搜档网
当前位置:搜档网 › FANUC数控系统故障现象分析与处理

FANUC数控系统故障现象分析与处理

FANUC数控系统故障现象分析与处理
FANUC数控系统故障现象分析与处理

FANUC数控系统故障现象分析及处理

1.FS6系列,第一机床厂的CK6140数控车床(系统:system-3TD31-05。CNC主板型号:A20B-0008-0200.211。主轴伺服控制板型号:

A350-0008-T372/04。)

例1 车床主轴无论正、反转,运转约5min后,按停止按钮,主轴旋转不能立即停止(无制动),若再启动机床主轴(不论方向如何)时,机床CRT

无显示报警号,主轴驱动器控制板上的LED3灯亮,机床不能运行。

分析排除:该车床为直流主轴驱动,LED3灯亮的原因是直流电机输入电源相序不正确或缺相造成,由于机床已使用过,接线未动,不可能是相序不正确,应是缺相造成。缺相原因可能是某个晶闸管损坏或驱动器未触发其晶闸管工作转换(逆变)。因主轴开始能运行一段时间,只要不是热稳定性差应是未触发晶闸管工作转换(逆变)所致。速度反馈回路、电流反馈回路及其控制电路是造成未触发晶闸管工作转换(逆变)的主要原因。故①查主轴编码器及其传动,传动无松动,编码器工作正常,说明速度反馈回路正常。②更换主轴伺服控制板备用板,故障现象未改变(该板在另一台车床上试用正常),说明控制回路正常。③在电流反馈回路上,因未检测到零电流,系统撤消了触发脉冲,出现逆变颠覆导致缺相报警,更换电流互感器后故障消除。

例2 用换刀指令开始找不到刀位号,经修理刀架又不能锁紧,但在所指定的刀位处刀架有停顿现象,然后刀架继续旋转。

分析排除:刀架找不到刀位号一般是接近开关无DC24V或8个接近开关中有损坏的。刀架不能锁紧一般是刀架电机反转延时参数不对,或刀架夹紧到位限位开关不起作用,或锁紧机构有故障。经关机后用手盘刀架电机,刀架锁紧正常,说明锁紧机构正常,用万用表查限位开关,动作和线路正常,说明不是限位开关不起作用。故①查接近开关无DC24V,系电源线端脱焊所致。②焊好脱线后,刀架能在指定刀位有停顿现象,但刀架未锁紧,说明刀架PLC输入输出信号正常,进一步检查系夹紧延时参数不对所致,调整后故障排除。

2.FANUCserier0iMate-TC,机床集团有限责任公司生产的CKA6150车床(系统:001940D711-01。CNC:A20B-311-B500。伺服放大器:A06B-6130-H002。I/O:A20B-2002-0520/07A。)

例1 在加工零件过程中系统停电,按系统上电按钮开关后,系统无反应。经查找维修后再给系统上电,机床报警,CRT显示报警号为“2004 feedrate override zero”,伺服放大器上的LED电源灯不亮,机床不能运行。

分析排除:停电后开始按系统上电按钮开关,系统无反应,由于无机床电路图,只能打开电器柜和操作面板检查控制电路,经查启动按钮常开触点两侧(线号54,52与中间继电器KA11的常开触点并联)无DC24V电压,停止按钮常闭触点两侧(线号51,52)导通正常,KA11线圈一端接54号线,另一端接电源负极,说明线号51与电源正极不导通,经查是该导线断开造成,修复后系统上电正常(KA11吸合正常)。再查给伺服送强电的KM11交流接触器未吸合,KM11线圈一端和控制变压器的5、6接线端的0号线接,另一端线号107接到伺服放大器的CX29(MCC)接口(线号107、106),再接到另一伺服放大器的CX29(MCC)接口(线号106、3L+),线号3L+再经空开与控制变压器的5、6接线端的32

号线接,通电检查线号0与3L+的电压为AC220V,说明故障与放大器接口线路未导通有关,而伺服使能信号是通过中间继电器KA13(外部允许…急停、限位开

关未动作)上的常开触点(线号56、57)来控制伺服放大器接口CX30(ESP)的,现KA13已吸合,并且常开触点接触正常,但线号56、57上无DC24V电流通过,经查是I/O板(A20B-2002-0520/07A)上的熔断器(LM431A)断开,使放大器无DC24V电压,更换后设备正常。

例2 启动系统后,在CRT上显示报警为“操作MESSAGE番号:2003 NO SPINDLE RANGE SWITCH SIGNAL”,机床不能运行。

分析排除:根据故障提示为主轴挡位开关无信号。该车床主轴箱通过操纵手柄控制主轴高低两个转速围,为防止挡位不正,通过两个限位开关来保证传动位置的可靠性。故障原因可能是DC24V无电或两个限位微动开关中有损坏的。用手操纵高低两个挡位,故障现象相同。故①打开主轴箱盖,查变速限位开关,两组接线线号分别为1L+、X44和1L+、X55,断开开关的一端接线,操纵变速挡位,用万用表查开关通断正常;同时打开电器柜从接线端子处查该两组线号通断情况,仍然正常,这说明线路及开关都是好的。②查直流电源,发现两个开关电源中的一个电源指示灯不亮,测量其输入电压为AC220V正常,但无输出电压(线号1L+、1L-)DC24V,拆开其输出线端测量输出回路(1L+、1L-)阻值为零,再送电,开关电源输出电压正常,说明输出回路有短路现象,因回路中多处使用该电源,逐个排查输出线路并测量阻值,当拆开去刀架回路的1L+接线时,再测量输出回路的阻值为127Ω,用一根导线联接电源和刀架处的1L+,开机正常,顺刀架线路排查,在X轴伺服电机下有许多裸露导线随拖板一起移动,该处还有许多裸露导线有接头,用电工胶布逐一包裹接头再开机故障现象消除。

3.FANUC series 0i Mate-TB,第一机床厂生产的CK6136i车床(系统:D701-09。CNC:A02B-0301-B801。伺服放大器:A06B-6130-H002。I/O:

A20B-2002-0520/07A和A20B-2002-0521/07A。)

某职业学校两台数控车床因为种种原因故障后近一年未维修,当时故障现象也无记录。系统上电,机床报警,CRT显示报警号为“1002 SPINDLE ALARM 1006 TURRET MOTOR OVERLOAD QM2 1010 PROTECT SW.TRIGGERE D QM3”,机床不能运行。

分析排除:根据说明书,报警号1002为主轴报警,1006为刀架电机保护开关QM2跳闸,1010为冷却电机保护开关QM3跳闸,查QM2、QM3空开未跳闸,可能是无DC24V电压和回路上有故障造成。故打开电器柜,查QM2线路的104

号点和QM3线路的107号点以及变频器上96号点,均无DC24V电压,经查是I/O 板(A20B-2002-0520/07A)上的熔断器(LM431A)断开所致,再查输出回路,其中一台刀架,无论手动或机动都转不动,打开刀架盖板后发现其背紧螺帽太紧,调整后刀架旋转正常。另一台是控制变频器96号线电路上KA14中间继电器的线圈阻值仅为49Ω,而同型号中间继电器线圈阻值为120Ω,说明该线圈局部短路,更换中间继电器及LM43熔断器后设备运行正常。

4.FANUC series 0i Mate-MC,汉川机床厂生产的XH714D加工中心(系统:D511-02。伺服放大器:A06B-6130-H002。主轴驱动器:

GAdriverI/O:A16B-2203-0881/01A。)

开机后回参考点时运动速度不稳定,时快时慢,有时无减速动作;在CRT 显示报警号有时为“090参考点返回未完成”,有时为“500超程:+Y”;机床不能运行。

分析排除:根据报警号,可能是回参考点开关有故障,在机床CRT查PMC 机床输入状态:按硬键“system”→再按软键PMC→再按软键PMCDGN→再按软键

STATUS。

PMC SIGNAL STATUS

ADDRESS 7 6 5 4 3 2 1 0

X0008 0 0 0 1 0 0 0 0

Z Y

X0009 0 0 0 0 0 1 1 1

X0010 0 0 0 0 0 0 0 0

〔SERACH〕〔〕〔〕〔〕〔FOR-E〕

通过机床回参考点运行,看X0009地址1(Y下面)的状态,应该是碰到减速开关为0,而现在该状态无规则,说明开关动作不可靠,但线路正常。故打开机床导轨防护罩,拆下三组合限位开关,分解开关后发现其中一组(中间一组,控制减速)复位簧锈蚀,开关失效,更换并调整该开关后设备运行正常。

5.FANUC series 0i Mate-MB,第一机床厂生产的J1VMC40M数铣(系统:D501-08A02B-0301-B801。伺服放大器:A06B-6130-H002和两台A06B-6130-H003。主轴驱动器:变频器。I/O:A20B-2002-0521/07A和A20B-2002-0520/07A。)该机床无论是MDI方式还是自动方式在M03或M04指令下,无论S值为多少,主轴都不旋转,但能听到电机有嗡嗡声,无报警;机床不能运行。

分析排除:根据机床结构和故障现象,可能是变频器或主轴电机有问题,用变频器操作面板控制电机运行,结果能控制电机正反转,说明是变频器输入故障,而CRT无报警提示并且面板能控制运行,说明不是DC24V电源问题,应是模拟输入电压故障。故①打开机床电器柜,拆下变频器盖板,运行机床使主轴正转,用万用表测量变频器上的SVC和ES两接点无直流电压,再测量CNC控制模块上的JA40(HDI/ASP)接口的有关接点,其电压为DC3.8V,很明显是联接导线问题,更换该根导线后设备运行正常。

系统常规检查

在维修数控机床时,为了保证机床安全、可靠的运行,不论故障是否与以下检查有关,通常情况下都应首先对数控系统作常规的检查与测试。这些检查包括外观检查与电源电压的确认两个方面。

1.系统的外观检查

(1)部件的外观检查数控装置与伺服驱动的外观检查应包括以下几个方面:1)检查MDI/CRT单元、机床操作面板等单元的元器件外观有无破损。

2)检查控制单元、伺服驱动器、电源单元、I/O单元、PLC、电动机及编码器等单元的元器件有无不良;外形是否有破损、污染。

3)各连接电缆是否有破损、绝缘损坏或插接不良等。

(2)安装检查

1)检查控制单元、伺服驱动器、电源单元、I/O单元、PLC等单元是否安装牢固,模块是否有松动、脱落现象。

2)检查面板上、机床上的操作元器件是否安装牢固。

3)检查连接电缆线是否按照要求布置、固定,电缆插头是否已经可靠固定。4)检查各I/O连接端子的接线是否有松动,安装是否牢固等。

(3)连接检查

1)检查系统、驱动的电源连接是否正确。

2)检查CNC、SV驱动器、PLC、I/O单元的接地线连接是否正确,线径是否足够大,连接位置是否合理,保护地是否为单点接地。

3)检查信号电缆是否已经可靠、合理接地。

4)如果电缆线已经更换,则应检查更换的电缆线是否符合系统要求;屏蔽层是否已经可靠连接等。

2.电源电压的确认

作为系统的输入电压,应根据系统所使用电压的不同,满足系统安装、使用说明书规定的要求。一般来说,系统对于输入电压的基本要求如下:

1)交流输入电压系统交流主回路与控制回路的电压:

AC380V输入:电压值:380( )1V:频率:(50±1)Hz;

AC220V输入:电压值:220(1 )V;频率:(50±1)Hz:

AC200V输入:电压值:200(1 )V:频率:(50±1)Hz:

(2)FANUC系统各单元规定的交流输入电压控制单元的电源输入:

AC200(1)V;频率:(50±1)Hz;或AC220(1)V;(60±1)Hz:但不宜是

AC200V/(60±1)Hz:

伺服单元的电源输入:AC200(1 )V;频率:(50±1)Hz;或AC220(1 )V;(60±1)Hz:但不宜是AC200V/(60±1)Hz:

当使用FANUC标准电源变压器时,可以使用的输入电压为:

AC200V、220V、230V、240V、380V、415V、440V、450V、480V、550V(误差不超过+10%,-15%),系统输入电压应按照上述要求进行连接。

(3)直流输入电压 DC24V输入:电压值:24(1±10%)V;并经过符合要求的滤波处理。

在部分系统中,由于系统部采用了开关稳压电源,因此允许输入电源有较大的允差。在这种前提下,对DC24V输入的要求为:

电压值:24(1± )V;并经过符合要求的滤波处理。

(4)系统电源模块的输出电压系统电源模块的输出电压,主要是指供给系统部各单元使用的各类电压,电压值必须保证正确。维修时应对其进行测量、检查,并通过系统电源部的相应调整元器件的调整,保证各电压值在允许围。在FANUC 系统中,常用的电压种类与要求如下:

1)系统逻辑电路用5V电压:+5(±5%)V。

2)系统输入、输出信号,显示器用24V电压:+24(1±lO%)V。

3)系统外部输入、输出信号用24V电压:+24(1±10%)V。

4)系统位置控制电路用+15V电压:+15(1±5%)V。

5)系统位置控制电路用-15V电压:-15(1±5%)V。 6)系统电源模块基准10V电压:+10(1±0.5%)V。

当系统发生故障时,首先需要判别故障发生的部位,即:初步确定故障发生在系统部还是系统外部。当故障发生在系统外部时,还需要判别故障是由PLC程序逻辑条件不满足或是机床侧的元器件故障引起的。在某些情况下,机床也可能因为系统处在等待外部信号输入的状态,而暂时无动作。为此,在维修时,应熟练掌握系统的自诊断技术,随时检查系统、PLC、机床的接口信号状态与系统的部工作状态,以便判断故障原因。

在维修中,系统状态的检查包括接口信号诊断与系统状态诊断两个方面。在不同的数控系统中,状态诊断的容与方法不尽相同,维修人员应根据机床的实际使用系统情况,对照有关说明书进行。

以FS0系统为例,表2-1列出了FS0系统主要接口信号与对应的诊断参数围。对于数字I/O信号,诊断参数的每一字节的相应位与对应的输入/输出状态一一对应,“1”代表信号接通,“0”代表信号断开。由此可见,通过检查诊断参数可以获得大量维修时所需要的信息。

表2-1 FSO系统诊断参数一览表

1.I/O信号的构成

通过I/O信号的状态诊断,确定故障部位和分析故障原因是维修时用得最多的方法一。 I/O信号的数量与构成,在不同的系统中有所不同。对于FANUC 系列数控系统,根据系统的功能与结构,可以分为不带部PMC与带部PMC(PLC)两种形式。

不带部PMC的数控系统的I/O信号特点是:不论系统功能、I/O单元如何,各输入、输出信号的作用和地址总是固定不变的。如对于FS0系统:输入

X016.5总是X轴参考点减速信号(*DECX);输出Y048.0总是X轴参考点到达信号等等。此外,在不带部PMC的系统中,也没有CNC与PMC间的信号转换过程,对应的输入、输出信号与CNC侧的部信号一一对应。如:从机床(或操作面板)到系统的输入信号X016.2(+X方向键)的状态与CNC部信号G116.2的状态完全相同;输出到机床(或操作面板)X轴参考点到达信号Y048.0,与CNC部信号F148.0的状态完全相同等等。

在带部PMC的数控系统中,根据所选用的系统、部PMC类型、I/O单元的不同,其信号的数量有所不同。除少量输入、输出信号的作用和地址固定不变外,大部分输入、输出信号的作用和意义,在不同的机床上有不同的含义,维修时必须参照机床的电气原理图与PLC程序进行检查。

以FS0C数控系统为例,不带部PMC的系统,I/O接口信号的构成如图2-11所示。图中X016.0-X022.7是从机床(或操作面板)到系统的输入信号;

Y048.0-Y053.7是从系统到机床(或操作面板)的输出信号。它们与系统诊断数据DGN016.0-.7、DGN048.0-.7一一对应;并且与DGNll6.0-122.7、DGNl48.0-53.7状态完全相同。

图2-11 不带PMC的I/O接口信号构成

带部PMC的数控系统,I/O接口状态与信号构成如图2-12所示。图2-12中,X016.0-X022.7,X000.0-X008.7, X010.0-X014.7是从机床(或操作面板)到系统的输入信号;Y048.0-Y053.7,Y080.0-Y082.7,Y084.0-Y086.7是从系统到机床(或操作面板)的输出信号。它们与系统诊断数据

DGN016.0-.7, DGN000.0-008.7,DGN010.0-014.7,DGN048.0-.7,

DGN080.0-082.7,DGN084.0-086.7一一对应。而G100.0-G131.7则是从PMC输出到CNC的部信号(PMC输出),F148.0-F178.7是从CNC输入到PMC的部信号(PMC 输入),它们分别与系统诊断数据DNGl00.0-DNGl31.7,DNGl48.0-DNGl48.7一一对应。在这种情况下,DNGl6.2与DNGll6.2可能具有完全不同的含义,前者代表来自机床侧的输入信号X16.2,后者代表由PMC输出到CNC的部信号G116.2,其作用与意义有本质区别。当系统采用了附加I/O单元B2时,增加的输入信号X1000.0-X1012.7也是从机床(或操作面板)到系统的输入信号:输出信号Y1020.O-Y1028.7是从系统到机床(或操作面板)的输出信号

图2-12 带PMC的I/O接口信号构成

2.FANUC系统I/O信号状态的显示与输出模拟

在FANUC系统中,通过系统的MDI/CRT面板检查、诊断的接口信号状态,实质上是输入、输出缓冲存储器的容,当系统与外部信号连接的接口电路(如输入接收器或输出驱动器)发生故障时,诊断信号的状态将与实际输入、输出不同。为了方便维修与调试,部分系统还可以通过修改输入、输出缓冲存储器的容,对外部信号进行模拟输入/输出。

系统的状态诊断操作,在不同的数控系统中有所不同,维修时可以参考数控系统的维修说明书进行。由于状态诊断是维修数控机床的重要手段,现将常用系统的状态诊断操作步骤介绍如下:

(1)FS0/6输入/输出信号的状态诊断

1)按系统MDI/CRT操作面板上的〖DGNOS〗键,系统显示诊断页面。

2)按系统MDI/CRT操作面板上的〖PAGE〗键(换页)或〖CURSOR〗 (光标移动键),可以逐页显示诊断信号的状态。

3)在系统显示诊断页面时,亦可以通过输入诊断地址及〖INPUT〗键,直接搜索所需要的诊断页面。

(2)FS ll输入/输出信号的状态诊断

1)在系统显示“机能选择”页面时,按下系统MDI/CRT的软功能键〖SERVICE〗习,显示系统维修页面(“机能选择”页面可以通过面板上的“机能”菜单键直接进入)。

2)按系统MDI/CRT的软功能键〖CHAPTER〗,使显示器出现软功能键〖DGNOS〗。

3)按系统MDI/CRT的软功能键〖DGNOS〗键,显示诊断页面;或通过多次操作软功能键〖SERVICE〗,亦可以显示诊断页面。

4)按系统MDI/CRT操作面板上的〖PAGE〗键(换页)或〖CURSOR〗 (光标移动键),可以逐页显示诊断信号的状态;或按操作菜单键,切换到操作选择页面,按下软功能键〖INP-NO〗进入操作引导方式;在面板上用地址与数字键,输入诊断地址后,按〖EXEC〗键,可以直接搜索所需要的诊断参数。

(3)FSl5的输入/输出信号的状态诊断

1)按MDI/CRT面板上的[CNC/PMC]键。

2)按MDI/CRT面板上的[PCDGN]软功能键。

3)用MDI面板的地址与数字键输入诊断地址(如:X100)后,按[SEARCH]软功能键,直接检索,显示所需要的诊断参数。

4)按系统MDI/CRT面板上的换页键,亦可逐页诊断信号的状态。

(4)FS0i/PM0/16/18输入/输出信号的状态诊断

1)按系统MDI/DPL操作面板上的〖SYSTEM〗习键,显示系统页面。

2)按系统MDI/DPL操作面板上的〖DGNOS/PARAM〗键,显示诊断页面。

3)用MDI面板的地址与数字键输入诊断地址后,按〖NO检索〗键,直接搜索所需要的诊断参数。

4)按系统MDI/CRT操作面板上的〖PAGE〗键(换页)或〖CURSOR〗 (光标移动键),也可以逐页显示诊断信号的状态。

(5)输出信号的模拟发送在部分FANUC系统中,在PLC停止程序运行时,还可以通过修改输入、输出缓冲存储器的容,对外部信号进行模拟输出。以FS0为例,其操作步骤如下:

1)选择MDI操作方式或使系统进入“紧停”状态。

2)打开系统的“程序保护”开关。

3)按系统MDI/DPL操作面板上的〖OFFSET/SETTING〗键,系统显示偏置/设定页面。

4)按系统MDI/DPL操作面板上的〖SETTING〗软功能键,选择设定页面。

5)按系统MDI/DPL操作面板上的数字键,输入参数PWE=I,使参数写入“使能”。

6)按系统MDI/CRT操作面板上的〖DGNOS〗键,系统显示诊断页面。

7)按系统MDI/CRT操作面板上的〖PAGE〗键(换页),显示输出诊断信号所在的页面。

8)按〖CURSOR〗 (光标移动键),或通过输入诊断地址及〖INPUT〗键,将光标移动到需要输出的信号下。

9)按系统MDI/CRT操作面板上的数字键,输入诊断数据。

10)按〖INPUT〗键或〖START〗键,系统向输出端发送外部模拟输出信号。

由于输出信号的模拟发送直接控制了机床的动作,因此这一操作要在对机床的机械结构,特别是动作的“互锁”条件十分了解的前提下,才能进行以上操作;此外,PMC的工作也必须处于停止状态,因此,本方法通常只能在机床首次调试时使用,维修人员如无十分把握,最好还是使用手动操作电磁元器件等措施,进行输出信号的模拟控制。

通过系统的显示面板,除可以检查、诊断I/O接口信号的状态外,还可以检查系统的实际工作状态。在FANUC系统中包括以下几个方面。

1.自动运行停止的状态诊断

当机床在自动工作方式下,系统无报警,“循环起动”指示灯亮,但机床却没有动作(即出现所谓的“死机”)时,可以借助这些信息,观察系统的停机原因。在常用的FANUC系统中,对应的诊断参数及含义如下:

(1)FS0/6诊断参数地址及意义在FS0/6系统中,自动运行停止诊断参数号为DGN700、701,对应位的信号分别见表2-2和表2-3。

当DGN700、701对应位状态为“1”时,代表的意义如下

CSCT:等待主轴转速到达信号;

CITL:轴互锁信号接通:

COVZ:进给倍率为0%;

CINP:进行到位检测;

CDWL:暂停指令执行中;

CMTN:运动指令执行中;

CFIN:M、S、T指令执行中。

CRST:外部复位生效、复位按钮接通、复位与倒带信号生效;

CTRD:纸带阅读机接口的数据输入中;

CTPU:纸带阅读机接口的数据输出中。

(2)FSll诊断参数地址及意义在FSll系统中,自动运行停止诊断参数号为DGNl000、DGNl001,对应位状态为“1”时代表的意义如下:

DGNl000:

bit0:进行到位检测;

bitl:进给速度倍率为0%:

bit2:手动进给速度倍率为0%;

bit3:轴互锁信号接通或起动互锁信号接通;

bit4:等待主轴转速到达信号

bit5:等待主轴零脉冲信号(螺纹加工时用);

bit6:等待主轴位置信号(主轴每转进给用):

bit7:纸带读入中。

DGNl001:

bit0:后台编辑纸带读入中。

(3)FS 15/150诊断参数地址及意义在FANUC 15/150系统中,CNC

工作状态诊断与PLC状态诊断在不同的区域,它可以通过如下操作进入CNC工作状态诊断页面:

1)按MDI/CRT操作面板上的“机能选择”软功能键,进入系统的机能显示页面。

2)按〖SERVICE〗软功能键,进入维修页面。

3)通过MDI上的数字键输入诊断参数号(如:1000),按软功能键〖INP-NO〗可显示诊断数据DGNl000的状态。

4)在维修页面下,亦可通过按多次“选页”键,使诊断参数逐页显示检索所需的诊断页面。

通过诊断参数DGNl000、DGNl001,可以显示自动方式下、系统无报警、“循环起动”指示灯亮、但机床没有动作的原因。DGNl000、DGNl001各对应位状态显示为“1”时的含义如下:

DGNl000:

bit0:进行到位检测;

bit1:进给速度倍率为0%:

bit2:手动进给速度倍率为0%;

bit3:轴互锁信号或起动互锁信号接通;

bit4:等待主轴转速到达信号;

bit5:等待主轴零脉冲信号;

bit6:等待主轴位置信号;

bit7:纸带读入中。

DGNl001:

bit0:后台编辑纸带读入中。

(4)FS 0i/PM0/16/18诊断参数地址及意义

在PANUC 0i/PM0/16/18系统中,可以直接通过诊断参数DGN000至DGN016显示自动运行状态,这些信息指示了系统在执行自动指令时所处的状态。

2.不能自动运行的状态诊断

当机床在自动工作方式下,系统无报警,“循环起动”指示灯不亮,机床不能执行自动加工程序;或自动加工出现加工中断时,可以借助这些信息,观察故障的原因 (1)FS0/6诊断参数地址及意义

在FS0/6系统中,当自动操作方式下的加工过程出现停止时,诊断参数DGN712的信息指示了自动加工中断,以及“循环起动”灯(STL)关闭可能的原因(如下表)。

注意:DGN712的状态应在故障发生后即进行检查,若故障发生后系统电源被切断,当电源再次接通时,DGN712所有位将被清零。

通过各诊断数据的状态组合,可以分析、确定系统实际所处的状态,这些状态的含义见表2-5。

(2)FS11诊断参数地址及意义在FS11系统中,当自动操作方式下的加工过程出现停止时,诊断参数DGNl010的信息指示了由于“复位”信号引起“循环起动”灯(STL)关闭的原因,DGNl010对应位为“1”的含义如下:

ESP:紧停状态:

RRW:输入了复位或倒带信号

ERS:外部复位信号接通;

RST:系统复位键生效。

(3)FSl5诊断参数地址及意义在FSl5系统中,当自动运行方式下的加工出现停止时,诊断参数DGNl005-DGNl010的信息指示了自动加工中断,以及“循环起动”灯(STL)关闭可能的原因。诊断参数的显示操作方式同前述,对应位为“1”时的含义如下:

DGNl005:

bit0:在MDI方式下,DI或DO信号无效;

bit1:在重新定位(REPOS)方式下,DI或DO无效;

bit2:由于其他原因引起的加工中断。

DGNl006:

bit0:系统的自动运行停止信号(*SP)生效;

bitl:系统存在报警;

bit2:系统的程序重新起动信号(SRN)、为“1”;

bt3:所选择的程序在后台编辑中;

bit4:外部设备未准备好;

bit5:MDI未执行完成;

bit6:系统的刀具取消信号(TR ESC)生效;

bit7:系统不允许反向执行程序。

DGNl007:

bit0:外部报警信息;

bit2:系统出现P/S报警;

bit4:伺服报警;

bit5:I/O报警;

bit6:修改了需要关机生效的参数;

bit7:系统出错。

DGNl008:

bit0:后台编辑出现P/S报警;

bitl:程序编辑出现P/S报警;

bit2:系统过热;

bit0:子CPU出错;

bit4:同步出错;

bit5:参数写入开关被打开;

bit6:超程/外部数据输入、输出出错;

bit7:PMC出错。

DGNl009:

bit0:系统处于警告状态。

DGNl010:

bit0:系统紧停信号生效;

bitl:复位和反绕信号生效;

bit2:外部复位信号生效;

bit3:面板上的复位键生效。

(4)FS0i/PM0/16/18诊断参数地址及意义在FANUC 0i/PM0系统中,可以直接通过诊断参数DGN020到DGN025进行自动运行停止状态的显示,这些信息指示了系统不执行自动加工程序的原因。

通过表2-6的各诊断数据的状态组合,可以分析、确定系统实际所处的状态,这些状态的含义如图2-14所示。

表2-6 系统部工作状态显示

3.坐标轴的位置跟随误差检测坐标轴的位置跟随误差是坐标轴指令位置与实际位置间的差值,在数控机床上,它亦反映了系统的动态跟随精度与静态定位精度。这是在维修过程中,需要特别引起注意的重要参数。在不同的FANUC系统中,各坐标轴跟随误差的诊断参数号如

下:

(1)FS0/6诊断参数地址

DGN800:X轴位置跟随误差;

DGN801:Y轴位置跟随误差;

DGN802:Z轴位置跟随误差;

DGN803:4轴位置跟随误差。

(2)FS11/FS15诊断参数地址

DGN3000:与轴选择对应,为X、Y、Z、4、5轴位置跟随误差。

(3)FS0i/PM0/16/18诊断参数地址

DGN300:与轴选择对应,为X、Y、Z、4、5轴位置跟随误差。

除以上系统状态诊断信号外,FANUC系统还可以对各轴伺服驱动器以及编码器的各种报警信号进行诊断,以确定故障的原因,有关这方面的容参见本书第5章第5.2.3节。

CNC模块的状态显示与故障诊断

当数控系统发生报警时,通常情况下可以在系统显示器上显示报警号与报警容,但如果与显示功能有关的部分发生故障时,显示就无法进行,这时必须依靠系统主板或其他部分的指示灯(LED)的状态,进行故障分析、诊断与维修。

在不同的系统中,系统主板的状态指示有不同的含义,维修时应根据系统的不同区别对待。对于常见系统,主板的状态指示含义如下述。

FANUC6系统主板的状态显示与故障诊断

FANUC6系统主板上有五个LED作为系统错误状态指示,其含义如下:

1)WDALM:当系统主板上的WDALM指示灯亮时,为系统监控报警。

引起此报警原因一般为系统RAM出错,或者是系统功能参数(PRM 000~005、PRM300~304)设定错误。当出现以上故障时,在某些场合,一般可以通过RAM

的初始化操作进行清除。

注意:在FANUC 6系统中,还可以通过RAM测试操作,检测故障的RAM号。RAM测试的操作步骤如下:

1)确认系统RAM故障。

2)同时按住“-”与“.”,同时起动系统。

3)CRT显示画面:

IL—MODE

1、TAPE

2、MEMORY

3、ENPANE

4、BUBBLE

5、PC—LOAD

6、RAMTEST

4) 按数字键6,进入RAM测试状态。

5) 按START键,进行RAM0测试。

6) 再次按START键,进行RAMl测试。

7) 重复按START键,完成对全部(RAM0~RAMl0)的测试,测试结果状态与故障的RAM对应关系。

FANUC 主轴驱动系统的故障诊断与维修

FANUC公司生产的主轴驱动系统,主要可以分为直流主轴驱动系统与交流主轴驱动系统两大类。

直流主轴驱动系统通常用于20世纪80年代以前的数控机床上,多与FANUC 5、6、7系统配套使用。此类机床由于其使用时间己较长,一般都到了故障多发期,但由于当时数控机床的价格通常都比较昂贵,在用户中属于大型、精密、关键设备,保养、维护通常都较好,因此在企业中继续使用的情况比较普

遍,维修过程中遇到的也较多。

在交流主轴驱动系统方面,FANUC公司作为全世界最早开发交流主轴驱动系统的厂家之一,自1980年成功开发交流主轴系统以来,已经生产了多个系列的交流主轴驱动系统产品。作为数控机床维修中的常见产品,主要有以下几种: 1)A06B—10**(AC Model 1-40)系列交流主轴电动机与

A06B-6044系列交流主轴驱动器配套组成的模拟式交流主轴驱动系统系列产品。该系列主轴驱动系统为FANUC公司80年代初期的常用产品,主要配套的系统有FANUCll、FANUC0、FANUC 6等。该系列产品驱动器主回路采用PWM控制、大功率晶体管驱动的型式,输出功率围为1.5~37kW。驱动器采用了微处理器数字控制技术,带有速度、方向、起停控制信号接口与D/A转换器、实际转速/转矩信号输出、电气主轴定向准停(附加功能)等功能。驱动器具有良好的响应特性,在整个速度围工作平稳、振动和噪声较小,其中5.5kW以上的驱动器采用了回馈制动技术,可有效节能。主轴电动机全封闭的结构型式,硅钢片直接空气冷却,结构紧凑,可以在浮尘、切削液飞溅的场合安全、可靠地工作。2)A06B-10“(ACModell-40)系列交流主轴电动机与A06-6055系列数字式交流主轴驱动器配套组成的数字式交流主轴驱动系统系列产品。该系列产品所使用的主轴电动机与模拟式交流主轴系统相同,但驱动器为数字式。驱动系统在攻螺纹、定位刚性、快速性与操作性能上有了较大的改进,其余性能与模拟式交流主轴系统相似。

3)A06B-07**系列交流主轴电动机与A06-6059系列数字式交流主轴驱动器配套组成的交流主轴驱动系统系列产品。该系列主轴驱动系统为FANUC公司20世纪80年代中期开发的交流主轴改进型产品,主要配套的系统有FANUCll、FANUC0、FANUCl5等。该系列产品可分为S系列(标准型)、P系列(广域恒功率调速)、H系列(高速润滑脂)、VH系列(高速油雾润滑)、HV系列(高电压输入)等几个系列。产品一般与A06-6059系列数字式交流主轴驱动器配套使用,其中,S系列为常用产品,在数控机床上使用最广。

该系列产品主电动机采用了电磁心定子直冷的冷却型式,与早期的主轴驱动系统相比,提高了输出功率与转速,减小了系统的体积与重量;驱动器采用了更先进的控制技术和电子元器件,进一步提高了系统的性能。驱动系统功能强、可靠性好,在数控机床上得到了广泛应用,是数控机床维修过程中常见的主轴驱动系统之一。

4)FANUC α/ai系列主轴驱动系统,它是FANUC公司的最新产品,其中αi系列主轴驱动系统为本世纪初开发的最新数控机床主轴驱动系统系列产品,是α系列的改进型。

α/αi系列产品共有标准型α/αi系列、广域恒功率输出型αP/αPi系列、经济型αC/αCi系列、中空型(αT/αTi系列、强制冷却型

αL/αLi系列、高电压输入型α(HV)/α(HV)i系列、高电压输入广域恒功率输出型αP(HV)/αP(HV)i系列、高电压输入中空型αT(HV)/αT(HV)i系列、高电压输入强制冷却型αL(HV)/αL(HV)i系列等产品。其中αLi系列最高输出转速为20000r/min、α(HV)i系列最大额定输出功率可达l00kW,可满足绝大多数数控机床的主轴要求。

该系列产品的主要特点如下:

①通过绕组转换功能,进一步增加了高速输出围,缩短了加/减速时间,对于αPi 系列,其恒功率输出围比α系列扩大了1.5倍。

②采用了最新的定子直接冷却方式,进一步减小了电动机外型尺寸,提高了输出功率和转矩。

③通过精密的铝合金转子和严格的动平衡,使电动机在高速时振动级达到了V3级。

④可以选择不同的排风方向,尽可能减小机床热变形,同时通过最优的冷却通道设计,进一步改善了冷却性能。

⑤根据不同的使用要求,主电动机可以选用两种不同类型的装式位置/速度测量装置。即:具有A/B两相输出的Mi型编码器与具有A/B两相输出及零脉冲输出的Mzi型编码器,以满足不同用户的使用要求。

αi系列产品与α系列相比,其主要性能在以下两个方面作了改进:①通过使用高速绕组,提高了高速区的输出功率,解决了α系列在高速区域(8000-12000r/min)输出功率下降的问题。

②广域恒功率输出型(αPi系列)的电动机额定转速由750r/min降至为

500r/min,使恒功率调速围扩大了1.5倍(从1:10.6提高到1:16)。

FANUC α/αi系列数字式主轴驱动系统(驱动器型号为

A06-6078/6072系列)一般与FANUC 0C、FANUC l5、FANUC l6/18/20等系列数控系统配套使用。

FANUC直流主轴驱动系统的保护功能

为了保证驱动器的安全、可靠运行,FANUC直流主轴伺服系统在出现故障和异常等情况时,设置了较多的保护功能,这些保护功能与直流主轴驱动器的故障检测与维修密切相关。当驱动器出现故障时,可以根据保护功能的情况,分析故障原因。

(1)接地保护在伺服单元的输出线路以及主轴电动机部等出现对地短路时,可以通过快速熔断器瞬间切断电源,对驱动器进行保护。

(2)过载保护当驱动器、电动机负载超过额定值时,安装在电动机部的热开关或主回路的热继电器将动作,对电动机进行过载保护。

(3)速度偏差过大报警当主轴电动机的速度由于某种原因,偏离了指令速度且达到一定的误差后,将产生警报,并进行保护。

(4)瞬时过电流报警当驱动器中由于部短路、输出短路等原因产生异常的大电流时,驱动器将发出报警并进行保护。

(5)速度检测回路断线或短路报警当测速发电机出现信号断线或短路时,驱动器将产生报警并进行保护。

(6)速度超过报警当检测出的主轴电动机转速超过额定值的115%时,驱动器将发出报警并进行保护。

(7)励磁监控如果主轴电动机励磁电流过低或无励磁电流,为防止飞车,驱动器将发出报警并进行保护。

(8)短路保护当主回路发生短路时,驱动器可以通过相应的快速熔断器进行短路保护。

(9)相序报警当三相输入电源相序不正确或缺相状态时,驱动器将发出报警。

FANUC直流主轴驱动系统使用注意点

(1)安装注意事项 FANUC直流主轴伺服系统对安装有较高的要求,这些要求是保证驱动器正常工作的前提条件,在维修时必须引起注意。

1)安装驱动器的电柜必须密封。为了防止电柜温度过高,电柜设计时应将温升控制在15oC以下。电柜的外部空气引入口,应设置过滤器,并防止从排气口侵入尘埃或烟雾:电缆出入口、柜门等部分应进行密封,冷却电扇不要直接吹向驱动器,以免粉尘附着。

维修过程中,必须保证以上部分的完好,确保机床长期可靠工作。

2)电动机维修完成后,进行重新安装时,要遵循下列原则:

①电动机安装面要平,且有足够的刚性。

②电刷应定期维修及更换,安装位置应尽可能使其检修容易。

③电动机冷却进风口的进风要充分,安装位置要尽可能使冷却部分的检修容易。

④电动机应安装在灰尘少、湿度不高的场所,环境温度应在40oC以下。

⑤电动机应安装在切削液和油不能直接溅到的位置上。

(2)使用检查在对主轴驱动系统进行维修前,应进行如下驱动系统工作前的检查:

①检查伺服单元和电动机的信号线、动力线等的连接是否正确、牢固,绝缘是否良好。

②驱动器、电柜和电动机是否可靠接地。

③电动机电刷的安装是否牢靠,电动机安装螺栓是否完全拧紧。

在维修完成、动作正常后,还应对主轴驱动系统进行工作时的检查:

①检查速度指令与电动机转速是否一致,负载指示是否正常。

②电动机是否有异常声音和异常振动。

③轴承温度是否急剧上升等不正常现象。

④电刷上是否有显著的火花发生痕迹。

对于工作正常的主轴驱动系统,应进行如下日常维护:

①电柜的空气过滤器每月应清扫一次。

②电柜及驱动器的冷却风扇应定期检查。

③建议操作人员每天都应注意主轴电动机的旋转速度、异常振动、异常声音、通风状态、轴承温度、外表温度和异常臭味。

④建议使用单位维护人员,每月应对电刷、换向器进行检查。

⑤建议使用单位维护人员,每半年应对测速发电机、轴承、热管冷却部分、绝缘电阻进行检测。

FANUC直流主轴驱动系统的故障诊断

(1)主轴电动机不转引起主轴不转的原因主要有:

①印制电路板不良或表面太脏。

②触发脉冲电路故障,晶闸管无触发脉冲产生。

③主轴电动机动力线断线或电动机与主轴驱动器连接不良。

④机械联接脱落,如高//氐档齿轮切换用的离合器啮合不良。

⑤机床负载太大。

⑥控制信号未满足主轴旋转的条件,如转向信号、速度给定电压未输入。

(2)电动机转速异常或转速不稳定引起电动机转速异常或转速不稳定的原因有:

①D/A转换器故障。

②测速发电动断线或测速机不良。

③速度指令电压不良。

④电动机不良,如:励磁丧失等。

⑤电动机负荷过重。

⑥驱动器不良。

3)主轴电动机振动或噪声太大引起主轴电动机振动或噪声太大故障的原因有:

①电源缺相或电源电压不正常。

②驱动器上的电源开关设定错误(如:50/60Hz切换开关设定错误等

③驱动器上的增益调整电路或颤动调整电路的调整不当。

④电流反馈回路调整不当。

⑤三相电源相序不正确。

⑥电动机轴承存在故障。

⑦主轴齿轮啮合不良或主轴负载太大。

(4)发生过流报警引起过流报警可能的原因有:

①驱动器电流极限设定错误。

②触发电路的同步触发脉冲不正确。

③主轴电动机的电枢线圈部存在局部短路。

④驱动器的+15V控制电源存在故障。

(5)速度偏差过大引起速度偏差的原因有:

①机床切削负荷太重。

②速度调节器或测速反馈回路的设定调节不当。

③主轴负载过大、机械传动系统不良或制动器未松开。

④电流调节器或电流反馈回路的设定调节不当。

(6)熔断器熔丝熔断引起熔断器熔丝熔断的原因主要有:

①驱动器控制印制电路板不良(此时,通常驱动器的报警指示灯LEDl亮)。

②电动机不良,如:电枢线短路、电枢绕组短路或局部短路,电枢线对地短路等等。

③测速发电机不良(此时,通常驱动器的报警指示灯LEDl亮)。

④输入电源相序不正确(此时,通常驱动器的报警指示灯LED3亮)。

⑤输入电源存在缺相。

(7)热继电器保护这时驱动器的LED4灯亮,表示电动机存在过载。

(8)电动机过热这时驱动器的LED4灯亮,表示电动机连续过载,导致电动机温升超过。

(9)过电压吸收器烧坏通常情况下,它是由于外加电压过高或瞬间电网电压干扰弓起的。

(10)运转停止这时驱动器的LED5灯亮,可能的原因有电源电压太低、控制电源存在故障等。

(11)LED2灯亮驱动器的LED2灯亮,表示主电动机励磁丧失,可能的原因是励磁断线、励磁回路不良等。

(12)速度达不到最高转速引起电动机速度达不到最高转速的原因主要有:

①电动机励磁电流调整过大。

②励磁控制回路存在不良。

③晶闸管整流部分太脏,造成直流母线电压过低或绝缘性能降低。

(13)主轴在加/减速时工作不正常造成此故障的原因主要有以下几种:

①电动机加/减速电流极限设定、调整不当。

②电流反馈回路设定、调整不当。

③加/减速回路时间常数设定不当或电动机/负载间的惯量不匹配。

④机械传动系统不良。

(14)电动机电刷磨损严重或电刷面上有划痕造成电动机电刷磨损严重或电刷面上有划痕的原因有:

①主轴电动机连续长时间过载工作。

②主轴电动机换向器表面太脏或有伤痕。

③电刷上有切削液进入。

④驱动器控制回路的设定、调整不当。

FANUC伺服系统的故障诊断与维修

伺服系统的故障诊断,虽然由于伺服驱动系统生产厂家的不同,在具体做法上可能有所区别,但其基本检查方法与诊断原理却是一致的。诊断伺服系统的故障,一般可利用状态指示灯诊断法、数控系统报警显示的诊断法、系统诊断信号的检查法、原理分析法等等。

FANUC伺服驱动系统与FANUC数控系统一样,是数控机床中使用最广泛的伺服驱动系统之一。从总体上说,FANUC伺服驱动系统可以分为直流驱动与交流驱动两大类。如前所述,直流驱动又有SCR速度控制单元与PWM速度控制单元两种形式;交流驱动分模拟式交流速度控制单元与数字式交流速度控制单元两种形式。在1985年以前生产的数控机床上,一般都采用直流伺服驱动,其配套的控制系统有FANUC的FS5、FS6、FS7系统等。随后生产的数控机床上,一般都采用交流伺服驱动,其配套的控制系统有FANUC的FS0、FSll、FSl5/16系统等。

FANUC直流伺服系统的故障诊断与维修——SCR速度控制单元的常见故障与维修

直流伺服系统一般用于20世纪80年代中期以前生产的数控机床上,这些数控机床虽然距今已经有二十多年,但由于当时数控系统的价格十分昂贵,通常只有在高、精、尖设备中才采用数控,因此,其机床的刚性、可靠性等各方面性能通常都较好,即使在今天,很多设备还是作为企业的关键设备在使用中,故直流伺服系统的维修仍然是今天数控机床维修的重要容。

1.SCR速度控制单元的常见故障与维修

SCR速度控制单元的主要故障与可能的原因,常见的有以下几种。

(1)速度控制单元熔断器熔断造成速度控制单元熔断器烧断的原因有下述几种:

1)机械故障造成负载过大。如:滑动面摩擦系数太大;齿轮啮合不良;工件干涉、碰撞;机械锁紧等。以上故障可通过测量电动机电流来判断确认。

2)切削条件不合适。如:机床切削量过大,连续重切削等。

3)控制单元故障。如:控制单元的元器件损坏,控制板上设定端设定错误,电位器调整不当等。

4)速度控制单元与电动机间的联接错误。如:速度负反馈被接成正反馈,使电动机飞车或使系统振荡。

5)电动机选用不合适或电动机不良。如:因为直流电动机的退磁,造成需要过大的励磁电流,从而引起速度控制单元熔断器烧断。

直流电动机去磁的检查方法如图5-9所示。通过测量图5-9

上的电压表和电流表指示值,并按下式计算,可以判别电动机反电势常数足K e 是否正常,从而确定电动机是否退磁。

式中V——测量的电压值(V):

I——测量的电流值(A):

R m——电枢电阻(Ω);

n——电动机转速(r/min)

Ke——电动机反电动势系数(V/1000 r/min)。

若上式成立,则证明电动未退磁。

不同型号的电动机,其电枢电阻和反电动势系数的值也是不相同的,对于常用的FANUC直流伺服电动机。

6)相序不正确。SCR速度控制单元由于存在晶闸管触发脉冲与主电路的同步问题,因此对电源的输入有相序的要求。若相序不正确,则接通电源后将造成速度控制单元的输入熔断器的熔断。相序检查可以通过用相序表或示波器进行,如图5-10所示。

用相序表测量时,在主回路与同步电源R、S、T连接一一对应的前提下,测量R、S、T的相序,当相序正确时,相序表应按顺时针方向旋转(如图5-10a)。

用示波器测量时,在主回路与同步电源R、S、T连接一一对应的前提下,双线示波器按照图5-10b连接,当U AB、U CB的波形为图5-10b所示时(两个波形在相位上相差120°),则表明相序正确。

注意:在直流伺服驱动系统中,相序必须一一对应,因此不可以用观察交流电动机转向的方式,来检查相序。

(2)状态指示灯显示的报警 FANUC公司生产的SCR速度控制单元,在控制线路板上带有3个状态指示灯,它们分别为PRDY、TGLS和OVC指示灯,其含义如下:

PRDY:绿色指示灯,指示灯亮则表示速度控制单元工作正常。

TGLS:红色指示灯,指示灯亮则表示与速度控制单元连接的测速发电机报警。OVC:红色指示灯,指示灯亮则表示速度控制单元发生过电流报警。

常见的故障现象与原因有:

1)PRDY指示灯不亮。当系统通电后,如果表示速度控制单元的PRDY指示灯不亮,则造成故障的可能原因有:

①数控系统或伺服驱动器(速度控制单元)存在报警。故障诊断可以通过数控系统的报警显示、数控系统印制电路板上的报警指示以及机床的故障提示进行,并根据以上提示的容与有关说明进行处理。

②速度控制单元熔断器熔断。速度控制单元的功率部分和触发电路板上,均安装有熔断器,当熔断器熔断时,PRDY指示灯不亮。

③伺服变压器过热、变压器温度检测开关动作。变压器的温度可以这样进行检查:在刚切断电源时,马上用手触摸变压器的铁心或线圈,若用手能承受得住变压器的温度(≤60℃),则说明变压器未过热,故障原因可能是温度检测开关不良,应更换温度检测开关;若用手只能承受几秒钟,则说明变压器过热,需要断电半小时以上,待变压器冷却后再进行试验。如通电后仍过热,原因可能是负载过大或变压器不良(如变压器线圈局部短路,绝缘损坏等)。

④来自机床侧的原因。如操作、设定不当,系统处于急停状态等。

⑤系统的位置控制或驱动器速度控制的印制电路板不良。可以通过互换法或更换备件进行确认。

⑥辅助电源电压异常。即:+5V,+24V,+15V,-15V电源故障。

⑦安装、接触不良。如:速度控制单元与系统位置控制板之间的连接不良等。

⑧驱动器发生TGLS或OVC报警。按检查TGLS或OVC报警的方法处理。

2)TGLS灯亮。TGLS灯亮表示速度控制单元发生了测速发电机断线报警,其可能的原因是:

①作为速度反馈的部件(如:测速发电机或脉冲编码器)的测量信号线断线或连接不良。

②电动机的电枢线断线或连接不良。

3) OVC灯亮。OVC灯亮表示速度控制单元发生了过电流报警,其可能的原因是:

①过电流设定不当。应检查速度控制单元上的过电流设定电位器RV3的设定是否正确。

②电动机负载过重。应改变切削条件或机械负荷,检查机械传动系统与进给系统的安装与连接。

③电动机运动有振动。应检查机械传动系统、进给系统的安装与连接是否可靠,测速机是否存在不良。

④负载惯量过大。

⑤位置环增益过高。应检查伺服系统的参数设定与调整是否正确、合理。

⑥交流输入电压过低。应检查电源电压是否满足规定的要求。

有关速度控制单元的设定与调节可以参见本章5.2.5节所述。

(3)超过速度控制围速度控制单元超速的原因有下述几种:

1)测速反馈连接错误,如:被接成正反馈或断线。

2)在全闭环系统中,联轴器、电动机与工作台的连接不良,造成速度检测信号不正确或无速度检测信号。

3)位置控制板发生故障,使来自F/V转速的速度反馈信号未输入到速度控制单元;

4)速度控制单元设定不当。

(4)机床振动若坐标轴在数控机床停止时或移动过程中出现振动、爬行, 除系统本身设定、调整不当外,在驱动器上引起机床振动的原因主要有下述几种:1)机械系统连接不良,如:联轴器损坏等。

2)脉冲编码器或测速发电机不良。对于脉冲编码器或测速发电机不良的情况,可按下述方法进行测量检查。首先,将位置环、速度环断开,手动电动机旋转,观察速度控制单元印制电路板上F/V变换器的电压(检测端子CHl2),如果出现图5-11所示的电压突然下跌的波形,则说明反馈部件不良。

3)电动机电枢线圈不良(如:部短路)。这种情况可以通过测量电动机的空载电流进行确认,若空载电流随转速成正比增加,则说明电动机部有短路现象。出现本故障一般应首先清理换向器、检查电刷等环节,再进行测量确认。如果故障现象依然存在,则可能是线圈匝间有短路现象,应对电动机进行维修处理。

4)速度控制单元不良。应首先检查速度控制单元的调整与设定,若调整与设定正确,可通过更换速度控制单元的印制电路板或进行维修处理。

5)外部干扰。对于固定不变的干扰,可检查F/V变换器(CH2检测端子),电流检测(CHll)端子,以及同步端(CHl3A~C)的波形,检查是否存在干扰,并采取相应的措施。对于偶然性干扰,只有通过有效的屏蔽、可靠的接地等措施,尽可能予以避免。

6)系统振荡。应观察电动机电流的波形是否有振荡,引起振荡的可能原因是RVl 调整不当,测速机不良,或是丝杠的间隙太大等原因。

(5)超调当速度控制单元本身无故障时,造成系统超调的原因有下述几种:1)伺服系统速度环增益太低或位置环增益太高。可以通过调整速度控制单元电位器RVl,提高速度环增益;或通过改变系统的机床参数,降低位置环增益进行优化。此外,还可以通过改变速度控制单元的S6、S7、S9设定等措施解决。

2)提高伺服进给系统和机械进给系统的刚性。

(6)单脉冲进给精度差产生这种现象的原因有以下几种:

1)机械传动系统的间隙、死区或精度不足。应重新调整机械传动系统消除间隙,减小摩擦阻力,提高机械传动系统的灵敏度。

2)伺服系统速度环或位置环增益太低。这时可以通过调整速度控制单元的电位器RVl解决。

发那科数控系统难点

目录编辑 前言 第1章FANUC 0i数控车床的操作 1.1数控车床操作面板 1.1.1CRT/MDI操作面板 1.1.2机床位置界面 1.1.3程序管理界面 1.2数控车床的手动操作 1.2.1开机 1.2.2回参考点 1.2.3手动连续进给操作 1.2.4手轮操作 1.2.5主轴手动操作 1.3程序的管理与编辑 1.3.1创建新程序 1.3.2删除程序 1.3.3搜索数控程序 1.3.4编辑CNC程序(删除、插入、替换) 1.3.5行的删除 1.3.6确立自动插入程序段顺序号的功能 1.3.7扩展的程序编辑功能 1.3.8背景编辑 1.4数控车床重要参数设置 1.4.1设置刀具磨耗值 1.4.2设置刀具形状(偏置)值 1.4.3显示和设置工件原点偏移值 1.5数控车床的图形模拟加工 1.6程序运行 1.6.1MDI方式运行数控程序 1.6.2自动加工 1.6.3中断运行 1.6.4自动/单段方式 1.7安全操作 1.7.1报警 1.7.2急停处理 1.7.3超程处理 1.8数控程序检查 1.8.1图形模拟检查程序 1.8.2机床锁住和辅助功能锁住 1.8.3空运行 1.8.4单程序段运行 1.8.5试切削 1.9数控车床操作的一般步骤

1.9.1开机 1.9.2回零 1.9.3工件装夹 1.9.4对刀 1.9.5编辑并调用程序 1.9.6图形模拟加工 1.9.7程序试运行 1.9.8自动加工 1.9.9测量工件 1.9.10结束加工、关机 第2章数控车床夹具、刀具的使用及对刀操作 2.1数控车床工件的定位方法和装夹方式 2.1.1定位基准 2.1.2轴类零件常用的定位方法 2.1.3盘套类零件的定位方法 2.1.4数控车床常用的装夹方式 2.2数控车床的夹具 2.2.1自定心卡盘及其装夹校正 2.2.2单动卡盘及其装夹校正 2.2.3软爪与弹簧夹套 2.2.4两顶尖拨盘和拨动顶尖 2.2.5花盘、角铁和常用附件 2.2.6心轴 2.3数控车床刀具及其使用 2.3.1车刀的类型 2.3.2常用数控车刀的刀具参数 2.3.3机夹可转位车刀介绍及选用 2.4车刀的安装 2.4.1车刀的装夹步骤和装夹要求(以外圆刀为例)2.4.2数控车床常用的刀架 2.4.3普通焊接车刀的安装 2.4.4机夹可转位车刀的安装 2.5螺纹车刀的装夹与刃磨 2.5.1螺纹车刀的装夹 2.5.2螺纹加工刀具的刃磨 2.6对刀操作 2.6.1刀位点 2.6.2换刀点位置的设定 2.6.3对刀的基本原理 2.6.4对刀的方法 2.6.5对刀注意事项 第3章FANUC 0i数控车床加工实例 3.1简单轴类零件的数控加工 3.1.1工艺的分析

数控机床维护及数控系统故障诊断002

烟台工程职业技术学院 数控系数控设备应用与维护专业 08 级 毕业设计(论文) 题目: 数控机床维护及数控系统故障诊 断 姓名崔越学号 指导教师(签名) 二○一○年十月十日

目录 摘要 (4) 前言 (5) 二数控机床的介绍 (6) (一) 数控机床的概述及特点 (6) (二) 数控机床的分类 (6) (三) 合理地使用数控机床 (6) 三数控机床故障诊断与维修的基本概念 (6) (一)数控机床维修的意义及特点 (6) (二)数控机床故障分类与维修方法 (7) (三)数控机床的维护 (11) 四数控系统故障诊断与维修 (12) (一)数控系统维修基础 (13) (二)数控系统的常见故障诊断与分析 (18) 五结论 (22) 六结束语 (23) 七参考文献 (24)

数控机床维护及数控系统故障诊断 崔越 【摘要】科学技术的发展,对机械产品提出了高精度、高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。数控机床就是针对这种要求而产生的一种新型自动化机床。数控机床集微电子技术、计算机技术、自动控制技术及伺服驱动技术、精密机械技术于一体,是高度机电一体化的典型产品。它本身又是机电一体化的重要组成部分,是现代机床技术水平的重要标志。数控机床体现了当前世界机床技术进步的主流,是衡量机械制造工艺水平的重要指标,在柔性生产和计算机集成制造等先进制造技术中起着重要的基础核心作用。因此,如何更好的使用数控机床是一个很重要的问题。由于数控机床是一种价格昂贵的精密设备,因此,其维护更是不容忽视。 数控机床的生产厂商加强数控机床故障诊断与维修的力量,可以提高数控机床的质量,有利于数控机床的推广和使用。数控机床的使用单位培养掌握数控机床故障诊断与维修的技术人员,有利于提高数控机床的使用率。随着数控机床的使用和推广,培养更多的掌握数控机床故障诊断与维修的高素质人才的任务也越来越迫切。 因此学习数控机床故障诊断与维修的技术和方法有重要的意义。

FANUC 数控系统简介

FANUC 数控系统简介 一、FANUC数控系统的发展 1、FANUC 公司创建于1956年,1959年首先推出了电液步进电机,在后来的若干年中逐步发展并完善了以硬件为主的开环数控系统。进入70年代,微电子技术、功率电子技术,尤其是计算技术得到了飞速发展,FANUC公司毅然舍弃了使其发家的电液步进电机数控产品,一方面从GETTES公司引进直流伺服电机制造技术。1976年FANUC公司研制成功数控系统5,随时后又与SIEMENS公司联合研制了具有先进水平的数控系统7,从这时起,FANUC公司逐步发展成为世界上最大的专业数控系统生产厂家,产品日新月异,年年翻新。 2、1979年研制出数控系统6,它是具备一般功能和部分高级功能的中档CNC系统,6M适合于铣床和加工中心;6T适合于车床。与过去机型比较,使用了大容量磁泡存储器,专用于大规模集成电路,元件总数减少了30%。它还备有用户自己制作的特有变量型子程序的用户宏程序。 3、1980年在系统6的基础上同时向抵挡和高档两个方向发展,研制了系统3和系统9。系统3是在系统6的基础上简化而形成的,体积小,成本低,容易组成机电一体化系统,适用于小型、廉价的机床。系统9是在系统6的基础上强化而形成的具备有高级性能的可变软件型CNC系统。通过变换软件可适应任何不同用途,尤其适合于加工复杂而昂贵的航空部件、要求高度可靠的多轴联动重型数控机床。

4、1984年FANUC公司又推出新型系列产品数控10系统、11系统和12系统。该系列产品在硬件方面做了较大改进,凡是能够集成的都作成大规模集成电路,其中包含了8000个门电路的专用大规模集成电路芯片有3种,其引出脚竟多达179个,另外的专用大规模集成电路芯片有4种,厚膜电路芯片22种;还有32位的高速处理器、4兆比特的磁泡存储器等,元件数比前期同类产品又减少30%。由于该系列采用了光导纤维技术,使过去在数控装置与机床以及控制面板之间的几百根电缆大幅度减少,提高了抗干扰性和可靠性。该系统在DNC方面能够实现主计算机与机床、工作台、机械手、搬运车等之间的各类数据的双向传送。它的PLC装置使用了独特的无触点、无极性输出和大电流、高电压输出电路,能促使强电柜的半导体化。此外PLC的编程不仅可以使用梯形图语言,还可以使用PASCAL语言,便于用户自己开发软件。数控系统10、11、12还充实了专用宏功能、自动计划功能、自动刀具补偿功能、刀具寿命管理、彩色图形显示CRT等。 5、1985年FANUC公司又推出了数控系统0,它的目标是体积小、价格代,适用于机电一体化的小型机床,因此它与适用于中、大型的系统10、11、12一起组成了这一时期的全新系列产品。在硬件组成以最少的元件数量发挥最高的效能为宗旨,采用了最新型高速高集成度处理器,共有专用大规模集成电路芯片6种,其中4种为低功耗CMOS专用大规模集成电路,专用的厚膜电路3种。三轴控制系统的主控制电路包括输入、输出接口、PMC(Programmable Machine

数控车床常见故障和常规处理方法

数控车床常见故障和常规处理方法一、数控车床常见故障分类 数控车床是一种技术含量高且较复杂的机电一体化设备,其故障发生的原因一般都较复杂,给数控车床的故障诊断与排除带来不少困难。为了便于故障分析和处理,数控车床的故障大体上可以分为以下几类。 1.主机故障和电气故障 一般说来,机械故障比较直观,易于排除,电气故障相对而言比较复杂。电气方面的故障按部位基本可分为电气部分故障、伺服放大及位置检测部分故障、计算机部分故障及主轴控制部分故障。至于编程而引起的故障,大多是由于考虑不周或输入失误而造成的,只需按提示修改即可。 (1)主机故障。数控车床的主机部分主要包括机械、润滑、冷却、排屑、液压、气动与防护等装置。常见的主机故障有因机械安装、调试及操作使用不当等原因引起的机械传动故障与导轨运动摩擦过大故障。故障表现为传动噪声大,加工精度差,运行阻力大。 (2)电气故障。 ①机床本体上的电气故障。此种故障首先可利用机床自诊断功能的报警号提示,查阅梯形图或检查i/o接口信号状态,根据机床维修说明书所提供的周纸、资料、排故流程图、调整方法,并结合工作人员的经验检查。 篷悯服放大及检测部分故障。此种故障可利用计算机自诊断功能的报警号,计算机及伺服放大驱动板上的各信息状态指示灯,故障报警指示灯,参阅维修说明书上介绍的关键测试点的渡形、电压值,计算机、伺服放大板有关参数设定,短路销的设置及其相关电位器的调整,功能兼容板或备板的替换等方法来作出诊断和故障排除。 @计算机部分故障。此种故障主要利用计算机自诊断功能的报警号,计算机各板上的信息状态指示灯,各关键测试点的波形、电压值,各有关电位器的调整,各短路销的设置,有关机床参数值的设定,专用诊断组件,并参考计算机控制系统维修手册、电气图等加以诊断及排除。 ④交流主轴控制系统故障。交流主轴控制系统发生故障时,应首先了解操作者是否有过不符合操作规程的意外操作,电源电压是否出现过瞬问异常,进行外观检查是否有短路器跳闸、熔丝断开等直观易查的故障。如果没有,再确认是属于有报警显示类故障.还是无报警显示类故障,根据具体情况而定。 2.系统故障和随机故障 (1)系统故障。此故障是指只要满足一定的条件,机床或数控系统就必然出现的故障。如,网络电压过高或过低,系统就会产生电压过高报警或电压过低报警;切削用量安排得不合适,就会产生过载报警等。 (2)随机故障。此类故障是指在同样条件下.只偶尔出现一次或两次的故障c要想人为地再使其出现同样的故障则是不太容易的,有时很长时间也难再遇到一次。这类故障的诊断和排除都是很困难的。一般情况下,这类故障往往与机械结构的局部松动、错位,数控系统中部分组件工作特性的漂移.机床电气组件可靠性下降等有关。比如:一台数控机床本来正常工作,突然出现主轴停止时产生漂移,停电后再进电,漂移现象仍不能消除。调整零漂电位器后现象消失,这显然是工作点漂移造成的。因此,排除此类故障应经过反复实验,综合判断。有些数控机床采用电磁离合器变挡,离合器剩磁也会产生类似的现象。 3.显示故障和无显示故障 以故障产生时有无自诊断显示来区分这两类故障。 (1)有报警显示故障。现在的数控系统都有较丰富的自诊断功能,可显示出百余种的报警信号。其中,太部分是cNc系统自身的故障报警,有的是数控机床制造厂利用操作者信息,

数控系统不能上电的故障诊断

任务1 数控系统不能上电的故障诊断 【任务目标】 1、了解FANUC 0i D数控系统的配置; 2、掌握数控系统的电源控制线路; 3、掌握数控系统黑屏类故障的排除方法; 4、能够排除数控系统不能上电的故障。 【任务描述】 有一台YL559数控车床,配备FANUC 0i TD数控系统,机床上电后,数控系统一直处于黑屏状态,如图4-1-1所示。本次任务的工作是找出故障原因并能排除故障。 图4-1-1 故障现象 【资讯计划】 一、资料准备 要完成本任务中的故障诊断及排除工作,需要配备以下资料: 1、FANUC 0i D数控系统硬件连接说明书; 2、FANUC 0i D数控系统维修说明书; 3、YL559数控机床电气原理图; 4、故障记录单。 二、工具、材料准备 要完成本任务中的故障诊断及排除工作,需要配备以下工具和材料,具体见表4-1-1。 表4-1-1 工具和材料清单

三、知识准备 1、FANUC 0i D 数控系统 目前北京FANUC 生产的FANUC 0i D 数控系统有加工中心/铣床用的0i MD/0i mate MD 和车床用的0i TD/ 0i mate TD ,各系统的配置如表4-1-2所示: 表4-1-2 0i D 数控系统配置 注:对于βi 系列, 如果不配FANUC 的主轴电机, 伺服放大器是单轴型或双轴型, 如果配主轴电机,放大器是一体型(SVSPM)。 2、CNC 上电回路分析 FANUC 0i D 数控系统使用DC24V 电源,数控系统获得电源、正常工作后,会进入系统版本号显示屏幕,系统进入初始化的过程。 CNC 所需要的外部DC24V 电源可使用开关电源。机床上的开关电源是把AC220V 输入电源整流成输出为DC24V 的稳压电源。在FANUC 数控系统中,此电源是外购件,FANUC 不负责此电源的维修。图4-1-2为开关电源实物图。 图4-1-2 开关电源

FANUC数控系统故障现象分析与处理

FANUC数控系统故障现象分析及处理 1.FS6系列,第一机床厂的CK6140数控车床(系统:system-3TD31-05。CNC主板型号:A20B-0008-0200.211。主轴伺服控制板型号: A350-0008-T372/04。) 例1 车床主轴无论正、反转,运转约5min后,按停止按钮,主轴旋转不能立即停止(无制动),若再启动机床主轴(不论方向如何)时,机床CRT 无显示报警号,主轴驱动器控制板上的LED3灯亮,机床不能运行。 分析排除:该车床为直流主轴驱动,LED3灯亮的原因是直流电机输入电源相序不正确或缺相造成,由于机床已使用过,接线未动,不可能是相序不正确,应是缺相造成。缺相原因可能是某个晶闸管损坏或驱动器未触发其晶闸管工作转换(逆变)。因主轴开始能运行一段时间,只要不是热稳定性差应是未触发晶闸管工作转换(逆变)所致。速度反馈回路、电流反馈回路及其控制电路是造成未触发晶闸管工作转换(逆变)的主要原因。故①查主轴编码器及其传动,传动无松动,编码器工作正常,说明速度反馈回路正常。②更换主轴伺服控制板备用板,故障现象未改变(该板在另一台车床上试用正常),说明控制回路正常。③在电流反馈回路上,因未检测到零电流,系统撤消了触发脉冲,出现逆变颠覆导致缺相报警,更换电流互感器后故障消除。 例2 用换刀指令开始找不到刀位号,经修理刀架又不能锁紧,但在所指定的刀位处刀架有停顿现象,然后刀架继续旋转。 分析排除:刀架找不到刀位号一般是接近开关无DC24V或8个接近开关中有损坏的。刀架不能锁紧一般是刀架电机反转延时参数不对,或刀架夹紧到位限位开关不起作用,或锁紧机构有故障。经关机后用手盘刀架电机,刀架锁紧正常,说明锁紧机构正常,用万用表查限位开关,动作和线路正常,说明不是限位开关不起作用。故①查接近开关无DC24V,系电源线端脱焊所致。②焊好脱线后,刀架能在指定刀位有停顿现象,但刀架未锁紧,说明刀架PLC输入输出信号正常,进一步检查系夹紧延时参数不对所致,调整后故障排除。 2.FANUCserier0iMate-TC,机床集团有限责任公司生产的CKA6150车床(系统:001940D711-01。CNC:A20B-311-B500。伺服放大器:A06B-6130-H002。I/O:A20B-2002-0520/07A。) 例1 在加工零件过程中系统停电,按系统上电按钮开关后,系统无反应。经查找维修后再给系统上电,机床报警,CRT显示报警号为“2004 feedrate override zero”,伺服放大器上的LED电源灯不亮,机床不能运行。 分析排除:停电后开始按系统上电按钮开关,系统无反应,由于无机床电路图,只能打开电器柜和操作面板检查控制电路,经查启动按钮常开触点两侧(线号54,52与中间继电器KA11的常开触点并联)无DC24V电压,停止按钮常闭触点两侧(线号51,52)导通正常,KA11线圈一端接54号线,另一端接电源负极,说明线号51与电源正极不导通,经查是该导线断开造成,修复后系统上电正常(KA11吸合正常)。再查给伺服送强电的KM11交流接触器未吸合,KM11线圈一端和控制变压器的5、6接线端的0号线接,另一端线号107接到伺服放大器的CX29(MCC)接口(线号107、106),再接到另一伺服放大器的CX29(MCC)接口(线号106、3L+),线号3L+再经空开与控制变压器的5、6接线端的32 号线接,通电检查线号0与3L+的电压为AC220V,说明故障与放大器接口线路未导通有关,而伺服使能信号是通过中间继电器KA13(外部允许…急停、限位开

挖掘机常见故障分析及排除

编订:__________________ 单位:__________________ 时间:__________________ 挖掘机常见故障分析及排 除 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6042-63 挖掘机常见故障分析及排除 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 挖掘机是土石方工程中的主要施工机械,广泛应用于建筑、筑路、水利、露天采矿和国防工程中。挖掘机若不及时保养就可能出现各种故障,本人根据自己的实践经验,对挖掘机的常见故障做以下分析,仅供参考。 1挖掘机不能启动或启动困难 1.1电气系统故障 1.1.1蓄电池电量不足,此时应及时对蓄电池充电,检查蓄电池液面高度,及时补充电解液至规定高度。如果发现蓄电池老化充电不良,就应该更换蓄电池,同时注意电池的日常保养,不要让蓄电池经常处于亏电状态。 1.1.2启动机故障维修或更换启动机。 1.1.3发电机故障维修或更换发电机。

1.1.4线路故障检查线路并修复。 1.2发动机油路故障 1.2.1低压油路气阻 在输油泵或喷油泵的抽吸作用下,燃油由油箱经低压油路送到高压泵。若低压油路封闭不严,或油箱内油面过低,而车辆倾斜停放和行驶,空气会趁机进入油路;若气温高,燃油蒸发,也会在低压油路形成气阻,造成发动机工作不稳,自动熄火或发动机不能启动。 1.2.2油路堵塞 油路堵塞的常见部位主要有油箱内的吸油管、滤网、柴油滤清器、油箱盖通气孔等。造成油路堵塞的主要问题是注入了不符合标准的柴油,或在加油过程中混进杂质。预防关键是保证柴油清洁及油路密封,对油路进行经常性保养,加强对柴油滤清器的清洁保养,及时清洗或更换滤芯,根据作业环境条件及时对油箱进行清洗,彻底去除油箱底部的油泥及水分。 1.2.3喷油泵的故障

数控机床的故障分析及消除措施

山东广播电视大学 毕业论文(设计)评审表题目___数控机床的故障分析及消除措施 姓名孙中波教育层次专科 学号省级电大山东广播电视大学专业市级电大泰安广播电视大学指导教师于婷教学点宁阳

目录 摘要与关键词 (3) 1、引言 (3) 2、数控机床故障诊断分析 (3) 2.1数控机床的故障规律 (3) 2.2数控机床故障诊断的一般步骤 (4) 2.3数控机床的常用检修方法 (5) 3、数控机床常见故障诊断与维修 (6) 3.1数控机床机械结构故障诊断与维修 (6) 3.2常见伺服系统故障及诊断 (11) 3.3数控机床P L C故障诊断方法 (13) 4、数控机床常见故障诊断及维修实例 (14) 结论 (16) 致谢 (16) 参考文献 (17)

题目:数控机床的故障分析及消除措施 【摘要】本文主要研究数控机床故障分析及消除措施的相关内容。从数控机床故障诊断的基础内容谈起,介绍数控机床故障规律,故障诊断的一般步骤及方法。接着讲述数控机床的常见故障,包括机械故障、伺服系统故障、PLC等电气故障。最后通过实例具体介绍数控机床故障产生后分析处理的过程。从而得知,数控机床维修是一门复杂的技术,要熟悉数控机床的各个部分,理论加实践,提高工作效率。 【关键词】数控机床、故障、诊断、维修 1 引言 数控技术是现代机械制造工业的重要技术装备,也是先进制造技术的基础技术装备。随着电子技术的不断发展,数控机床在我国的应用越来越广泛,但由于数控机床系统及其复杂,又因大部分具有技术专利,不提供关键的图样和资料,所以数控机床的维修成为了一个难题。论文将涉及数控机床简单介绍、故障现象描述或给出典型实例、故障的成因的分析和论证、故障诊断过程及消除故障的措施等内容。本论文将参考相关资料,根据自己的实际工作经验进行编写,力求为广大数控机床维修者提供可借鉴的经验。 2 数控机床故障诊断分析 数控机床是个复杂的系统,一台数控机床既有机械装置、液压系统,又有电气控制部分和软件程序等。组成数控机床的这些部分,由于种种原因,不可避免地会发生不同程度、不同类型的故障,导致数控机床不能正常工作。这些原因大致包括:机械锈蚀、磨损和失效;元器件老化、损坏和失效;电气元件、接插件接触不良;环境变化,如电流或电压波动、温度变化、液压压力和流量的波动以及油污等;随机干扰和噪声;软件程序丢失或被破坏等。此外,错误的操作也会引起数控机床不能正常工作。数控机床维修的关键是故障的诊断,即故障源的查找和故障定位。一般讲根据不同的故障类型,采用不同的故障诊断方法。 2.1数控机床的故障规律: 在整个使用寿命期,根据数控机床的故障频度大致分为 3 个阶段,即早期故障期、偶发故障期和耗损故障期。 1.早期故障期:早期故障期的特点是故障发生的频率高,但随着使用时间的增加

发那科fanuc数控系统常见问题及解决方法

发那科fanuc数控系统常见问题及解决方法 学习2010-06-13 09:04:52 阅读106 评论0 字号:大中小订阅 1、要编辑FS10/11格式程序,必须将设定画面的:FS15 TAPE FORMATE=1 (FANUC 0i-TB) 请问FS10/11格式程序什么含义它有什么特点如何进行参数设定我想了解的详细一点,非常感谢您的回信!操作书中所讲,让我看的满头汗水。 答:18 使用FS10/11 纸带格式的存储器运行概述通过设定参数(#1),可执行FS10/11 纸带格式的程序。说明Oi 系列和10/11 系列的刀具半径补偿,子程序调用和固定循环的数据格式是不同的。10/11 系列数据格式可用于存储器运行。其它数据格式必须遵从Oi 系列。当指定的数据值超出Oi 系列的规定范围时,出现报警。对于Oi 系列无效的功能不能存储也不能运行。 详细参见B-63844C/01 编程18.使用FS10/11 纸带格式的存储器运行 2、关于梯形图(0i-A) 梯形图传下来后如何用LADDER--3打开,详细步骤是怎样的 答:打开LADDER III, 新建一个文件,PMC类型要和你的实际类型一致,然后再进入"文件"--"导入"(import), 选择"Memory card file" 再选择需要导入的文件名(传下来的梯形图),确定, 就可以了。 3、还是老问题(FANUC-0i) 专家同志:你好我按您的方法去操作了.在A轴显示正常的那台台中精机上用手动操作A轴,超过360度时,会报警A超程,而在A轴显示不正常的台中精机上手动操作时,即使超过360度,也不会报警,不停的往一个方向摇时,其显示值会累加,当然,反方向摇时会累减.我好困惑.是哪个参 数设错了呢还得请您指导.谢谢!!!!! 4、参数不可改写(BJ-FANUC Oi-MB) 最近不知道是怎么回事,我们所用的加工中心,在设置中的参数可写入不能置1了。请帮我们分析一下是什么原因引起的。怎样能够修改参数。谢谢。还有一个问题是最近每天我们的机床 都出现了926报警,这是怎么回事呀? 答:1.不能修改PWE,可能是将设定画面的3292#7改为1了,2。检查除了PWE不能修改外,看其他的能否改动。3。926报警和伺服放大器之间的连接有关系,当出现该报警时,观察电器 柜中的放大器各个数码管都显示什么 5、如何关掉光栅尺(FANUC-16) 一台发那科16系统带光栅尺加工中心,X轴回原点时,报警090,回不了原点.现在要把光栅尺关掉, 请问,怎样才能关掉呢多谢! 答:1.参数1815#1=02.伺服参数:2084/2085(N/M),设定=电机一转移动量(丝杠毫米数)/1000。2024=1=电机一转移动量(微米)假如丝杠为10毫米,则:2084=1,2085=100, 1825=10000 6、还是注释的问题(FANUC-SEVERIES OI MB) 因为我们经常用到宏程序,也就是说方括号和圆括号可能在一个程序中同时出现,在我以前用的VMC800(由成都托普数控生产)机床上是用LCD下面的软键输入的,这样不会在不修改参数的情况下就能输入方括号和圆括号了.请问要实现这种功能时,应该怎么办谢谢你们在百忙之中回 复的信息,对我的工作有相当大的帮助,谢谢! 答:3204 #0PAR 使用小键盘时,"["和"]"字符,0:作为"["和"]"使用。1:作为"("和")"使用。3204 #2EXK 是否使用输入字符扩展功能。0:不使用1:使用。注软键[C-EXT]是在程序画面的操作选择软键。用此键,可以通过软键操作输入"("、")"、"@"。使用小型键盘时,因没有"("、")"、"@"键,故使用[C-EXT]键。试一下3204 #0=0,3204 #2=1

2020新版案例分析挖掘机液压系统发热故障及预防措施

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020新版案例分析挖掘机液压系统发热故障及预防措施 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2020新版案例分析挖掘机液压系统发热故 障及预防措施 挖掘机液压系统发热是机械故障的一个普遍现象,我们必须要知道,这一现象会给挖掘机系统带来怎样的危害,其故障特征表现为那些。本文将以实例来分析讲解。 在施工现场,工程机械故障的事情是时有发生,比如:我们正操作挖掘机,发现其液压系统有发热现象,液压系统发热必须要及时处理,否则会给挖掘机整个系统带来危害,下面我们共同来了解一下挖掘机液压系统发热现象及其危害,并以实例来作以分析。 一、了解挖掘机液压系统发热现象及其危害: 液压系统发热是挖掘机较为普遍的一种故障现象,亦是分析处理较为复杂的软故障。小松PC200/400型挖掘机正常工况下,液压系统油温应在60oC以下,(油泵的温度较之高5-10oC),如果超出较

多,则称之为液压系统发热。其故障特征为:挖掘机冷车工作是,各种动作较正常,当机械工作约一小时后,随着液压油温升高,便出现挖掘机各执行机构无力及动作滞缓,特别是挖掘力不够,行走转向困难等。 液压系统出现发热现象如不能及时处理,就会对系统产生极为不利的影响: (1)油液粘度下降,泄漏增加,又使系统发热,形居恶性循环; (2)加速油液氧化,形成胶状物质,阻塞元件小孔,使液压元件失灵或卡死,无法工作; (3)使橡胶密封件,软管老化失效; (4)使油泵及液压阀件磨损加剧,甚至报废。 二、挖掘机液压系统发热的故障实例分析: 对此类故障,一般来说应首抚从液压系统外部的内部分析着手。内部原因主要是系统设计不合理造成的。如元件间匹配不合理,管路通道过细,弯头多,弯曲半径小,油箱容积不够等因素造成的。这类问题应在设计阶段予以充分考虑,否则将造成挖掘机液压系统

数控车床故障分析与排除

数控系统课程设计 院系 专业 年级 学生学号 学生姓名

年月日 CK6150/1000数控车床故障分析与排除 目录 目录 (2) 设计目的 (3) 一、数控机床CK6150/1000的有关参数 (4) 1.1数控车床CK6150/1000主要技术指标 (4) 二、数控机床故障诊断 (6) 2.1数控机床的故障规律........................... 错误!未定义书签。 2.2数控机床故障诊断的一般步骤 (6) 2.3数控机床机械结构故障诊断与维修 (7) 2.4刀架、刀库、换刀装置的故障维修实例 (12) 2.5换刀装置故障 (14) 2.8常见数控机床主轴伺服系统故障及诊断 (16) 2.9在维修主回路采用错位选触无环流可逆调速驱动系统的数控车床 (18) 2.10机床PLC初始故障的诊断 (19) 2.11数控设备检测元件故障及维修 (20) 三、数控机床的维护 (22) 3.1制订数控系统日常维护的规章制度 (22) 3.2应尽量少开数控柜和强电柜的门 (22) 3.3定时清扫数控柜的散热通风系统 (22) 3.4经常监视数控系统用的电网电压 (22) 3.5定期更换存储器用电池 (22) 3.6数控系统长期不用时的维护 (23) 四、总结与体会 (24) 五、参考文献 (25)

设计目的 科学技术的发展,对机械产品提出了高精度、高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。数控机床就是针对这种要求而产生的一种新型自动化机床。数控机床集微电子技术、计算机技术、自动控制技术及伺服驱动技术、精密机械技术于一体,是高度机电一体化的典型产品。它本身又是机电一体化的重要组成部分,是现代机床技术水平的重要标志。数控机床体现了当前世界机床技术进步的主流,是衡量机械制造工艺水平的重要指标,在柔性生产和计算机集成制造等先进制造技术中起着重要的基础核心作用。因此,如何更好的使用数控机床是一个很重要的问题。

数控机床常见故障及其分类

数控机床常见故障及其分类 1.按故障发生的部位分类 ⑴主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。主机常见的故障主要有: 1)因机械部件安装、调试、操作使用不当等原因引起的机械传动故障 2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障 3)因机械零件的损坏、联结不良等原因引起的故障,等等. 主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。数控机床的定期维护、保养.控制和根除“三漏”现象发生是减少主机部分故障的重要措施. ⑵电气控制系统故障从所使用的元器件类型上.根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类, “弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。数控机床的弱电部分包括CNC、PLC、MDI/C RT以及伺服驱动单元、输为输出单元等。 “弱电”故障又有硬件故障与软件故障之分.硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有.加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。 “强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。这部分的故障虽然维修、诊断较为方便,但由于它处于高压、大电流工作状态,发生故障的几率要高于“弱电”部分.必须引起维修人员的足够的重视。 2.按故障的性质分类 ⑴确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便 确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常.但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。正确的使用与精心维护是杜绝或避免故障发生的重要措施。 ⑵随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关. 随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。 加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。

发那科(FANUC)数控系统的操作及有关功能

FANUC有多种数控系统,但其操作方法基本相同。本文叙述常用的几种操作。 1 工作方式 FANUC公司为其CNC系统设计了以下几种工作方式,通常在机床的操作面板上用回转式波段开关切换。这些方式是: 1.编辑(EDIT)方式在该方式下编辑零件加工程序。 2.手摇进给或步进(HANDLE/INC)方式用手摇轮或单步按键使各进给轴正、反 向移动。 3.手动连续进给(MDI)方式用手按住机床操作面板上的各轴方向按钮使所选 轴向连续地移动。若按下快速移动按钮,则使其快速移动。 4.存储器(自动)运行(MEM)方式用存储在CNC内存中的零件程序连续运行机 床,加工零件。 5.手动数据输入(MDI)方式该方式可用于自动加工,也可以用于数据(如参 数、刀偏量、坐标系等)的输入。用于自动加工与存储器方式的不同点是: 该方式通常只加工简单零件,因此都是现编程序现加工。 6.示教编程对于简单零件,可以在手动加工的同时,根据要求加入适当指令, 编制出加工程序。操作者主要按这几种方式操作系统和机床。 2 加工程序的编制 普通编辑方法将工作方式置于编辑(EDIT)方式,按下程序(PROG)键使显示处于程序画面,此方式下有两种编程语言:G 代码语言和用户宏程序语言(MACRO)。常用的是G代码语言,程序的地址字有G**、M**、S**、T**、X**、Y**、Z**、F**、O**、N**、P**等。 程序如下例所示: 00010: N1 G92 X0 Y0 Z0; N2 S600 M03; N3 G90 G17 G00 G41 D07 X250.0 Y550.0; N4 G01 7900.0 F150; N5 G03 X500.0 Y1150.0 R650.0; N6 G00 G40 X0 Y0 M05; N7 M30; 编程时应注意代码的含义。在车床、铣床、磨床等不同系列的系统中,同一个G 代码意义是不同的。不同的机床厂用参数设定的G代码系及设计的M 代码的意义也不相同,编程时需查看机床说明书。 用户宏程序(MACRO)的编辑方法与G代码程序的编制基本相同,不同点是宏程序是以语句基本单元(不是以字符)进行编辑的。程序实例如下: 09100; G81 Z#26 R#18 F#9 K0; IF [#3EQ90] GOTO1; #24=#5001+#24; #25= #5002+#25;

数控系统故障现象分析及处理

FANUC数控系统故障现象分析及处理 阅读:44 1.FS6系列,沈阳第一机床厂的CK6140数控车床(系统:system-3TD31-05。CNC主板型号: A20B-0008-0200.211。主轴伺服控制板型号:A350-0008-T372/04。) 例1 车床主轴无论正、反转,运转约5min后,按停止按钮,主轴旋转不能立即停止(无制动),若再启动机床主轴(不论方向如何)时,机床CRT无显示报警号,主轴驱动器控制板上的LED3灯亮,机床不能运行。 分析排除:该车床为直流主轴驱动,LED3灯亮的原因是直流电机输入电源相序不正确或缺相造成,由于机床已使用过,接线未动,不可能是相序不正确,应是缺相造成。缺相原因可能是某个晶闸管损坏或驱动器未触发其晶闸管工作转换(逆变)。因主轴开始能运行一段时间,只要不是热稳定性差应是未触发晶闸管工作转换(逆变)所致。速度反馈回路、电流反馈回路及其控制电路是造成未触发晶闸管工作转换(逆变)的主要原因。故①查主轴编码器及其传动,传动无松动,编码器工作正常,说明速度反馈回路正常。 ②更换主轴伺服控制板备用板,故障现象未改变(该板在另一台车床上试用正常),说明控制回路正常。 ③在电流反馈回路上,因未检测到零电流,系统撤消了触发脉冲,出现逆变颠覆导致缺相报警,更换电流互感器后故障消除。 例2 用换刀指令开始找不到刀位号,经修理刀架又不能锁紧,但在所指定的刀位处刀架有停顿现象,然后刀架继续旋转。 分析排除:刀架找不到刀位号一般是接近开关无DC24V或8个接近开关中有损坏的。刀架不能锁紧一般是刀架电机反转延时参数不对,或刀架夹紧到位限位开关不起作用,或锁紧机构有故障。经关机后用手盘刀架电机,刀架锁紧正常,说明锁紧机构正常,用万用表查限位开关,动作和线路正常,说明不是限位开关不起作用。故①查接近开关无DC24V,系电源线端脱焊所致。②焊好脱线后,刀架能在指定刀位有停顿现象,但刀架未锁紧,说明刀架PLC输入输出信号正常,进一步检查系夹紧延时参数不对所致,调整后故障排除。 2.FANUCserier0iMate-TC,大连机床集团有限责任公司生产的CKA6150车床(系统:001940D711-01。CNC:A20B-311-B500。伺服放大器:A06B-6130-H002。I/O:A20B-2002-0520/07A。) 例1 在加工零件过程中系统停电,按系统上电按钮开关后,系统无反应。经查找维修后再给系统上电,机床报警,CRT显示报警号为“2004 feedrate override zero”,伺服放大器上的LED电源灯不亮,机床不能运行。 分析排除:停电后开始按系统上电按钮开关,系统无反应,由于无机床电路图,只能打开电器柜和操作面板检查控制电路,经查启动按钮常开触点两侧(线号54,52与中间继电器KA11的常开触点并联)无DC24V电压,停止按钮常闭触点两侧(线号51,52)导通正常,KA11线圈一端接54号线,另一端接电源负极,说明线号51与电源正极不导通,经查是该导线断开造成,修复后系统上电正常(KA11吸合正常)。再查给伺服送强电的KM11交流接触器未吸合,KM11线圈一端和控制变压器的5、6接线端的0号线接,另一端线号107接到伺服放大器的CX29(MCC)接口(线号107、106),再接到另一伺服放大器的CX29(MCC)接口(线号106、3L+),线号3L+再经空开与控制变压器的5、6接线端的32号线接,通电检

发那科数控系统的编程与操作

第一节指令详解 一、FANUC系统准备功能表 表4-1FANUC0iMATE-TB数控系统常用G代码(A类)一览表

二、FANUC0iMATE-TB编程规则 1.小数点编程:在本系统中输入的任何坐标字(包括X、Z、I、K、U、W、R等)在其数值后须加小数点。即X100须记作X100.0。否则系统认为所坐标字数值为100× 0.001mm=0.1mm。 2.绝对方式与增量方式:FANUC-0T数控车系统中用U或W表示增量方式。在程序段出现U即表示X方向的增量值,出现W即表示Z方向的增量值。同时允许绝对方式与增量混合编程。注意与使用G90和G91表示增量的系统有所区别。 3.进给功能:系统默认进给方式为转进给。 4.程序名的指定:本系统程序名采用字母O后跟四位数字的格式。子程序文件名遵循同样的命名规则。通常在程序开始指定文件名。程序结束须加M30或M02指令。 5.G指令简写模式:系统支持G指令简写模式。 三、常用准备功能代码详解 1.直线插补(G01) 格式:G01X(U)Z(W)F 说明:基本用法与其它各系统相同。此处主要介绍G01指令用于回转体类工件的台阶和端面交接处实现自动倒圆角或直角。 ⑴圆角自动过渡:

——格式:G01XRF G01ZRF ——说明:X 轴向Z 轴过渡倒圆(凸弧)R 值为负,Z 轴向X 轴过渡倒圆(凹弧)R 值为正。 ——程序示例: O4001 N10T0101 N20G0X0Z1.S500M03 N30G1Z0F0.2 N40G1X20.R-5. N50G1Z-25.R3. N60G1X30.5 N70G28X120.Z100. N80M30 ⑵直角自动过渡: ——程式:G01XCF G01ZCF ——说明:倒直角用指令C ,其符号设置规则同倒圆角。 ——程序示例: O4002 N10T0101 N20G0X0Z1.S500M03 N30G1Z0F0.2 N40G1X20.C-2. 图4-1-1圆角自动过渡过

数控系统故障分析处理

数控系统故障分析 一.故障诊断内容 1)动作诊断:监视机床各动作部分,判定动作不良的部位。诊断部位是ATC、APC和机床主轴。 2)状态诊断:当机床电机带动负载时,观察运行状态。 3)点检诊断:定期点检液压元件、气动元件和强电柜。 4)操作诊断:监视操作错误和程序错误。 5)数控系统故障自诊断。 二.CNC系统诊断技术 当前使用的各种CNC系统的诊断方法归纳起来大致可分为三大类。 (1)启动诊断(Star up Diagnostics) 把CNC系统每次从通电开始到进入正常的运行准备状态为止,系统内部诊断程序自动执行的诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O单元等模块以及CRT/MDI单元、纸带阅读机、软盘单元等装置或外部设备。

(2)在线诊断(On— Line Diagnostics) 指通过CNC系统的内装程序,在系统处于正常运行状态时,对CNC系统本身以及与CNC装置相连的各个伺服单元,伺服电机,主轴伺服单元和主轴电机以及外部设备等进行自动诊断、检查。一般来说,包括自诊断功能的状态显示和故障信息显示两部分。 .接口显示:为了区分出故障发生在数控内部,还是发生在PLC或机床侧,有必要了解CNC和PLC或CNC和机床之间的接状态以及CNC内部状态。 .内部状态显示: (a)由于外因造成不执行指令的状态显示。 (b)复位状态显示。 (c)TH报警状态显示,即纸带水平和垂直校验,显示出报警时的纸带错误孔的位置。 (d)磁泡存储器异常状态显示。 (e)位置偏差量的显示。 (f)旋转变压器或感应同步器的频率检测结果显示。 (g)伺服控制信息显示。 (h)存储器内容显示等。 故障信息显示的内容一般有上百条,最多可达600条。这许多信息大都以报警号和适当注释的形式出现。一般可分成下述几大类: (a)过热报警类;

液压式履带挖掘机液压系统故障分析实用版

YF-ED-J3481 可按资料类型定义编号 液压式履带挖掘机液压系统故障分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

液压式履带挖掘机液压系统故障 分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 结合多年的实践经验,笔者对液压式履带 挖掘机液压系统常见故障进行了分析,主要包 括有液压油温度过高、液压油管爆裂和油管接 头漏油、行走跑偏、整机无动作、整机动作无 力等故障,并给出了排除方法,可供相关专业 技术人员参考。 当前国内大部分的挖掘机都是液压式履 带类型,采用的是液压先导式控制系统。虽然 液压挖掘机生产厂家不同,但是其液压系统却 基本差不多,都是由先导液压系统和主液压系

统两大部分构成。如果回转和行走采用液压马达驱动,工作装置通过油缸执行其动作,这类挖掘机就是全液压挖掘机。全液压挖掘机的液压系统是一个有机的整体,无论哪个元件出了故障,都会影响其正常工作。现以山河智能液压式履带挖掘机为例,分析液压系统常见故障原因及排除方法。 液压油温度过高 当液压油温度过高时,就必须考虑是否出现以下状况。 1.1.发动机皮带松动 这种情况下,挖掘机显示器会显示充电故障及高温。在熄火状态下用手去按动皮带,感受发动机皮带的松紧程度。由于皮带长期处于高速运动中,会逐渐老化,发动机启动

相关主题