搜档网
当前位置:搜档网 › 基于遗传算法的多目标优化方法概要

基于遗传算法的多目标优化方法概要

基于遗传算法的多目标优化方法概要

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

多目标遗传算法代码

. % function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance

遗传算法在多目标优化中的作用 调研报告

遗传算法在多目标优化中的作用调研报告 姓名: 学院: 班级: 学号: 完成时间:20 年月日 目录 1 .课题分析................................................................................................................................ 0 2 .检索策略................................................................................................................................ 0 2.1 检索工具的选择................................................................................................................................ ......... 0 2.2 检索词的选择................................................................................................................................ ............. 0 2.3 通用检索式................................................................................................................................ .. 0 3.检索步骤及检索结果 0 3.1 维普中文科技期刊数据库 0 3.2 中国国家知识产权局数据

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

遗传算法程序代码--多目标优化--函数最值问题

函数最值问题:F=X2+Y2-Z2, clear clc %%初始化 pc=0.9; %交叉概率 pm=0.05; %变异概率 popsize=500; chromlength1=21; chromlength2=23; chromlength3=20; chromlength=chromlength1+chromlength2+chromlength3; pop=initpop(popsize,chromlength);% 产生初始种群 for i=1:500 [objvalue]=calobjvalue(pop); %计算目标函数值 [fitvalue]=calfitvalue(objvalue);%计算个体适应度 [newpop]=selection(pop,fitvalue);%选择 [newpop1]=crossover(newpop,pc) ; %交叉 [newpop2]=mutation(newpop1,pm) ;%变异 [newobjvalue]=newcalobjvalue(newpop2); %计算最新代目标函数值 [newfitvalue]=newcalfitvalue(newobjvalue); % 计算新种群适应度值[bestindividual,bestfit]=best(newpop2,newfitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit); %储存最优个体适应值 pop5=bestindividual; %储存最优个体 n(i)=i; %记录最优代位置 %解码 x1(i)=0+decodechrom(pop5,1,21)*2/(pow2(21)-1); x2(i)=decodechrom(pop5,22,23)*6/(pow2(23)-1)-1; x3(i)=decodechrom(pop5,45,20)*1/(pow2(20)-1); pop=newpop2; end %%绘图 figure(1)%最优点变化趋势图 i=1:500; plot(y(i),'-b*') xlabel('迭代次数'); ylabel('最优个体适应值'); title('最优点变化趋势'); legend('最优点');

多目标遗传算法代码

% function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance % corresponding to their position in the front they belong. 真是牛X了。 chromosome = non_domination_sort_mod(chromosome,pro); %% Start the evolution process

多目标规划遗传算法

%遗传算法解决多目标函数规划 clear clc syms x; %Function f1=f(x) f1=x(:,1).*x(:,1)/4+x(:,2).*x(:,2)/4; %function f2=f(x) f2=x(:,1).*(1-x(:,2))+10; NIND=100; MAXGEN=50; NV AR=2; PRECI=20; GGPA=0.9; trace1=[]; trace2=[]; trace3=[]; FielD=[rep([PRECI],[1,NV AR]);[1,1;4,2];rep([1;0;1;1],[NV AR])]; Chrom=crtbp(NIND,NV AR*PRECI); v=bs2rv(Chrom,FielD); gen=1; while gen

多变量多目标的遗传算法程序

这是我在解决电梯动力学参数写的简单遗传算法(程序带目标函数值、适应度值计算,但是我的适应度函数因为目标函数的计算很特殊,一起放在了程序外面计算,在此不提供)。 头文件: // CMVSOGA.h : main header file for the CMVSOGA.cpp // 本来想使用链表里面套链表的,程序调试比较麻烦,改为种群用链表表示 //染色体固定为16的方法。 #if !defined(AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767_ _INCLUDED_) #define AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767__INCLUDED _ #if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 #include "Afxtempl.h" #define variablenum 16 class CMVSOGA { public: CMVSOGA(); void selectionoperator(); void crossoveroperator(); void mutationoperator(); void initialpopulation(int, int ,double ,double,double *,double *); //种群初始化 void generatenextpopulation(); //生成下一代种群 void evaluatepopulation(); //评价个体,求最佳个体 void calculateobjectvalue(); //计算目标函数值 void calculatefitnessvalue(); //计算适应度函数值 void findbestandworstindividual(); //寻找最佳个体和最差个体 void performevolution(); void GetResult(double *); void GetPopData(double **); void SetValueData(double *); void maxandexpectation(); private: struct individual { double chromosome[variablenum]; //染色体编码长度应该为变量的个数 double value; double fitness; //适应度 };

多目标遗传算法中文【精品毕业设计】(完整版)

一种在复杂网络中发现社区的多目标遗传算法 Clara Pizzuti 摘要——本文提出了一种揭示复杂网络社区结构的多目标遗传算法。该算法优化了两个目标函数,这些函数能够识别出组内节点密集连接,而组间连接稀疏。该方法能产生一系列不同等级的网络社区,其中解的等级越高,由更多的社区组成,被包含在社区较少的解中。社区的数量是通过目标函数更佳的折衷值自动确定的。对合成和真实网络的实验,结果表明算法成功地检测到了网络结构,并且能与最先进的方法相比较。 关键词:复杂网络,多目标聚类,多目标进化算法 1、简介 复杂网络构成了表示组成许多真实世界系统的对象之间关系的有效形式。协作网络、因特网、万维网、生物网络、通信传输网络,社交网络只是一些例子。将网络建模为图,节点代表个体,边代表这些个体之间的联系。 复杂网络研究中的一个重要问题是社区结构[25]的检测,也被称作为聚类[21],即将一个网络划分为节点组,称作社区或簇或模块,组内连接紧密,组间连接稀疏。这个问题,如[21]指出,只有在建模网络的图是稀疏的时候才有意义,即边的数量远低于可能的边数,否则就类似于数据簇[31]。图的聚类不同于数据聚类,因为图中的簇是基于边的密度,而在数据聚类中,它们是与距离或相似度量紧密相关的组点。然而,网络中社区的概念并未严格定义,因为它的定义受应用领域的影响。因此,直观的理解是同一社区内部边的数量应该远多于连接图中剩余节点的边的数量,这构成了社区定义的一般建议。这个直观定义追求两个不同的目标:最大化内部连接和最小化外部连接。 多目标优化是一种解决问题的技术,当多个相互冲突的目标被优化时,成功地找到一组解。通过利用帕累托最优理论[15]获得这些解,构成了尽可能满足所有目标的全局最优解。解决多目标优化问题的进化算法取得成功,是因为它们基于种群的特性,同时产生多个最优解和一个帕累托前沿[5]的优良近似。 因此,社区检测能够被表述为多目标优化问题,并且帕累托最优性的框架可以提供一组解对应于目标之间的最佳妥协以达到最优化。事实上,在上述两个目标之间有一个折衷,因为当整个网络社区结构的外部连接数量为空时,那它就是最小的,然而簇密度不够高。 在过去的几年里,已经提出了许多方法采用多目标技术进行数据聚类。这些方法大部分在度量空间[14], [17],[18], [28], [38], [39], [49], [51]聚集目标,虽然[8]中给出了分割图的一个方法,并且在[12]中描述了网络用户会议的一个图聚类算法。 本文中,一个多目标方法,名为用于网络的多目标遗传算法(MOGA-Net),通过利用提出的遗传算法发现网络中的社区。该方法优化了[32]和[44]中介绍的两个目标函数,它们已被证实在检测复杂网络中模块的有效性。第一个目标函数利用了community score的概念来衡量对一个网络进行社区划分的质量。community score值越高,聚类密度越高。第二个目标函数定义了模块中节点fitness的概念,并且反复迭代找到节点fitness总和最大的模块,以下将这个目标函数称为community fitness。当总和达到最大时,外部连接是最小。两个目标函数都有一个正实数参数控制社区的规模。参数值越大,找到的社区规模越小。MOGA-Net利用这两个函数的优点,通过有选择地探索搜寻空间获得网络中存在的社区,而不需要提前知道确切的社区数目。这个数目是通过两个目标之间的最佳折衷自动确定的。 多目标方法的一个有趣结果是它提供的不是一个单独的网络划分,而是一组解。这些解中的每一个都对应两个目标之间不同的折衷,并对应多种网络划分方式,即由许多不同簇组成。对合成网络和真实网络的实验表明,这一系列帕累托最优解揭示了网络的分层结构,其中簇的数目较多的解包含在社区数目较少的解中。多目标方法的这个特性提供了一个很好的机会分析不同层级

相关主题