .15 B .25 C .45 D .65 4.已知椭圆22221(0)x y a b a b +=>>的离心率为1 2 ,则( ) A .222a b = B .2234a b = C .2a b = D .34a b = 5.若x ,y 满足||1x y -?,且1y -…,则3x y +的最大值为( ) A .7- B .1 C .5 D .7 6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足 121252E m m lg E -=,其中星等为k m 的星的亮度为(1,2)k E k =.已知太阳的星等是26.7-,天 狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为( ) A .10.110 B .10.1 C .10.1lg D .10.110- 7.设点A ,B ,C 不共线,则“AB u u u r 与AC u u u r 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 8.数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如 图).给出下列三个结论: ①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);

2018北京理科数学高考真题

2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合A{x||x|<2},B{-2,0,1,2},则A B (A){0,1} (B){-1,0,1} (C){-2,0,1,2} (D){-1,0,1,2} (2)在复平面内,复数的共轭复数对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (3)执行如图所示的程序框图,输出的S值为 (A) (B) (C) (D)

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为,则第八个单音的频率为 (A) (B) (C) (D) (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A) 1 (B) 2 (C) 3 (D) 4 (6)设a,b均为单位向量,则“”是“a”的 (A)充分而不必要条件

(B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (7)在平面直角坐标系中,记d为点到直线x的距 离,当m变化时,d的最大值为 (A)1 (B)2 (C)3 (D)4 (8)设集合A,则 (A)对任意实数a, (B)对任意实数a, (C)当且仅当a时, (D)当且仅当a时, 第二部分(非选择题共110分) 二、填空题共6小题,每小题5分,共30分。 (9)设是等差数列,且3, 36,则的通项公式为______ (10)在极坐标系中,直线a与圆2相切,则a=_____ (11)设函数f(x)= ,若f对任意的实数x都成立,则的最小值为______

2018年北京高考理科数学真题及答案

2018年北京高考理科数学真题及答案本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目 要求的一项。 (1)已知集合A={x||x|<2},B={–2,0,1,2},则A I B= (A){0,1} (B){–1,0,1} (C){–2,0,1,2} (D){–1,0,1,2} (2)在复平面内,复数 1 1i 的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为 (A)1 2 (B) 5 6 (C)7 6 (D) 7 12 (4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都

等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f (D )1272f (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 (6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当 θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 (8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ? (C )当且仅当a <0时,(2,1)A ? (D )当且仅当3 2 a ≤ 时,(2,1)A ? 第二部分(非选择题共110分) 二、填空题共6小题,每小题5分,共30分。 (9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. (10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.

(完整版)2018年北京市高考理科数学试题及答案.docx

绝密★本科目考试启用前 2018 年普通高等学校招生全国统一考试 数学(理)(北京卷)本试卷共 5 页, 150 分。考试时长120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。( 1)已知集合A={ x||x|<2} ,B={ –2, 0, 1,2} ,则 A I B= ( A ) {0 ,1}(B){–1,0,1} ( C) { –2, 0, 1, 2}(D){–1,0,1,2} ( 2)在复平面内,复数 1 的共轭复数对应的点位于1i ( A )第一象限(B)第二象限( C)第三象限(D)第四象限( 3)执行如图所示的程序框图,输出的s 值为 ( A )1 ( B)5 26 ( C)7 ( D)7 612

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为 ( A)3 2 f( B)322f ( C)12 25 f( D)12 27 f ( 5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( A ) 1(B)2 ( C) 3(D)4 ( 6)设 a, b 均为单位向量,则“ a 3b3a b ”是“ a⊥ b”的 ( A )充分而不必要条件(B)必要而不充分条件 ( C)充分必要条件(D)既不充分也不必要条件 ( 7)在平面直角坐标系中,记 d 为点 P( cosθ, sinθ)到直线 x my 2 0 的距离,当θ,m变化时,d的最大值为 ( A ) 1(B)2 ( C) 3(D)4 ( 8)设集合 A {( x, y) | x y 1, ax y4, x ay2}, 则 ( A )对任意实数 a, (2,1) A( B)对任意实数a,(2, 1)A ( C)当且仅当 a<0 时,( 2, 1)A( D)当且仅当 a 3 A 时,( 2,1) 2

2018年北京市高考数学(理)试题含答案解析

2018年普通高等学校招生全国统一考试;;(北京卷) 数学(理工类); 第一部分(选择题共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合{}2 I =<,{} A x x 2,0,1,2 =-,则A B= B x (A){} -1012 -201 ,,, ,,(D){} ,,(C){} 01,(B){} -101 的共轭复数对应的点位于 2.在复平面内,复数i 1i- (A)第一象限(B)第二象限 (C)第三象限(D)第四象限 3.执行如图所示的程序框图,输出的s值为(). A.1 2 B.5 6 C.7 6 D.7 12

4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起, .若第一 每一个单音的频率与它的前一个单音的频率的比都等于 个单音的频率为f,则第八个单音的频率为(). A B C. D. 5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(). A.1 B.2 C.3 D.4

6.设a b , 均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则 ()A 对任意实数a ,()2,1A ∈()B 对任意实数a ,()2,1A ? ()C 当且仅当0a <时,()2,1A ?()D 当且仅当3 2 a ≤时,()2,1A ? 二.填空 (9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为。

【试卷】2020年北京市高考数学试卷(解析版)

绝密★本科目考试启用前 2020年普通高等学校招生全国统一考试(北京卷) 数学 本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回. 第一部分(选择题 共40分) 一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 【答案】D 【解析】 【分析】 根据交集定义直接得结果. 【详解】{1,0,1,2}(0,3){1,2}A B =-=, 故选:D. 【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题. 2. 在复平面内,复数z 对应的点的坐标是(1,2),则i z ?=( ). A. 12i + B. 2i -+ C. 12i - D. 2i -- 【答案】B 【解析】 【分析】 先根据复数几何意义得z ,再根据复数乘法法则得结果. 【详解】由题意得12z i =+,2iz i ∴=-. 故选:B. 【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题. 3. 在52)的展开式中,2x 的系数为( ).

A. 5- B. 5 C. 10- D. 10 【答案】C 【解析】 【分析】 首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可. 【详解】( ) 5 2x -展开式的通项公式为:() () ()552 15 5 22r r r r r r r T C x C x --+=-=-, 令 522 r -=可得:1r =,则2x 的系数为:()()11 522510C -=-?=-. 故选:C. 【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A. 63 B. 623+ C. 123+ D. 123+【答案】D 【解析】 【分析】 首先确定几何体的结构特征,然后求解其表面积即可. 【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,

2018北京高考理综试题及答案解析

绝密★启封并使用完毕前 2018年普通高等学校招生全国统一考试(北京卷) 理科综合能力测试 本试卷共300分。考试时长150分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量:H 1 C 12 N 14 O 16 第一部分(选择题共120分) 本部分共20小题,每小题6分,共120分。在每小题列出的四个选项中,选出最符合题目要求的一项。 1.细胞膜的选择透过性保证了细胞内相对稳定的微环境。下列物质中,以(自由)扩散方式通过细胞膜的是 A.Na+ B.二氧化碳 C.RNA D.胰岛素 2.哺乳动物肝细胞的代谢活动十分旺盛,下列细胞结构与对应功能表述有误 ..的是A.细胞核:遗传物质储存与基因转录 B.线粒体:丙酮酸氧化与ATP合成 C.高尔基体:分泌蛋白的合成与加工 D.溶酶体:降解失去功能的细胞组分 3.光反应在叶绿体类囊体上进行。在适宜条件下,向类囊体悬液中加入氧化还原指示剂DCIP,照光后DCIP由蓝色逐渐变为无色。该反应过程中 A.需要ATP提供能量 B.DCIP被氧化 C.不需要光合色素参与 D.会产生氧气 4.以下高中生物学实验中,操作不正确 ...的是

A .在制作果酒的实验中,将葡萄汁液装满整个发酵装置 B .鉴定DNA 时,将粗提产物与二苯胺混合后进行沸水浴 C .用苏丹Ⅲ染液染色,观察花生子叶细胞中的脂肪滴(颗粒) D .用龙胆紫染液染色,观察洋葱根尖分生区细胞中的染色体 5.用Xho I 和Sal I 两种限制性核酸内切酶分别处理同一DNA 片段,酶切位点及酶切产物 分离结果如图。以下叙述不正确... 的是 A .图1中两种酶识别的核苷酸序列不同 B .图2中酶切产物可用于构建重组DNA C .泳道①中是用Sal I 处理得到的酶切产物 D .图中被酶切的DNA 片段是单链DNA 6.下列我国科技成果所涉及物质的应用中,发生的不是.. 化学变化的是 7.我国科研人员提出了由CO 2和CH 4转化为高附加值产品CH 3COOH 的催化反应历程。该历程

2018北京高考理综试题及答案

2018年普通高等学校招生全国统一考试 理科综合能力测试(北京卷) 第一部分(选择题共120分) 本部分共20小题,每小题6分,共120分。在每小题列出的四个选项中,选出最符合题目要求的一项。 1.细胞膜的选择透过性保证了细胞内相对稳定的微环境。下列物质中,以(自由)扩散方式通过细胞膜的是 A.Na+ B.二氧化碳 C. RNA D.胰岛素 2.哺乳动物肝细胞的代谢活动十分旺盛,下列细胞结构与对应功能表述有误的是 A.细胞核:遗传物质储存与基因转录 B.线粒体:丙酮酸氧化与ATP合成 C.高尔基体:分泌蛋白的合成与加工 D.溶酶体:降解失去功能的细胞组分 3.光反应在叶绿体类囊体上进行,在适宜条件下,向类囊体悬液中加入氧化还原指示剂DCIP,照光后DCIP由蓝色逐渐变为无色,该反应过程中 A.需要ATP提供能量 B.DCIP被氧化 C.不需要光合色素参与

D.会产生氧气 4.以下高中生物学实验中,操作不正确的是 A.在制作果酒的实验中,将葡萄汁液装满整个发酵装置 B.鉴定DNA时,将粗提产物与二苯胺混合后进行沸水浴 C.用苏丹Ⅲ染液染色,观察花生子叶细胞中的脂肪滴(颗粒) D.用龙胆紫染液染色,观察洋葱根尖分生区细胞中的染色体 5.用Xho I和Sal I两种限制性核酸内切酶分别处理同一DNA片段,酶切位点及酶切位点及酶切产物分离结果如图。以下叙述不正确的是: A.图1中两种酶识别的核苷酸序列不同 B.图2中酶切产物可用于构建重组DNA C.泳道①中是用Sal I处理得到的酶切产物 D.图中被酶切的DNA片段是单链DNA 6.下列我国科技成果所涉及物质的应用中,发生的不是化学变化的是

2018北京高考数学试卷(理科)

2018北京高考数学试卷(理科)

2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 一、选择题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合A={x|x|<2},,B={-2,0,1,2},则A∩B=() A.{0,1} B.{-1,0,1} C.{-2,0,1,2} D.{-1,0,1,2} 1的共轭复数对应的点(2)在复平面内,复数 i-1 位于() A.第一象限B.第二象限

C .第三象限 D .第四象 限 (3)执行如图所示的程序框图,输出的s 值为( ) A .21 B .6 5 C .67 D .127 (4)“十二平均律”是通用的音律体系,明代朱 载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献,十二平均律将一个纯

八度音程分成十二份,依次得到十三个单音,从 第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等与122。若第一个单音的频率为f ,则第八个单音的频率为( ) A .f 32 B .f 322 C .f 125 2 D .f 1272 (5)某四棱锥的三视图如图所示,在此四棱锥 的侧面中,直角三角形的个数为( ) A .1 B .2 C .3 D .4

(6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的() A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 (7)在平面直角坐标系中,记d为点p(cosθ,sin θ)到直线x-my-2=0的距离。当θ,m变化时,d的最大值为() A.1 B.2 C.3 D.4 (8)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},

2018年北京高考数学试题(理科)

数学(理)(北京卷) 第 1 页(共 5 页) 绝密★本科目考试启用前 2018年普通高等学校招生全国统一考试 数 学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要 求的一项。 (1)已知集合{||2}A x x =<,{2,0,1,2}B =-,则A B = (A ){0,1} (B ){1,0,1}- (C ){2,0,1,2}- (D ){1,0,1,2}- (2)在复平面内,复数 1 1i -的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第二象限 (D )第四象限 (3)执行如图所示的程序框图,输出的s 值为 (A )12 (B )56 (C )76 (D )712

数学(理)(北京卷) 第 2 页(共 5 页) (4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这 个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 f ,则第八个单音的频率为 (A (B (C ) (D ) (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 (6)设,a b 均为单位向量,则“|3||3|-=+a b a b ”是“⊥a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离.当,m θ变 化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 (8)设集合{(,)1,4,2}A x y x y ax y x ay =-≥+>-≤,则 (A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ? (C )当且仅当0a <时,(2,1)A ? (D )当且仅当3 2 a ≤ 时,(2,1)A ? 正(主)视图 俯视图 侧(左)视图

2018年北京市高考地理试卷-真题

2018年北京市高考地理试卷 一、第一部分(选择题共44分)本部分11小题,每小题12分,共44分,在每小题列出的四个选项中,选出最符合题目要求的一项. (12.00分)2018年4月,川藏铁路成都至雅安段开始铺轨。读图,回答第1﹣3题。 1.2018年4月,川藏铁路成都至雅安段开始铺轨。读图,回答第1﹣3题。 与成都相比,拉萨() A.日出早,白昼长 B.正午太阳高度角小 C.海拔高、日照强 D.大气逆辐射强 2.2018年4月,川藏铁路成都至雅安段开始铺轨。读图,回答第1﹣3题。

图示区域() A.地处板块的生长边界B.河流的流向自西向东 C.自然景观为高寒荒漠D.跨地势第一、二级阶梯 3.2018年4月,川藏铁路成都至雅安段开始铺轨。读图,回答第1﹣3题。 川藏铁路开通后,能够() ①缓解青藏铁路运输压力 ②改善西藏物资供应 ③消除区域内灾害的影响 ④促进地域文化交流 A.①②③B.①②④C.①③④D.②③④ 4.(4.00分)如图为地的地质平面示意图,读图,回答第4题。

图中() A.甲处的物质主要来源于地壳 B.断层发生在花岗岩形成之后 C.岩浆侵入可能导致乙处岩石变质 D.丙处的溶洞景观由岩浆活动造成 5.(4.00分)读图,回答第5题。 四个大洲中,() A.甲地形复杂多样,中低产田多,农业生产技术落后 B.乙平原广,高纬地区受寒流影响强,港口封冻期长 C.丙纬度跨度大,地形中部高四周低,是水稻主产区 D.丁为高原大陆,人口自然增长率低,城市化水平高 (8.00分)如图为北年球某日02时海平面气压分布图(单位:百帕),读图,回答第6﹣7题。

2018年北京市西城区高三第一学期期末数学(理)试题及答案

北京市西城区2017 — 2018学年度第一学期期末试卷 高三数学(理科) 2018.1 第Ⅰ卷(选择题 共40分) 一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项. 1.若集合{|03}A x x =<<,{|12}B x x =-<<,则A B =U (A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x << (D ){|23}x x << 2.下列函数中,在区间(0,)+∞上单调递增的是 (A )1y x =-+ (B )|1|y x =- (C )sin y x = (D )1 2y x = 3.执行如图所示的程序框图,输出的S 值为 (A )2 (B )6 (C )30 (D )270 4.已知M 为曲线C :3cos , sin x y θθ=+??=? (θ为参数)上的动点.设O 为原点,则OM 的最 大值是 (A )1 (B )2 (C )3 (D )4 5.实数,x y 满足10,10,10,x x y x y -?? +-??-+? ≥≥≥ 则2x y -的取值范围是 (A )[0,2] (B )(,0]-∞ (C )[1,2]- (D )[0,)+∞

6.设,a b 是非零向量,且,a b 不共线.则“||||=a b ”是“|2||2|+=+a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7.已知A ,B 是函数2x y =的图象上的相异两点.若点A ,B 到直线1 2 y =的距离相等, 则点A ,B 的横坐标之和的取值范围是 (A )(,1)-∞- (B )(,2)-∞- (C )(1,)-+∞ (D )(2,)-+∞ 8.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L ,记作[H ]+)和氢氧根离子的物质的量的浓度(单位mol/L ,记作[OH ]-)的乘积等于常数1410-.已知pH 值的定义为pH lg[H ]+=-,健康人体血液的pH 值保持在7.35~7.45之间,那么 健康人体血液中的[H ][OH ] +-可以为 (参考数据:lg20.30≈,lg30.48≈) (A )12 (B ) 13 (C ) 16 (D ) 110

2018年北京市高考数学理 10专题十 计数原理、统计、概率

第十篇:计数原理、统计、概率 一、选择题 1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻 番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个 半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 3.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥 德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. 1 12 B. 1 14 C. 1 15 D. 1 18 4.【2018全国三卷5】 5 2 2 x x ?? + ? ?? 的展开式中4x的系数为

A .10 B .20 C .40 D .80 5.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =, ()()46P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.3 6.【2018浙江卷7】设0

相关主题