搜档网
当前位置:搜档网 › 步进电机驱动电路设计

步进电机驱动电路设计

步进电机驱动电路设计
步进电机驱动电路设计

https://www.sodocs.net/doc/1a9165720.html,/gykz/2010/0310/article_2772.html

引言

步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案

1步进电机驱动电路设计

1.1 tb6560简介

tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。

1.2步进电机控制信号隔离电路

步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

1.3步进电机主电路

如图2所示,步进电机主电路主要包括驱动电路和逻辑控制电路两大部分。

驱动电路电源采用28 v,电压范嗣为4.5~40 v,提高驱动电压可增大电机在高频范围转矩的输出,电压选择要根据使用情况而定。vmb、vma为步进电机驱动电源引脚,应接入瓷片去耦电容和电解电容稳压。out_ap、out_am、out_bp、out_bm 引脚分别为电机2相输出接口,由于内部集成了续流二极管,这4个输出口不用像东芝公司的8435驱动芯片那样外接二极管,从而极大地减小电路板的布线空间。nfa、nfb分别为电机a、b相最大驱动电流定义引脚,最大电流计算公式为iout(a)=0.5(v)/rnf(ω),若预先定义电机每相的最大驱动电流为2.5 a,取rnf=0.2 ω,则pgnda、pgndb、sgnd分别为电机a、b相驱动引脚地和逻辑电源地。

逻辑控制电路电源为5 v,vdd为逻辑电源引脚,应接入去耦电容和旁路电容减小干扰噪声;m0、protect为工作状态和过流保护指示灯;reset为芯片复位脚,低电平有效;osc所接电容的大小决定了斩波器频率,推荐100~1 000 pf,斩波频率为400~44 khz;m2、m1为细分设置引脚,外接拨码开关可设定不同的细分值,如整步、半步、1/8细分、1/16细分。由于步进电机在低频工作时,有振动大、噪声大的缺点,需要细分解决。

步进电机的细分控制,从本质上讲是通过对步进电机励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。dcy2、dcy1外接拨码开关设置电流衰减模式(0、25%、50%、100%),用于满足不同的步进电机需要。由于电机本身状况、供电电源状况及脉冲频率等其他因素的影响,步进电机可能会产生高频噪声,通过电流衰减模式的设置可减小甚至消除这种噪声。图3显示了衰减模式为0和50%时线圈电流的变化,可看出波形具有明显的改善。

1.4步进电机自动半流电路

步进电机要减少发热,就要减少铜损和铁损。减少铜损就是减小电阻和电流,要求在选型时尽量选择电阻小和额定电流小的电机,但是这往往与力矩和高速的要求相抵触。对于已选定的电机,首先,应充分利用驱动器的自动半流控制功能和脱机功能,自动半流在电机处于静态时自动减小电流,脱机功能是将输出电机电流切断;其次,细分驱动器由于电流波形接近正弦,谐波少,电机发热也会较少。减少铁损与电机驱动电压有关,高压驱动的电机虽然会带来高速特性的提升,但也带来发热的增加。所以应当选择合适的驱动电压等级,兼顾高速性、平稳性和发热、噪声等指标。

为尽可能减小电机发熟,需要tb6560的tq2和tq1引脚电平在电机工作时设置为电流输出最大,在电机不工作时电流减半甚至更小,故称为“自动半流电路”。

用nfa、nfb定义最大输出电流后,通过tq2和tq1设置电流比率输出,设为00、01、10、11时,输出的电流分别为最大电流的100%、75%、50%、25%。改变电机的驱动电流,也就改变了电机输出扭矩的大小。自动半流电路设计选用可重复触发的单稳态电路芯片74ch123,用电机的驱动脉冲clk作为单稳态电路的触发脉冲。单稳态电路的反向输出接tq2引脚,电机驱动脉冲持续时tq2一直保持低电平,无驱动脉冲时保持高电平。在图2电路中,tq1连接3个跳线帽。接跳线1,tq2、tq1始终同为高或低电平,驱动电流在25%~100%切换;接跳线2,tq2始终为低,电流在50%~100%切换;接跳线3,电流在25%~75%切换。可根据工作驱动电流需要选择不同跳线。

2 步进电机失步和越步问题及解决方法

步进电机中产生的同步力矩无法使转子速度跟随定子磁场的旋转速度,从而引起失步。失步产生的主要原因及解决方法:

①步进电机的转矩不足,拖动能力不够,当驱动脉冲频率达到某临界值开始失步。由于步进电机的动态输出转矩随着连续运行频率的上升而降低,因而凡是比该频率高的工作频率都将产生失步。

有3种解决方法:可使步进电机产生的电磁转矩增大,为此可在额定电流范围内适当加大驱动电流;在高频范围转矩不足时,适当提高驱动电路的驱动电压;改用转矩大的步进电动机等,也可使步进电机需要克服的转矩减小,为此可适当降低电机运行频率,以便提高电机的输出转矩。

②步进电机起动失步。由于步进电机自身及所带负载存在惯性,当加速时间过短时会出现这一现象。应该设置合理的加速时间,使电机从低速度平稳上升到某个速度。

③步进电机产生共振也是引起失步的一个原因。步进电机处于连续运行状态时,如果控制脉冲的频率等于步进电机的固有频率,将产生共振。在一个控制脉冲周期内,振动尚未得到充分衰减,下一个脉冲就已来到,因而在共振频率附近动态误差最大并导致步进电机失步。解决方法:减小步进电机的驱动电流;采用细分驱动方法和阻尼方法。

转子在步进过程中获得过多的能量时,转子的平均速度会高于定子磁场的平均旋转速度,使得步进电动机产生的输出转矩增大,从而使步进电机产生越步。

当步进电机存在越步时,可减小步进电动机的驱动电流,以便降低步进电机的输出转矩或使减速时间加长。

3试验结果

设计时应该保证芯片逻辑电压低于驱动电压,否则芯片不能正常工作;在选取nfa、nfb检流电阻时应选功率不小于2 w的无感电阻;对电机驱动电源及驱动输出连线和地的印制板布线,应保证能稳定通过3 a电流;电源入口加熔断器保

护驱动电路,以免电机的电流过大烧毁电路板。设计的驱动器应用于雕刻机x、y、z三轴步进电机的驱动,经过试验,雕刻的样品如图4所示。从最终结果看,精度满足目标要求。

结语

本文提出了基于tb6500的步进电机驱动电路设计方案,并给出了步进电机失步和越步问题的解决方法。试验证明,效果良好,达到预期目标。

步进电机的简单电路控制

课程设计说明书 课程设计名称:数字电路课程设计 课程设计题目:步进电机简单的控制电路 学院名称:南昌航空大学信息工程学院 专业:班级: 学号:姓名: 评分:教师: 2013 年 9 月 9 日 数字电路课程设计任务书 20 13-20 14 学年第 1 学期第 2 周- 4 周

注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

步进电机是一种原理为利用电子电路的电脉冲信号转变为角位移或线位移的感应电机。通过简单的数字电路来控制它的转速并可以利用数码管来计算其转动的圈数,便可以实现电机的正反向转动,并且在数码管上精确的显示出它转动的圈数,从而广泛应用于实际生活当中。其中涉及到计算机,数字电路,电机,机械,完成了简单的自动化控制流程,将所学知识应用于工程中,增加实践动手能力。 关键词:分频、时序控制、脉冲计数

前言 (1) 第一章设计内容及要求 (1) 第二章系统的组成及工作原理 (2) 第三章单元电路设计 (2) 3.1多谐振荡器 (2) 3.2 步进电机信号控制电路 (3) 3.3转速的测量及显示电路 (4) 第四章调试 (5) 4.1电路排板及制作 (5) 4.2电路的调试 (5) 第五章总结 (6) 附录1:设计原理图 (7) 附录2:PCB电路图 (8) 附录3: 元件清单 (9)

前言 步进电机最早出现于上世纪,源于资本主义的造船工业,是一种可以自由转动的电磁铁,其工作原理和如今的反应式电机差不多,是依靠磁导来产生电磁矩,从而实现转动。 到了80年代之后,微型计算机逐步的应用于工业与生活中,使得步进电机的控制更加的灵活多样,最主要的是利用分立元件或者小型的集成电路来控制,但是对元件的需求量很大,调试也很复杂,出现问题需要花大量的精力来调试,因此,通过计算机软件来控制步进电机是必然的趋势,以提高工作效率。 现在的步进电机主要是由数字电路组成,也是利用集成电路来控制电路,但是大大的提高了其精度,更好的满足工业发展的需要。目前用到最多的是混合式步进电机,并具有很好的发展前景。 步进电机按照工作原理可分为永磁式、磁阻式和永磁感应子式三种。 今后步进电机将会有以下四个方面的发展,为减小其占用的空间从而会往小型方向发展,以更加的适用于工业制造当中;为增加力矩,从而会将圆形改为方形,以提高其工作效率;为体现其优越的控制性能,从而会偏向于一体化设计,以实现电子自动化控制,更加灵活方便;为降低其成本,增加其性能,从而会向三相和五相的方向发展,以充分实现其优越性能。 步进电机以其显着的特点,在电子数字化时代将发挥重大作用,将广泛应用于数控车床、机器人、航空工业和电子领域中,可完成工作量大,任务复杂、精度高的制造业以及代替人类完成不利于身体健康的工业中,为生活带来更多的便利。 第一章设计内容及要求 基本要求:1、利用proteus软件设计步进电机的工作原理图,并进行仿真。 2、调试及实现。 (1)实现步进电机根据输入的脉冲旋转的相应圈数。 (2)可以实现复位,正反转控制,由4个LED代替4个线圈。 (3)实现步进电机的加速、减速功能。

步进电机驱动器的设计

1 绪论 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不高,且对成本敏感的领域。 技术进步给步进电动机带来挑战的同时,也带来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱动器。 1.2 步进电机及其驱动器的发展概况 按励磁方式分类,可以将步进电动机分为永磁式(PM)、反应式(VR)和混合式(HB)三类,混合式步进电动机在结构和原理上综合了反应式和永磁式步进电动机的优点,因此混合式步进电动机具有诸多优良的性能,本课题的研究对象正是混合式步进电机。20 世纪60 年代后期,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30 年间,步进电动机迅速的发展并成熟起来。从发展趋势来讲,步进电动机已经能与直流电动机、异步电动机以及同步电动机并列,从而成为电动机的一种基本类型。特别是混合式步进电动机以其优越的性能(功率密度高于同体积的反应式步进电动机50%)得到了较快的发展。其中,60 年代德国百格拉公司申请了四相(两相)混合式步进电动机专利,70 年代中期,百格拉公司又申请了五相混合式步进电动机

_单片机控制步进电机驱动原理___驱动图

单片机控制步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.AT89C2051 步进电机驱动器系统电路原理如图3:

步进电机工作原理

步进式电动机 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴 线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A’就是A,齿5就是齿1)。 2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转 子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、 C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过 一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电

步进电机驱动电路设计

如对您有帮助,请购买打赏,谢谢您! 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。 1.3步进电机主电路 如图2所示,步进电机主电路主要包括驱动电路和逻辑控制电路两大部分。 驱动电路电源采用28 v,电压范嗣为4.5~40 v,提高驱动电压可增大电机在高频范围转矩的输出,电压选择要根据使用情况而定。vmb、vma为步进电机驱动电源引脚,应接入瓷片去耦电容和电解电容稳压。out_ap、out_am、out_bp、out_bm 引脚分别为电机2相输出接口,由于内部集成了续流二极管,这4个输出口不用

步进电机驱动电路设计

https://www.sodocs.net/doc/1a9165720.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

【matlab编程代做】步进电机控制器设计

步进电机控制器设计报告 1.绪言 在本次EDA课程设计中,我们组选择了做一个步进电机驱动程序的课题。对于步进电机我们以前并未接触过,它的工作原理是什么,它是如何工作的,我们应该如何控制它的转停,这都是我们迫切需要了解的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机及驱动电源是互相联系的整体。步进电机驱动电源框图如图1所示。变频信号源产生频率可调的脉冲信号,调节步进电机的速度。脉冲分配器则根据要求把脉冲信号按一定的逻辑关系加到脉冲放大器上,使步进电机按确定的运行方式工作。 感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG 为感应子式步进电机代号)、57BYG、86BYG 、110BYG 、(国际标准),而像70BYG 、90BYG 、130BYG 等均为国内标准。 1.1 驱动控制系统组成 使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统。 1.1.1 脉冲信号的产生 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4 左右,电机转速越高,占空比则越大。 1.1.2 信号分配 感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8 度;二相八拍为,步距角为0.9 度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为0.9 度)。

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

五相步进电机驱动电路开发(论文翻译)_图文(精)

一种新的五相步进电机驱动电路开发 T.S. 维拉孔和 T. 萨马拉纳亚克 斯里兰卡,佩勒代尼耶大学工程学院,电子与电气工程学院 付自刚译 摘要 本文详细地介绍了一种新的五相步进电机驱动电路。这种新的驱动电路是由商业上现成的,廉价的,标准的步进电机驱动 IC 搭建,它能实现由内部电流回路驱动的闭环速度和位置控制。经证明, 这种驱动电路能推广到任何更多相数的奇数相的步进电机。 这种驱动电路具有速度控制和方向控制,包括全步、半步、顺时针、逆时针控制模式。 一、概述 在大多数机器人和自动化工程设计中, 各种各样步进电机都被广泛应用来得到需要的运动姿态。步进电机倍受人们青睐是因为它不需要频繁的维护并能在苛刻的环境中运行。步进电机及其驱动器的选择要根据具体应用中需要的效果来决定。市场上最常见的是两相和四相步进电机。 可是,实际应用中要求高精度,低噪声和低震动,因此五相步进电机得以应用。因为步距角较小, 五相步进电机有较高的分辨率, 较低的震动和良好的加速与减速特性。因此, 确保设计的驱动电路能使步进电机充分发挥这些优点非常重要。 因为在机器人应用中是很少见得类型,而且结构很复杂,很难找到它们的驱动IC ,只能专门定做。结果导致五相步进电机的驱动电路产品异常昂贵。用普通步进电机如二相与四相步进电机的驱动控制 IC 来制作其它步进电机的驱动电路是一种经济有效的方法。

L297继承了控制单极性和双极性步进电机所需要的所有控制电路系统。 L298N 双 H 桥驱动器形成了一个完善的步进电机微处理器接口。在这里,我们通过给 L297和 L298N 加上微处理器和逻辑控制系统研究开发出了一种新的五相步进电机驱动电路。 第二部分解释了元器件特性。第三部分介绍了控制逻辑电路设计。第四部分是接口设计,结果在第五部分。最后,第六部分加以总结。 二、主要元器件特性分析 如图一所示,集成块 L297可以与 H 桥集成电路一起使用作为步进电机驱动器。在该设计中, H 桥的功能用 L298N 或者 L293E 实现。这要根据步进电机的额定功率而定。输入 L297的控制信号可能来自为控制器或者外部开关。一个 IC 能驱动一个两相双极性永磁式步进电机, 一个四相单极性永磁式步进电机或者一个四相变磁阻式步进电机。因为用到的电子元器件非常少, 该设计好处颇多, 比如,花费少,可靠性高,占用的空间相对较小。按照接收到的输入信号的不同, L297产生三种不同模式的相位序列,即半步模式,全步模式和波形模式。

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器)L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可

DS步进电机驱动电路

步进电机驱动电路讲解 打印机的字车电机、走纸电机、头间隙控制电机大多采用步进电机。步进电机具有控制精度高,控制方便的特点。只要通过控制步进电机转动的步数,就可以控制步进电机的转动角度实现对纸张移动、字车移动定位、打印头间隙的精确控制。 步进电机的驱动主要有以下三点: 1)由cpu产生4相控制信号,这4个相位控制信号的相位顺序不同,将控制电机正向或反向转动。输出相位信号 脉冲的个数来控制步进电机转动的角度。 2)通过控制电机驱动电流的大小来控制转动力矩。 3)在打印间隙步进电机不转的时候需要一个比较小的电流来使电机产生一个静力矩。来保证字车,纸张的位置精 度不被破坏。 以上三条是要控制步进电机的必须具备的条件。其中第一项式打印机cpu通过程序运算来实现的,并且4个相位的控制信号也是从cup输出的。在电路图中只能看到有4条信号线从cup或者门阵输出到驱动电路,在这里我们就不做进一步的讨论了。我们在这里讲解的步进电机驱动电路将只解决后两项要求的问题,这是我们的重点和核心。(如何控制电机的工作电流包括:开启、稳定调整电流、锁定电流) 根据实现方法不同步进电机驱动电路主要分下列常见的是3种电路形式,这三种电路形式在不同型号的打印机里有被用于字车电机的驱动电路,也有被用于走纸电机的驱动电路。下面我们将逐一为大家进行介绍: 1高压驱动低压锁定电路 1.1 电路组成 1.2 工作原理 电机是一个4相步进电机,采用1—2相激励方式工作,当接收到一个驱动脉冲时,电机转过一定角

度,如图4-33、4-34分别是送纸电机驱动电路和1—2相激励方式产生的送纸电机控制信号图。 图4-34 送纸电机驱动信号 送纸电机电压使用情况如下: 状态电压作用 操作+35 V 电机驱动 准备+5V 保持偏压,锁定电机 通过设置门阵列的PCMN口为高或低电平,及三极管TR1和三极管阵列TA1的导通与截止,输入送纸电机的电压可被改变。当TA1被打开,+35V电压供给送纸电机,电机被驱动,进行送纸;当TA1被断开,+5V电压经二极管D1供给送纸电机,给送纸电机一个偏压,该偏压使步进电机产生静转矩阻止轴摆动,使字车锁定在该位置,以保证送纸精度,这就是所谓的“高压驱动、低压锁定”的驱动原理。 1.3 特点总结 这种电路的优点是比较简单,他没有单独的电流控信号,其工作电流的控制是通过控制公共通路三极管的导通与截止实现的,缺点是如果输出功率太大时,需要使用太多的大功率元器件成本较高。另外他的锁定电流是从5V 逻辑回路电源共给的,如果锁定电流过大的话会影响逻辑电路工作的稳定性。 以前的老型号打印机中使用的比较多,打印机中字车电机和走纸电机驱动电路使用的都是这种电路。在新型号打印机种主要用于小功率电机(例如走纸电机、打印头间隙电机等)的控制。 1.4 应用电路介绍 在DS1700打印机中,送纸电机是一个4相步进电机,采用1—2相激励方式工作,当接收到一个驱动脉冲时,电机转过一定角度,如图3-1是送纸电机驱动电路。

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

两相步进电机驱动器设计

两相步进电机驱动器设计 目录 第1章绪论 (3) 1.1 引言 (3) 1.2 步进电机常见的控制方法与驱动技术简介 (3) 第2章设计方案 (5) 2.1 步进电机的介绍 (5) 2.2 步进电机的特点 (6) 2.3 步进电机的分类 (6)

2.4步进电机运动特性及性能参数 (7) 2.5 设计方案的确定 (8) 2.6 设计思想与设计原理 (9) 第3章单元电路的设计 (9) 3.1方波产生电路设计 (9) 3.2 信号的分配 (13) 3.3功率放大电路设计 (15) 3.4 总体设计 (16) 第4章设计方案的论证 (18) 第5章心得体会 (18) 第6章参考文献 (19) 第1章 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处

于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有 限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不 高,且对成本敏感的领域。技术进步给步进电动机带来挑战的同时,也带 来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的 细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显 著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分 驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控 制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发 明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。 根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合 式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱 步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴 了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱 动器. 1.2 步进电机常见的控制方法与驱动技术简介 1.2.1常见的步进电机控制方案 1、基于电子电路的控制 步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图1.1所示。 脉冲控制器 功 率 放 大 驱 动 电 路 环 形 分 配 器 步 进 电 机

五相十拍步进电机

机电传动与控制综合课程设计设计说明书设计题目: 五相十拍(2/3)步进电机 控制程序设计 院系名称:机电工程学院专业班级:机制F09 学生姓名:学号: 20094805 指导教师:王宗才 2012年12 月05 日

内容摘要 本文主要是介绍采用可编程控制器(PLC) 对五相十拍步进电机进行控制的设计原理及方法进行分析。其中步进电动机具有快速起停、精确步进和定位等特点,是一种控制精度极高的电机,常用作工业过程控制及仪器仪表的控制元件。可编程控制器是工业自动化设备的主导产品,具有控制功能强,可靠性高,适用于不同控制要求的各种控制对象等优点。 本文详细的介绍了用PLC控制步进电机系统的原理,及硬件和软件设计方法。其内容主要包括I/O地址分配、PIC外部接线图、控制流程图、主电路图、梯形图、元件清单以及语句表。本文设计过程中使用了十六位移位寄存器,大大简化了程序的设计,使程序更间凑,方便了设计。在实际应用中表明此设计是合理有效的。 关键词: PLC;梯形图;元件清单;五相十拍步进电机

目录 第1章引言 (1) 第2章系统总体方案设计 (2) 2.1 程序设计的基本思路 (2) 2.2 五相步进电动机的控制要求 (2) 2.3 方案原理分析 (2) 第3章 PLC控制系统设计 (4) 3.1 设计流程分析 (4) 3.1.1 控制流程图 (4) 3.1.2电机工作过程图 (5) 3.2 I/O地址分配表 (5) 3.3 PLC外部接线图 (6) 3.4 主电路 (7) 3.5 元件清单 (8) 3.6 程序设计 (8) 3.6.1 步进控制设计 (8) 3.6.2 梯形图设计 (10) 3.7 调试说明 (11) 第4章设计总结 (12) 致谢 (13) 参考文献 (14) 附录 (15) 附录一程序梯形图 (15) 附录二程序语句表 (20) 1

步进电机控制电路

北京工业大学电子课程设计报告 (数电部分) 题目:步进电机

目录 一、设计题目------------------------------------------------------------------------------------------------3 二、设计任务和设计要求 1.设计题目------------------------------------------------------------------------------------------------3 2.设计技术指标及设计要求----------------------------------------------------------------------------3 三、电路设计------------------------------------------------------------------------------------------------4 1.脉冲发生电路-------------------------------------------------------------------------------------------4 2.环形脉冲分配电路-------------------------------------------------------------------------------------5 3.控制电路-------------------------------------------------------------------------------------------------6 4.驱动电路-----------------------------------------------------------------------------------------------10 5.步进电机-----------------------------------------------------------------------------------------------11 四、电路的组装和调试------------------------------------------------------------------------------------12 1.电路的组装----------------------------------------------------------------------------------------------12 2.电路的调试----------------------------------------------------------------------------------------------13 五、收获和体会---------------------------------------------------------------------------------------------14 六、附录------------------------------------------------------------------------------------------------------15 1.列表-------------------------------------------------------------------------------------------------------15 2.参考资料-------------------------------------------------------------------------------------------------15 3.部分芯片管脚图----------------------------------------------------------------------------------------16

步进电机控制器的设计

步进电机控制器的设计 研究mps430单片机构成步进电机的控制系统,控制步进电机实现三相六拍运行,启动、升减速、停车定位,以及与上位机的通信,采用串行通信模块、单片机模块和电机驱动模块来构成电机的控制系统;用定时器中断来控制I/O输出高低电平,控制驱动的通断,实现脉冲的环形分配完成三相六拍运行;控制定时时间,来控制频率的增加和减少,实现升减速。电机的启动频率达到1000hz,最高运行频率达到20000hz。 标签:MPS430单片机;步进电机;通信 本系统设计的主要内容分为硬件设计和软件设计两部分。下面具体的说明一下系统的硬件设计和软件设计。 1 硬件系统的设计 设计本系统中,硬件系统主要由电机驱动电路,电源电路,串口通信电路,单片机电路,下面就具体的电路进行分析设计介绍。 图1 硬件系统图 1.1 电机驱动电路 主要由驱动芯片组成,该系统的驱动部分采用了UC3717A芯片,UC3717A 芯片使用非常简单,它通过3个输入管脚(Phase、I1和I0)接受输入的参数,在2个输出管脚(AOUT和BOUT)上输出相应的控制信号。 利用外部逻辑电路构成的逻辑分配器或微处理器分配信号,由若干片这种电路和少量无源元件可组成一个完整的多相步进电动机驱动系统,可实现整步(基本步距)、半步或微步距控制。在这里我们使用的是MSP430单片机来分配信号,控制方式是双极性、固定OFF(关断)时间的斩波电流控制。它们是16脚双列直插塑料封装,4、5、12、13脚为地.UC3717A是UC3717的改进型,其驱动能力是双向电流1A,步进电动机供电电压范围宽,为10-46V。H桥的功率晶体管有低饱和压降,并附有快速恢复续流二极管(见图2)。 1.2 电源电路 在本設计中,整个系统要求电源既有稳压性能,和纹波小等特点,还有是硬件系统的低功耗等特点,因此本系统的电源部分选用了TI公司芯片TPS76033来实现,该芯片能很好的满足硬件系统的要求,TPS760XX芯片是针对电池供电应用的50mA输出的低压差线性稳压器,使用Bicmos工艺,使其在电池供电中显示出杰出的性能。芯片采用小体积的SOT-23封装,工作温度范围宽。其特性是50mA电流输出,多种固定电压可选:5V,3.8V,3.3V,3.2V和3V,典型压

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

相关主题