搜档网
当前位置:搜档网 › 关于电压型变频器直流环节滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法
关于电压型变频器直流环节滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法

[日期:2007-10-1] 来源:电源技术应用作者:浙江大学王青松

摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。

关键词:整流电路;电压型变频器:纹波

0 引言

虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。

直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。

对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。

l 三相变频器直流中间电路电解电容的计算

1.1 变频器及直流中间电路结构框图

变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形

三相输入线电压220V及整流后的电压波形如图2所示。

图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。

1.3 分析过程

1.3.l 整流后电压的计算

对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

1.3.2 等效电阻的计算

为计算方便,对于输出功率为P的逆变器,将其直流侧输入端阻抗用一个纯电阻R等效,则

1.3.3 电容的充放电过程分析

由于整流后的直流电压有波动,假设ur的波动幅度为a%,则

假设电路工作已经处于稳态,电容两端的电压如图2所示,在t2时刻,电容电压达到最大值。之后由于电源电压小于电容电压,电容开始放电;在t3时刻,当电源电压下降到最小值时,电容电压依然大于电源电压,电容继续放电:在t4时刻,电源电压刚好等于电容电压,此后电源给电容充电。在t4时刻电容电压等于UPV (1-a%)。

1.3.4 计算过程

由图2可知,电容的放电时间为tf=t4-t2

例:以三相220V系列2.2kW变额器为例来计算其直流中间电路所需的电解电容。

已知,U=220V,UPN=310V,f=50Hz,并假设a=5,

将以上数据代入式(9)得到C>1036.56μF

考虑实际电容容值大小,则可以选择用3个470μF的电解电容并联使用。

2 单相变频器直流中间电路电解电容的计算

这里单相输入的线电压的值仍与上述三相输入的相同。

由于三相变频器整流后的电压波形是六脉波;而单相变频器只有两个波头。

对于单相220V系列0.4kW系列变频器来

因此对于单相220V系列0.4 kW变频器,则选择用3个220μF 的电解电容并联使用。

3 实验结果

(1)三相输入220V系列2.2kW变频器在载波频率为14.5 kHz、负载为满载、直流环节使用3个470μF的电解电容并联的条件下,测得电容电压最大值和最小值分别为312V和299V,平均值为305V,纹波系数约为4.26%;

(2)单相输入220V系列O.4kW变频器在载波频率为14.5 kHz、负载为满载、直流环节使用3个220μF的电解电容并联的条件下,测得电容电压最大值和最小值分别为308V和294V,平均值为

301V,纹波系数约为4.65%。

4 结语

变频器硬件回路的设计在考虑采用性能好的部件的同时更要注意使成本最低化。依靠经验而取的电容值一般会留很大的裕量,间接地增加了成本。本文关于直流中间电路电解电容的算法在实际应用中可行,并且可靠。通过理论计算,设计者可以根据不同电压等级、不同功率的负载选择相应的滤波电容。此算法已实际应用,并取得了一定的经济效益。

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

最新变频器节电率的计算整理

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机 处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: n= 60f p(1?s) 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 U1≈E1=4.44f1Nk1?1 式中E1-定子绕组感应电动势,V; ?1-气隙磁通,Wb; N-定子每相绕组匝数; f1-基波绕组系数。 在变频调速时,如果只降低定子频率f1,而定子每相电压保持不变,则必然会造成?1增大。由于电机制造时,为提高效率减少损耗,通常在U1=U n,f1=f n时,电动机主磁路接近饱和,增大?1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。

若在降低频率的同时降低电压使E 1f 1?保持不变则可保持?1不变从而避免了主磁路过饱和 现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =m 1pf 12π(r 2s +sx 22r 2)(E 1f 1 )2 式中T -电动机转矩,N.m ; m 1—电源极对数; p —磁极对数; s —转差率; r 2—转子电阻; x 2—转子电抗; 由于转差率s 较小,(r 2s ?)2?x 22则有 T ≈m 1pf 12πr 2s (E 1f 1)2 =kf 1s 其中k =m 1p 2πr 2(E 1f 1)2 由此可知:若频率f 1保持不变则T ∝s ;若转矩T 不变则s ∝1f 1?; 电动机临界转差率s m ≈r 2x 2=r 2 2πf 1L 2=C f 1 其中C =r 22πL 2 电动机最大转矩T m =m 1pf 1 4π12πf 1L 2(E 1f 1)2=常数 最大转速降?n m =s m n 1=C f 160f 1 p =60p =常数 由此可知:保持E 1f 1=?常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。 1.2风机、泵负载特性 以风机、泵类为代表的二次方减转矩负载即转矩与转速平方成正比。如图所示,在低转速下负载转矩非常小。 风机、水泵的负载特性如下 n 1n 2?=Q 1Q 2? (n 1n 2?)2=H 1H 2?=T 1T 2? (n 1n 2?)3=P 1P 2? 式中Q 1Q 2?—风量、流量,m 3s ?; H 1H 2?—风压,Pa ;

滤波电容的选择

滤波电容起平滑电压的作用;容值大小与输入桥式整流的输入电压无关;一般是越大越好。但要明白它取值的原理:滤波电容的取值与后级电路的突变电流有关。 打个比方:电容就好比一个水桶,输入往这个水桶中倒水,输出(后级电路)从这个水桶中抽水。如果恒定的抽水,只要倒入的水量大于抽水量,那么水桶将永远是满的,所以这个水桶可以不需要(当然这是理想情况)。假如某时刻需要抽出大量的水,大于输入的量,你会怎么办? 你可以准备一个较大的水桶,在这个时刻到来之前,将这个水桶的水灌满;等到了抽水的时刻,水桶中已经有足够的水抽取,就不会出现缺水的情况。 滤波电容就好比这个较大的水桶! 至于它的具体值,你将后级电路的突变电流与电容充、放电系数联系起来考虑,相信你能领悟出合适的计算方法。 滤波电容的作用和大小是怎样的? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂 滤波电容在电路中作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 容的容抗为1/ωC欧姆(类似电阻,如果是非电类大学以上学历就把它当作电容器的电阻看吧),ω为角频率,ω=2πf,f为频率。容抗与自身容量C和频率ω(或者说f)有关,当C一定时,频率越高,容抗越小,对电流的阻碍作用就越小;频率越低,容抗越大。……人们所说的“电容通高频阻低频,通交流阻直流”是在不同情况下说的,也可以说是在不同容量C的情况下说的,都是正确的。 到此就不必再多说了吧,分析1/ωC就行了。 电路中的电容滤波问题解析

变频调速的计算

一、变频调速与节流调节的计算 流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。如(1)式所述。 31 23 1212)()(v v v q q n n p p q P ===存在的关系与流量泵与风机的功率 (1) 根据v q 、H 值可以计算泵与风机的功率,即:η ρ102H q P V = (2) 式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算 (1) 变频调速调节与节流调节 对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系: )(])( 55.045.0[2 kW p q q P e ve V L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ; 若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为: ] )(55.045.0[)( 1/)( 23 3 ve v b ve v L b ve v e L L q q q q P q q P P p p Ki +- =-=?= ηη (4) 式中Ki ─节电率;ηb ─调速机构效率。 从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。由(1)式可知采用电机变速调节后,电机消耗的功率与实际流量和额定流量比值的三次方成正比,由于变频调速效率高,本身的损耗相比很小,在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%~98%。采用变频调速,泵与风机的效率几乎不变,其特性近似满足相似定律,即满足(1)式的关系。因此(4)式能较准确地计算泵与风机电机变频调速调节相比节流调节所要节约的节电率。 例5.1 某厂离心风机125kW ,实际用风量为0.7,年工作4800h ,准备投资15万元改造为变频器驱动,变频器的效率为96%,估算节电率和投资回收期。 解:由题意知q v /q ve =0.7,由式(4)得节电率为 5.0) 7.055.045.0(96.07.012 3 =?+?-=Ki 由式(3)得:P L =(0.45+0.55×0.72 )×125=90(kW)

LED电源输入滤波电容的选择计算方法

LED 电源输入滤波电容的选择计算方法 对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。 在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。 一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量 1)线电压有效值: V lin(min )~V lin(max) 2)线电压峰值:2 V lin(min )~2V lin(max) 3)整流滤波后直流电压的脉动值 V PP =2 V lin(min )×(20%~25%) (单相输入) V PP =2 V lin(min )×(7%~10%) (三相输入) 4)整流滤波后的直流电压:V in V in =(2 V lin(min )- V PP )~2V lin(in) 由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =F A Pin ? A 是交流输入的相数,单相为1三相为3,F 为频率, 每个半周期输入滤波电容的能量为 2(min)2(min))2()2[2 12pp lin lin V V V Cin Win --??=(] 根据上式就可以计算出需要的电容的容量。

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

滤波电容的选型与计算详解终审稿)

滤波电容的选型与计算 详解 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是 直接储存脉动电压来 平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流 越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输 出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低 频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与 市电一致为50Hz; 而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千 Hz到几万Hz。当我 们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好, 它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液

的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频, 4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时 变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为 WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率. 采用电容滤波设计需要考虑参数: ESR ESL

变频器调速节能的计算方法

变频器调速节能的计算方法 一﹑概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 对风机、泵类,采用挡板调节流量对应电机输入功率PL与流量Q的关系的三次方成正比,即,再与采用挡板调节流量对应电机输入功率PL相减后再除以节省的功率与系统调速前后的速差成正比,速差越大,节能越显著。 恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗的转差功率,节能率也是很可观的。 3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算: 电动机轴输出功率式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不

逆变电源滤波电容的大小计算

逆变电源滤波电容的大小计算 11-06-19 01:19 逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联,

-逆变器输出滤波器计算-

输出滤波器的计算 一、滤波器选择的部分指标 (1)逆变电源的空载损耗是逆变电源的重要指标之一。空载损耗与空载时滤波器的输入电流有关,电流越大,损耗越大,原因有以下两个方面:一方面,滤波器的输入电流越大,逆变开关器件上的电流越大,逆变器的损耗就越大;另一方面,空载时滤波器的输入电流也流过电抗器及电容器,电流增大也会使电抗器及电容器的损耗增大。所以从限制空载电流的角度来讲,空载时滤波器的输入电流不能太大。一般的,空载时滤波器的输入基波电流不能超过逆变电源的额定输出电流的30%。 设I m 表示空载时输入滤波器的输入基波电流的有效值,U 0表示输出电压基波的有效值,Wo 为基波角 频率, 则由图1可得: 00Im CU ω= (1) 有上式可知,空载时滤波器输入基波电流的大小与C 成正比。所以从限制逆变电源空载损耗的角度来讲,LC 滤波器的电容之不能太大。 (2)逆变电源对非线性负载的适应性指标 逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性越好。 开环时逆变电源的输出阻抗就是LC 滤波器的输出阻抗,根据公式LC L Z 201ωω?= (2)

在L 、C 乘积恒定时,L 越小,则输出阻抗值越小。 当逆变电源采用电容电流及电压瞬时值反馈控制方案时,可以得到和开环时相同的结论。 综上说述可以得到以下两点结论: 1)在L 、C 之积恒定时,L 越小,逆变电源的输出阻抗越小,逆变电源对非线性负载的适应性越好; 2)L 越小,越不容易出现过调制,逆变电源对非线性负载的适应性越好。、 (3)在采用同步调制控制方式的逆变电源中,频率为(2ωs -ω0)的谐波是逆变器输出PWM 波中复制最高的谐波,它对输出电压的波形影响最大。输出电压中,只要频率为(2ωs -ω0)的谐波符合要求,则其他高次谐波含量均能符合要求。所以在这种情况下设计LC 滤波器是,只需考虑滤波器对(2ωs -ω0)频率谐波的衰减。 二、输出LC 滤波器的计算 2.1综述 一般说来,空载与负载相比,空载时电压中的频率(2ωs -ω0)的谐波含量是最大的,根据公式: )(*)1(1*2)2(1222200απββπωωJ N Q N b HF s ++=? (3) 式中C L R Q L //=;00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;2 2)1(/ββα?+=Q b ;)(1απJ 为1阶的Besset 函数,计算比较繁琐。 空载时,)2(00ωω?s HF 可表示为: )(*11*2)2(1 200απβπωωJ N b HF s ?=? (4) 式中:00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;βα?=1b 。 对式(4)进行分析,可得空载时)2(00ωω?s HF 的特性如下: a ,当逆变电源输入电压增大时,输出电压中的频率为 )2(0ωω?s 的谐波的谐波含量将增大。

变频器节能效率计算精编版

变频器节能效率计算公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 60f n= 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。电机定子绕组内部感应电动势为 U 1≈U 1=4.44U 1UU 1 1 式中U 1-定子绕组感应电动势,V ; 1-气隙磁通,Wb ; U -定子每相绕组匝数; U 1-基波绕组系数。 在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使U 1U 1?保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2 式中T -电动机转矩,; U 1—电源极对数; U —磁极对数; U —转差率; U 2—转子电阻; U 2—转子电抗;

如何选择和计算滤波电容

如何选择和计算滤波电容 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz 左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。

压缩机变频节能改造及节能量计算

压缩机变频节能改造及节能量分析 冯东升 (上海电机系统节能工程技术研究中心有限公司,上海 200063) 摘要:本文从压缩机的变频调速原理出发,介绍了压缩机系统的变频改造方案,并主要阐述了变频改造后的节能量计算方法,最后通过实例进行了节能效果分析,结果表明该技术节能效果显著,值得推广。 关键词: 压缩机 变频改造 节能 The Analysis of Frequency Conversion Energy Saving In Compressor Feng dong-sheng (Shanghai Engineering Research Center of Motor System EnergySaving Co.,Ltd., Shanghai 200063,China) Abstract: This paper start with the frequency control of compressor, mainly introduces the project of frequency conversion and method of calculating energy saving in compressor. Results show that , the technology is advanced and worth promoting. Key words: compressor;frequency conversion; energy-saving 1 概述 压缩机作为基础工业装备,广泛的应用于机械制造、冶金、石油化工、矿山、纺织等工业生产的各个领域中。空压机的种类有很多,常见的主要有活塞式、螺杆式、离心式等几种。由于压缩机通常是长期连续的运转方式,因此在各种工矿企业内属于耗电量较多的重点用电设备之一。 在国民经济可持续发展的战略之下,能源作为国家的重要物质基础,节能和绿色生产已成为国家十二五规划的重点,工业企业在保证正常的生产条件下,如何实现节能已势在必行,空压机作为重点耗能设备,已经成为了关键词。

相关主题