搜档网
当前位置:搜档网 › 《指数函数和对数函数》知识点汇总及习题详解)

《指数函数和对数函数》知识点汇总及习题详解)

《指数函数和对数函数》知识点汇总及习题详解)
《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂

1.整数指数幂概念:

a

n n

a a a a 个???= )(*

∈N n ()010a a =≠ ()1

0,n

n a

a n N a

-*=

≠∈ 2.整数指数幂的运算性质:(1)(),m

n

m n a a a

m n Z +?=∈ (2)()(),n

m mn a a m n Z =∈

(3)()()n

n

n

ab a b

n Z =?∈

其中m n m n

m n

a a a a

a

--÷=?=, ()1n

n n n n

n a a a b a b b b --??=?=?= ???

3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a (

)*

∈>N

n n ,1,那么这个数叫做a 的n 次方根,

即: 若a x

n

=,则x 叫做a 的n 次方根, ()*

∈>N n n ,1

例如:27的3次方根3273=, 27-的3次方根3273-=-,

32的5次方根2325=, 32-的5次方根2325-=-.

说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0

②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:

n a -;(例如:8的平方根228±=± 16的4次方根2164±=±)

③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根;

④(

)*

∈>=N

n n n

,100 0=;

⑤式子n

a 叫根式,n 叫根指数,a 叫被开方数。 ∴

n

a =.

4.a 的n 次方根的性质

一般地,若n 是奇数,则a a n n =;

若n 是偶数,则??

?<-≥==0

0a a

a a

a a n

n

5.例题分析:

例1.求下列各式的值:

(1)()

338- (2)

()210- (3)()44

3π- (4)

()()b a b a >-2解:略。

例2.已知,0<

∈>N n n ,1, 化简:()()n n

n n b a b a ++-.

解:当n 是奇数时,原式a b a b a 2)()(=++-=

当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n

n n

b a b a ++-22a n a n ?=?

-?为奇数

为偶数

例3.计算:407407-++

解:407407-++52)25()25(22=-++=

例4.求值:

54

925-+. 解:549

25-+4

25254

5

49252

)(-+=-+=

452622525+=-+=

2

1

54152

+=

+=)( (二)分数指数幂

1.分数指数幂:

()10

2

5

0a a

a ==>

()124

3

0a a

a ==>

即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)()

n

k kn a

a =对分数指数幂也适用,

例如:若0a >,则3

223233a a a ???== ???

,4

554544a a a ???== ???, 23a =

4

5

a =.

即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

规定:(1)正数的正分数指数幂的意义是)0,,,1m n

a a m n N n *=>∈>;

(2)正数的负分数指数幂的意义是)10,,,1m

n

m n

a

a m n N n a

-*

==

>∈>.

2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

()()

10,,r s

r s

a a a a r s Q +=>∈

()()

()20,,s

r r s a

a a r s

Q =>∈ ()()()30,0,r

r r ab a b a b

r Q =>>∈ 说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;

(2)0的正分数指数幂等于0,0的负分数指数幂没意义。

3.例题分析:

例1. 用分数指数幂的形式表示下列各式()a o >:

2

a

3a

.

解:2

a 11522

2

2

2

a a a

a +

?==;

3

a 2113

3

3

a a a ?=;

=111

33

2

2

2

2

4a a a a ????

?== ? ?????

例2.计算下列各式的值(式中字母都是正数).

(1)21

1511336622263a b a b a b ??????

-÷- ??? ???????

; (2)8

3184m n -?? ???;

解(1)21

1511336622263a b a b a b ??????

-÷- ??? ???????

=()()211

115326

236

263a b

+-+-?-÷-????

=0

44ab a =;

(2) 8

3184m n -?? ???=8

83184

m n -???? ? ?????

=2233m m n n -=.

例3.计算下列各式:

(1

(2

)20a >.

解:(1

231324555??-÷ ???

=213134245555÷-÷

=5

5124

55-

= (2

2

=

526

213

2

a a a a

==

(三)综合应用

例1.化简:1

1555x x x -+++.

解:1

15

55x x x -+++=15(1525)x -++=1315x -?=

3155

x

?. 例2.化简:)()(4

14

12

12

1y x y x -÷-.

解:11112244()()x y x y -÷-111111444444()()()x y x y x y =+-÷- 1144

x y =+.

评述:此题注重了分子、分母指数间的联系,即2

1241)(x x =,由此联想到平方差公式的特点,

进而使问题得到解决。 例3.已知1

3x x -+=,求下列各式的值:

(1)112

2x x -

+;(2)332

2

x x -

+. 解:(1)

1

1

2

2

2()x x -+11112

2

22

2

2()2()x x x

x --

=++

112x x -=++325=+=,

∴112

2

x x

-+=

又由13x x

-+=得0x >,∴112

2

0x x

-

+>,

所以112

2

x x

-

+=

(2)(法一)332

2

x x

-

+113

322)()x x -

+=(11111122

2

222

2

2()[()()]x x x x x

x -

-

-

=+-+

1

1

12

2

()[()1]x x x x --=++-1)=-=,

(法二)332

2

2

[()()]x x

-

+33332

2

222

2

()()2x x x x

-

-

-

=++332x x -=++

而33

x x

-+122()(1)x x x x --=++-

112()[()3]x x x x --=++-23(33)=?-18=

∴332

2

2()20x x

-

+=,

又由1

30x x

-+=>得0x >,∴332

2

0x x

-+>,

所以332

2

x x -+==二、指数函数

1.指数函数定义:

一般地,函数x

y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域是R .

2.指数函数x

y a =在底数及这两种情况下的图象和性质:

(1)定义域:R

例1.求下列函数的定义域、值域:

(1)

1

21

8x

y-

=(2)y=(3)3x

y-

=(4)

1

(0,1)

1

x

x

a

y a a

a

-

=>≠

+

.解:(1)210

x-≠∴

1

2

x≠原函数的定义域是

1

{,}

2

x x R x

∈≠,令

1

21

t

x

=

-

则0,

t t R

≠∈

∴8(,0)

t

y t R t

=∈≠得0,1

y y

>≠,

所以,原函数的值域是{0,1}

y y y

>≠.

(2)

1

1()0

2

x

-≥∴0

x≥原函数的定义域是[)

0,+∞,

1

1()

2

x

t=-(0)

x≥则01

t≤<,

y t

=在[)

0,1是增函数∴01

y

≤<,

所以,原函数的值域是[)

0,1.

(3)原函数的定义域是R,

令t x

=-则0

t≤,

3t

y=在(],0

-∞是增函数,∴01

y

<≤,

所以,原函数的值域是(]

0,1.

(4)原函数的定义域是R,

1

(0,1)

1

x

x

a

y a a

a

-

=>≠

+

1

1

x

y

a

y

+

=-

-

x

a>∴

1

1

y

y

+

->

-

,∴11

y

-<<,

所以,原函数的值域是()

1,1

-.

说明:求复合函数的值域通过换元可转换为求简单函数的值域。

例2.当1a >时,证明函数1

1

x x a y a +=- 是奇函数。

证明:由10x

a -≠得,0x ≠,

故函数定义域{0}x x ≠关于原点对称。

1()1x x a f x a --+-=-(1)(1)x x x x a a a a --+=-11x

x

a a

+=-()f x =- ∴()()f x f x -=-

所以,函数1

1

x x a y a +=- 是奇函数。

例3.设a 是实数,2

()()21

x

f x a x R =-

∈+, (1)试证明:对于任意,()a f x 在R 为增函数; (2)试确定a 的值,使()f x 为奇函数。

分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明。还应要求学生

注意不同题型的解答方法。 (1)证明:设1212,,x x R x x ∈<,则

12()()f x f x -12

22()()2121x x a a =-

--++ 21

22

2121x x =-++ 1212

2(22)(21)(21)x x x x -=++, 由于指数函数2x y =在R 上是增函数,且12x x <,所以1222x x

<即12220x x -<,

又由20x

>,得1120x +>,2120x +>,

所以,12()()0f x f x -<即12()()f x f x <.

因为此结论与a 取值无关,所以对于a 取任意实数,()f x 在R 为增函数。 评述:上述证明过程中,在对差式正负判断时,利用了指数函数的值域及单调性。 (2)解:若()f x 为奇函数,则()()f x f x -=-,

即22

()2121

x x

a a --

=--++ 变形得:2222(21)

2(21)22121

x x x x

x x a -?+=+=+?++, 解得:1a =,

所以,当1a =时, ()f x 为奇函数。

三、对数的性质

1.对数定义:一般地,如果a (10≠>a a 且)的b 次幂等于N , 就是N a b =,那么数 b 叫做a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数。

即b

a N =, log

N b =

2. 对任意 0>a 且 1a ≠, 都有 0

1a = ∴log 10a =,同样:log 1a a =.

3.如果把b

a N =中的

b 写成log a N , 则有 log a N

a

N =(对数恒等式).

2.对数式与指数式的互换 例如:

2416= 4l o g 162=

2

10100= 10log 1002= 1

2

42= 4

1l o g 22

= 2100.01-= 10log 0.012=- 例1.将下列指数式写成对数式:

(1)4

525=; (2)6

12

64

-=; (3)327a

=; (4)1 5.373m

??= ???

. 解:(1)5log 6254=; (2)

21log 664=-; (3)3log 27a =; (4)13

log 5.37m =. 3.介绍两种特殊的对数:

①常用对数:以10作底 10log N 写成

lg N

②自然对数:以e 作底为无理数,e = 2.71828……

, log e N 写成 ln e .

例2.(1)计算: 9log 27, 625.

解:设x =

9log 27 则 27x a =, 2333x =, ∴3

2

x =;

令x =625,

625x

=, 443

5

5x =, ∴5x =.

(2)求 x 的值:①33log 4x =-; ②()2

221log 3211x x x ?? ???

-+-=.

解:①34

3x -==

; ②2

2232121200,2x

x x x x x x +-=-?+=?==-

但必须:22

22102113210x x x x ?->?-≠??+->?

, ∴0x =舍去 ,从而2x =-.

(3)求底数:①3log 35x =-, ②7log 28

x =. 解:①3535

35

3(3)x

---== ∴5

33

x -=;

②778887

22x ?

? ? ???

==, ∴2x =.

4.对数的运算性质:

如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a

a a M

M N N

=; (3)log log ()n

a a M n M n R =∈.

例3.计算: (1)lg14-21g

18lg 7lg 37-+; (2)

9lg 243lg ; (3)2

.1lg 10

lg 38lg 27lg -+. 解:(1)解法一:18lg 7lg 3

7

lg 214lg -+-

2lg(27)2(lg 7lg3)lg 7lg(32)=?--+-?

lg 2lg72lg72lg3lg72lg3lg 20=+-++--=;

解法二:18lg 7lg 3

7

lg

214lg -+- 27

lg14lg()lg 7lg183=-+-

=18)3

7(714lg 2

??lg10==;

(2)253lg 23lg 53

lg 3lg 9lg 243lg 2

5===; (3)2

.1lg 10lg 38lg 27lg -+=1133

2

2

2

3

(lg32lg 21)

lg(3)lg 23lg103232lg32lg 212lg

10

+-+-==?+-. 5.换底公式:log log log m a m N

N a

= ( a > 0 , a ≠ 1 ;0,1m m >≠)

证明:设log a N x =,则x

a N =,

两边取以m 为底的对数得:log log x

m m a N =,∴log log m m x a N =,

从而得:a N x m m log log =

, ∴ a

N

N m m a log log log =.

说明:两个较为常用的推论:

(1)log log 1a b b a ?= ; (2)log log m n

a a n

b b m

= (a 、0b >且均不为1). 证明:(1) 1lg lg lg lg log log =?=

?b

a

a b a b b a ; (2) lg lg log log lg lg m n n

a m a

b n b n

b b a m a m

=

==. 例4.计算:(1) 0.21log 3

5

-; (2

)492log 3log 2log ?+.

解:(1)原式 =

0.25

1log 3log 3

5

5

5

151553

=

=

=; (2) 原式 = 2

3

45412log 452log 213log 21232=+=+?.

例5.已知18log 9a =,185b

=,求36log 45(用 a , b 表示).

解:∵18log 9a =, ∴a =-=2log 12

18

log 1818,

∴18log 21a =-,

又∵185b

=,

∴18log 5b =,

∴a

b

a -+=++==

22log 15log 9log 36log 45log 45log 181818181836.

例6.设1643>===t z

y x ,求证:y

x z 2111=-.

证明:∵1643>===t z

y x ,

∴ 6lg lg 4lg lg 3lg lg t z t y t x ===,,, ∴ y

t t t t x z 21

lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-.

例7.若8log 3p =,3log 5q =,求lg 5. 解:∵8log 3p =,

∴)5lg 1(32lg 33lg 33log 2-==?=p p p , 又∵ q ==

3

lg 5

lg 5log 3, ∴ )5lg 1(33lg 5lg -==pq q , ∴ pq pq 35lg )31(=+

∴ pq

pq

3135lg +=.

四、对数函数

1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做对数函数。 2.对数函数的性质:

(1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为),0(+∞,值域为

),(+∞-∞.

(2)图象:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数

函数图象作关于x y =的对称图形,即可获得。 同样:也分1>a 与10<

1log =(图2)为

例。

1a >

01a <<

(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2

x y a -=.

分析:此题主要利用对数函数x y a log =的定义域(0,)+∞求解。 解:(1)由2

x >0得0≠x ,

∴函数2

log x y a =的定义域是{}

0x x ≠;

(2)由04>-x 得4

∴函数)4(log x y a -=的定义域是{}

4x x <; (3)由9-02

>-x 得-33<

∴函数)9(log 2

x y a -=的定义域是{}

33x x -<<.

例2.比较下列各组数中两个值的大小:

(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . 解:(1)对数函数2log y x =在(0,)+∞上是增函数,

于是2log 3.4<2log 8.5;

(2)对数函数0.3log y x =在(0,)+∞上是减函数,

于是0.3log 1.8>0.3log 2.7;

(3)当1a >时,对数函数log a y x =在(0,)+∞上是增函数,

于是log 5.1a

当1o a <<时,对数函数log a y x =在(0,)+∞上是减函数,

于是log 5.1a >log 5.9a .

例3.比较下列比较下列各组数中两个值的大小:

(1)6log 7,7log 6; (2)3log π,2log 0.8; (3)0.9

1.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3. 解:(1)∵66log 7log 61>=,

1 1

2x y = 2log y x = y x = (图

1) 1

1

1()2

x y =

2

log y x =

y x

=

(图2)

(1,0)

(1,0)

1x = 1x = log a y x =log a y x =

77log 6log 71<=, ∴6log 7>7log 6;

(2)∵33log log 10π>=,

22log 0.8log 10<=, ∴3log π>2log 0.8.

(3)∵0.9

01.1

1.11>=,

1.1 1.1log 0.9log 10<=,

0.70.70.70log 1log 0.8log 0.71=<<=,

∴0.9

1.1

>0.7log 0.8> 1.1log 0.9.

(4)∵3330log 5log 6log 7<<<, ∴5log 3>6log 3>7log 3.

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴

4411

log log m n

<,

当1m >,1n >时,得4411

0log log m n

<<,

∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得

4411

0log log m n

<<,

∴44log log n m <, ∴01n m <<<.

当01m <<,1n >时,得4log 0m <,40log n <,

∴01m <<,1n >, ∴01m n <<<.

综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域:

(1)2log (3)y x =+;(2)2

2log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2

3t x =-,则03t <≤,

∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2

2

47(2)33t x x x =-+=-+≥,

当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6

.判断函数2()log )f x x =的奇偶性。

x >恒成立,故()f x 的定义域为(,)-∞+∞,

2()log )f x x -=

2log =-

2

log =-

2log ()x f x =-=-,

所以,()f x 为奇函数。

例7.求函数213

2log (32)y x x =-+的单调区间。

解:令2

2

3

132()2

4u x x x =-+=--

在3[,)2+∞上递增,在3

(,]2

-∞上递减, 又∵2

320x x -+>, ∴2x >或1x <,

故2

32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13

2log y u =为减函数,

所以,函数213

2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。

例8.若函数2

2log ()y x ax a =---

在区间(,1-∞-上是增函数,a 的取值范围。

解:令2

()u g x x ax a ==--, ∵函数2log y u =-为减函数,

∴2

()u g x x ax a ==--

在区间(,1-∞上递减,且满足0u >,

∴12(10a

g ?≥???≥?

,解得22a -≤≤, 所以,a

的取值范围为[22]-.

二次根式知识点总结

二次根式知识点总结 王亚平 1. 二次根式的概念 二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时, a 才有意义. 2. 二次根式的性质 1. 非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2 ≥=a a a 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:)0()(2 ≥=a a a 3. ? ? ?<-≥==)0() 0(2 a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方 根代替. 3. 最简二次根式和同类二次根式 1、最简二次根式: (1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或 2、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式 4. 二次根式计算——分母有理化 1.分母有理化 定义:把分母中的根号化去,叫做分母有理化。 2.有理化因式:

两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下: ①单项二次根式:利用a a a =?来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。 ②两项二次根式:利用平方差公式来确定。如b a +与b a - ,b a + 与 b a - ,y b x a +与y b x a -分别互为有理化因式。 3.分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式; 5. 二次根式计算——二次根式的乘除 1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。 )0,0(≥≥? = b a b a ab 2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 )0,0(≥≥= ? b a ab b a 3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。 )0,0(≥≥= b a b a b a 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。 )0,0(≥≥= b a b a b a 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还 要考虑字母的取值范围,最后把运算结果化成最简二次根式. 6. 二次根式计算——二次根式的加减 二次根式的被开方数相同时是可以直接合并的,如若不同,需要先把二次根式化成最简二次根式,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。 1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。 2、二次根式的加减分三个步骤: ①化成最简二次根式; ②找出同类二次根式; ③合并同类二次根式,不是同类二次根式的不能合并

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全 1.二次根式:式子(≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)()2= (≥0);(2) 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a≥0,b≥0);(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 (2)、平方法 当时,①如果,则;②如果,则。 例1、比较与的大小。 例2、比较与的大小。 (3)、分母有理化法 通过分母有理化,利用分子的大小来比较。 例3、比较与的大小。

(4)、分子有理化法 通过分子有理化,利用分母的大小来比较。 例4、比较与的大小。 (5)、倒数法 例5、比较与的大小。 (6)、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。 例6、比较与的大小。 (7)、作差比较法 在对两数比较大小时,经常运用如下性质: ①;② 例7、比较与的大小。 (8)、求商比较法 它运用如下性质:当a>0,b>0时,则: ①;② 例8、比较与的大小。 二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”) (1)()2=- ();(2)=- () (3)(-)2=- ();(4)(2)2=2×=1 () 2.下面的计算中,错误 ..的是() A.=±0.03 B.±=±0.07 C.=0.15 D.-=-0.13 3.下列各式中一定成立的是() A.=+=3+4=7 B.=- C.(-)2= D.=1-= 4.()2-=________; 5.+(-)2=________.6.[-]·-6;

垂径定理经典练习题.

圆垂径定理专题练习题 1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧. 2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( ) A.3 cm B.4 cm C.5 cm D.6 cm 3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5 4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___. 5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E. (1)请写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE的长. 6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )

A.4 B.5 C.6 D.8 7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的 直径为____. 8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3 千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区, 如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米? 9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____. 10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm, 则EF=____cm. 11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.

二次根式知识点总结及其应用

二次根式知识总结 一、基本知识点 1.二次根式的有关概念: (1)形如 的 式子叫做二次根式. (即一个 的算术平方根叫做二次根式 二次根式有意义的条件:被开方数大于或等于零 (2)满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; (3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。 2.二次根式的性质: (1) 非负性 3.二次根式的运算: 二次根式乘法法则 二次根式除法法则 二次根式的加减: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; ( 3)合并同类二次根式。 Ps:类似于合并同类项,关键是把同类二次根式合并。 二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用 0()a ≥0 2(2)(0 )a = ≥ = (0,0)a b = ≥ ≥ (0 0)a b = ≥> (0,0)a b = ≥≥ (0,0)a b = ≥>

二、二次根式的应用 1、非负性的运用 例:1.已知:0+=,求x-y 的值. 2、根据二次根式有意义的条件确定未知数的值 例1 有意义的x 的取值范围 例2.若2)(11y x x x +=-+-,则y x -=_____________。 3、运用数形结合,进行二次根式化简 例:.已知x,y 都是实数,且满足5.011+-+-

二次根式知识点总结材料和习题

二次根式的知识点汇总 知识点一:二次根式的概念 形如()的式子叫做二次根式。 注: 在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 知识点二:取值围 1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根 式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。 2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。知识点三:二次根式()的非负性 ()表示a的算术平方根,也就是说,()是一个非负数,即0()。 注: 因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。 知识点四:二次根式()的性质 () 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:

二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本 身,即;若a是负数,则等于a的相反数-a,即; 2、中的a的取值围可以是任意实数,即不论a取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 知识点六:与的异同点 1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实 数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,,而 2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的运算 (1)因式的外移和移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类 一、知识框图 二、知识要点梳理 知识点一、二次根式的主要性质: 1.; 2.; 3.; 4.积的算术平方根的性质:; 5.商的算术平方根的性质:. 6.若,则. 知识点二、二次根式的运算 1.二次根式的乘除运算 (1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;

(3) 乘法公式的推广: 2.二次根式的加减运算 先化简,再运算, 3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里; (2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 1.下列各式中一定是二次根式的是( )。 A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2)121+-x (3)45++x x (6). (7)若1)1(-=-x x x x , 则x 的取值范围是 (8)若1 313++=++x x x x ,则x 的取值范围是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。 5. 若20042005a a a -+-=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 29922-+-+-=m m m n ,则mn = 。 8. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是 10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<)0() 0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2..已知a

九年级数学: 垂径定理典型例题及练习

典型例题分析: 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD ⊥BC 于D ,求证:AD=21BF. O A E F

例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的 半径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

二次根式知识点总结大全

二次根式 【知识回顾】 1.二次根式:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2 =a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 a (a >0) a -(a <0) 0 (a =0);

1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153 x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1)x x --+31 5;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。 求代数式22,211881-+-+++-+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a

二次根式知识点归纳及题型知识讲解

一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 题型一:判断二次根式 (1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y +、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2 x x y y x x x x y +=--++f p 中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 (3)下列各式一定是二次根式的是( )A. 7- B. 32m C. 21a + D. a b 题型二:判断二次根式有没有意义 1、写出下列各式有意义的条件: (1)43-x (2)a 83 1- (3)42+m (4)x 1- 2、21 x x --有意义,则 ;3、若x x x x --=--32 32成立,则x 满足_____________。 练习:1.下列各式中一定是二次根式的是( )。 A 、3-; B 、 x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2)121+-x (3) . (5)若1)1(-=-x x x x , 则x 的取值范围是 (6)若1 313++=++x x x x ,则x 的取值范围是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。 5. 若20042005a a a --=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 29922-+-+-=m m m n ,则mn = 。 8. 若三角形的三边a 、b 、c 满足3442 -++-b a a =0,则第三边c 的取值范围是

垂径定理典型例题及练习

垂径定理练习题 典型例题分析: 例题、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度 为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. O A E F

2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2 、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半 径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

二次根式知识点及典型例题练习

第十六章 二次根式 知识点: 1、二次根式的概念:形如(a ≥0)的式子叫做二次根式。“”= “”,叫做二次根号,简称根号。根号下面的整体“a ”叫做被开方数。 2、二次根式有意义的条件:a ≥0; 二次根式没有意义的条件:a 小于0; 例1、 a +1表示二次根式的条件是______。 例2、已知y=2x -+2x -+5,求x y 的值。 例3、若1a ++1b -=0,求a 2004+b 2004的值。 例4、 当x ______时,12--x 有意义,当x ______时,3 1+x 有意义。 例5、若无意义2+x ,则x 的取值范围是______。 例6、(1)当x 是多少时,31x -在实数范围内有意义? (2)当x 是多少时, 2x 在实数范围内有意义?3x 呢? 3、二次根式的双重非负性: ≥0;a ≥0 。 例1、 已知+ =0,求x,y的值. 例2、 若实数a、b满足 +=0,则2b-a+1=___. 例3、 已知实a满足,求a-2010的值. 例4、 在实数范围内,求代数式 的值. 例5、 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值. 例6、已知9966 x x x x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 4、二次根式的性质: (3)

例1、(1) ()25.1=________ (2) ()252 =________ (3) ()2 2.0-=________ (4) 272??? ? ??=________ 例2、化简 (1)9=_____ (2)2(4)-=_____ (3)25=_____ (4)2 52??? ??--=_____ (4)2(3)- =_____ 例3.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 是什么数? (3)2a >a ,则a 是什么数? 例4.当x>2,化简2(2)x --2(12)x -. 5、积的算术平方根的性质 (a ≥0,b ≥0)即两个非负数的积的算术平方根,等于积中各因式的 算术平方根的积。 , 6、商的算术平方根的性质 (a ≥0,b >0) 商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。 。 例1、计算 (1)57 (2139(3927 (412 6 例2、化简 (1916?(21681?(3229x y (4)54

《垂径定理》典型例题

《垂径定理》典型例题 例1. 选择题: (1)下列说法中,正确的是() A. 长度相等的弧是等弧 B. 两个半圆是等弧 C. 半径相等的弧是等弧 D. 直径是圆中最长的弦答案:D (2)下列说法错误的是() A. 圆上的点到圆心的距离相等 B. 过圆心的线段是直径 C. 直径是圆中最长的弦 D. 半径相等的圆是等圆答案:B 例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。 分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。 证明:连结OC、OD ∵M、N分别是OA、OB的中点 ∵OA=OB,∴OM=ON 又CM⊥AB,DN⊥AB,OC=OD ∴Rt△OMC≌Rt△OND ∴∠AOC=∠BOD 例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB的度数和圆的半径。 分析:根据O到AB的距离,可利用垂径定理解决。 解:过O点作OE⊥AB于E ∵AB=12 由垂径定理知:

∴△ABO为直角三角形,△AOE为等腰直角三角形。 例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。求AB、AD的长。 分析:求AB较简单,求弦长AD可先求AF。 解:过点C作CF⊥AB于F ∵∠C=90°,AC=3,BC=4 ∵∠A=∠A,∠AFC=∠ACB ∴△AFC∽△ACB 例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。 分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。 解:连OA,过点O作OM⊥AB于点M ∵点P在AB上,PA=4cm

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型 资料编号:20190802 一、二次根式的定义 形如a (a ≥0)的式子叫做二次根式.其中“ ”叫做二次根号,a 叫做被开方数. (1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”; ②被开方数是否为非负数. 若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式. (3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是: a m a m ?=(a ≥0); (4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质: (1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性: () a a =2 (a ≥0);(主要用于二次根式的计算) (3)转化性:? ??≤-≥==)0() 0(2a a a a a a .(主要用于二次根式的化简) 重要结论: (1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A , A ≥0,2 B ≥0, C ≥0 ∴0,0,0===C B A . 该性质常与配方法结合求字母的值.

(2) ()() ()? ??≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简. (3)()() ??????=002 2A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)() B A B A ?=22 ,其中B ≥0. 该结论主要用于二次根式的计算. 例1. 式子 1 1-x 在实数范围内有意义,则x 的取值范围是_________. 分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2 1 11+ -+-=x x y ,化简:11--y y . 分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴12 1 2100<=++=y ∴ 11 11 1-=--= --y y y y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数x x y 21-= ,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.

九年级数学垂径定理圆心角弧弦弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版 【本讲教育信息】 一. 教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O ,垂足M ,弦中点M ,劣弧中点D ,优弧中点C ,五点共线。(M 点是两点重合的一点,代表两层意义) 3. 应用以上定理主要是解直角三角形△AOM ,在Rt △AOM 中,AO 为圆半径,OM 为弦AB 的弦心距,AM 为弦AB 的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt △AOM 时,注意巧添弦心距,或 半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()()1234??? 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。 二. 重点、难点: 垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。 【典型例题】 例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。 点悟:本例的关键在于正确理解什么是O 点到AB 的距离。 解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示: ∴==?=OE AB cm 121 2 126() 由垂径定理知:AE BE cm ==6 ∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90° 由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm 点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。 例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。 求证:AD BD a b ·=-2 2 证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==, 在Rt AOE ?中,AE OA OE 222=- 在Rt COE ?中,CE OC OE 2 2 2 =- ()() ∴-=---AE CE OA OE OC OE 222222 =-=-OA OC a b 22 2 2 即()()AE CE AE CE a b +-=-22 BD AC ED CE ==, AD ED AE CE AE =+=+∴ BD AC CE AE ==- 即2 2b a BD AD -=? 点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。 例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cm B. 6cm C. 63cm D. 123cm (20XX 年辽宁) 解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ( ) 2632321632 2 2 2 -=-=()cm 故选C 。 例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm , 矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ? 上,且EF =4HE , 求HE 的长。 解:连结AD 、OG ∠= ∠=??=?AOD AOB 121 2 12060 OA =OD ∴△AOD 为等边三角形 ∵OD ⊥AN ∴NO =ND =4cm C O A B M D O

九上《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题 知识框图 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过三点可作 个圆。过四点可作 个圆。 2、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 3、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。 注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。在题目中,若让你求⌒A B ,那么所求的是弧长 圆 概 念 圆、圆心、半径、直径 弧、弦、弦心距、等弧 圆心角、圆周角 三角形的外接圆、三角形的外心、圆的内接三角形 圆的基本性质 圆周角定理及2个推论 圆的相关计算 弧可分为劣弧、半圆、优弧 在同圆或等圆中,能够重合的两条弧叫等弧 点和圆的位置关系 不在同一直线上的三点确定一个圆 圆的轴对称性 垂径定理及其2个逆定理 圆的中心对称性和旋转不变性 圆心角定理及逆定理 求半径、弦长、弦心距 求圆心角、圆周角、弧长、扇形的面积、圆锥的侧面积及表面积 圆的相关证明 求不规则阴影部分的面积 证明线段长度之间的数量关系;证明角度之间的数量关系 证明弧度之间的数量关系; 证明多边形的形状;证明两线垂直 圆心角定理及逆定理都是根据圆的旋转不变性推出来的 三角形的外心到三角形三个顶点的距离相等

4、圆周角定理:一条弧所对的圆周角等于它所对的 圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等;相等的圆周角所对 的也相等 5、拓展一下:圆内接四边形的对角之和为 6、弧长公式:在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为l = 7、扇形面积公式1:半径为R ,圆心角为n °的扇形面积为 。这里面涉及3个变量: ,已知其中任意两个,都可以求出第3个变量。我们中需要记住一个公式即可。 扇形面积公式2:半径为R ,弧长为l 的扇形面积为 8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个 ,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的 ,弧长等于圆锥的 9、圆锥的侧面积: ;圆锥的全面积: 10、圆锥的母线长l ,高h ,底面圆半径r 满足关系式 11、已知圆锥的底面圆半径r 和母线长l ,那么圆锥的侧面展开图的圆心角为 12、圆锥的侧面展开图的圆心角x 的取值范围为 考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号) 考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式 考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理 考点四、求圆心角、圆周角 考点五、求阴影部分的面积 考点六、证明线段、角度、弧度之间的数量关系;证明多边形的具体形状 考点七、利用不在同一直线上的三点确定一个圆的作图题 考点八、方案设计题,求最大扇形面积 考点九、将圆锥展开,求最近距离 练习 一、选择题 1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。正确的个数是( ) A.2个 B.3个 C.4个 D.5个 2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ) 3、如图所示,在△ABC 中,∠BAC=30°,AC=2a ,BC=b ,以AB 所在直线为轴旋转一周得到一个几何体,则这个几何体的全面积是( ) A. 2πa B. πab C. 3πa2+πab D. πa (2a+b ) P A O B s t O s O t O s t O s t A . B . C . D .

初中数学二次根式知识点总结附解析

一、选择题 1. 5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2. ,a ==b a 、 b 可以表示为 ( ) A . 10 a b + B .10 -b a C . 10 ab D . b a 3.下列各式成立的是( ) A 3= B 3= C .22(3 =- D .2-= 4.下列计算结果正确的是( ) A B .3= C =D =5.下列各式中,运算正确的是( ) A .= -= .2=D 2=- 6.m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 3 7. 已知 4 4 2 2 0,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10 D .11 8.当4x = - 的值为( ) A . 1 B C .2 D .3 9 .有意义,则字母x 的取值范围是( ) A .x≥1 B .x≠2 C .x≥1且x =2 D ..x≥-1且x ≠2 10 .若a ,b = ,则a b 的值为( ) A . 1 2 B . 14 C . 3 21 + D 二、填空题 11.已知实数, x y 满足(2008x y =,则

2232332007x y x y -+--的值为______. 12.能力拓展: 1:2121A -= +;2:3232A -=+;3:4343 A -=+; 4:54A -=________. …n A :________. ()1请观察1A ,2A ,3A 的规律,按照规律完成填空. ()2比较大小1A 和2A ∵32+ ________21+ ∴32+________21 + ∴32-________21- ()3同理,我们可以比较出以下代数式的大小: 43-________32-; 76-________54-;1n n +-________1n n -- 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简 () 2 22144a a ab b +--+=_____________; (2)已知正整数p ,q 32016p q =()p q , 的个数是_______________; (3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.计算(π-3)02-2 11(223)-4-22 --() 的结果为_____. 15.() 2 117932x x x y ---=-,则2x ﹣18y 2=_____. 16.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________. 17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平 方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.