搜档网
当前位置:搜档网 › 新时期深基坑工程安全监测和信息化监控

新时期深基坑工程安全监测和信息化监控

新时期深基坑工程安全监测和信息化监控
新时期深基坑工程安全监测和信息化监控

新时期深基坑工程安全监测和信息化监控

发表时间:2018-09-06T10:30:08.670Z 来源:《防护工程》2018年第9期作者:张宇

[导读] 其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。

张宇

昆明勘测设计研究院云南省昆明650031

摘要:最近几年,伴随着社会经济的不断发展,深基坑工程数量有了明显增加,其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。

关键词:新时期;深基坑工程安全监测;信息化监控

深基坑在开挖支护施工期间,因工程岩土构造具有地质条件复杂、受力性能特殊等特点,因此,在监测参数设定,监控方案设计环节中,预估值计算值和具体施工中的实测值存在较大的差别性,离散性,随机性。从中看出,对于深基坑工程的质量和安全管理,不仅和规范设计有一定的联系,同时还在一定程度上取决于施工整个过程的安全监测情况。安全监测作为保证深基坑工程施工安全的关键性措施,其具有十分重要的作用。

在深基坑施工期间,对土体以及支护结构实际现状进行定性分析和定量检测/监测,能够为后期工程稳定运行提供有利的条件,对此,进行深基坑施工的时候,要从基坑周围支护结构和工程地质,水文地质分析入手,在全面了解和掌握施工过程安全控制的基础上保证工程整体质量和毗邻建筑物、构筑物,相关施工人员及设施的安全。

1、监测项目以及监测方法

1.1位移的具体监测方法

在工程项目当中,监控方通常使用的位移监测方法有两种:水平以及侧向监测。在具体的监测过程中,通常所说的位移速率的监测是指的在拟定监测的计划之内,把相应监测位间隔的时间段作为项目参考的过程。同时,项目的位移监测是最为重要的安全监测项目。

1.1.1项目工程的水平位移监测方法

监控方在进行工程项目的位移监测后,可以在监测后数据处理提供基坑边壁的水平变形量以及位移的变形速率和整个基坑平面几何变形分布信息。一般可以通过分析信息数据,进一步研究基坑边壁的稳定性及变形发展趋势。与此同时,通常情况下,水平位移监测使用经纬仪、全站仪、固定点GPS等方法来进行相关的测量工作。进行视准线方法的操作时,可以依据不同的标准分为距离变化方法以及角度变化方法。在工程项目当中,利用精密全站仪来测量某个监测点的具体坐标,将其称为坐标变化方法。在项目工程监测过程中,使用后一种测量方法与人工三角网监测来比较,目前如使用TCA2003自动全站仪进行工程监测时,监测过程具有精度高,响应快,数据处理快,人工工作量较小等优点。

GPS已经在工程项目的基坑监测过程中得到了广泛的应用。根据测量技术的使用案例,从相关工程基坑施工监测的实践数据以及实践效果来看,使用这种测量方法不仅可以避免光学仪器方法对于工地现有条件的项目限制,还可以在工程施工的工作效率和工程测量数据的精准度上得到较大提高,确保监测工作的质量始终处于受控状态。

1.1.2深基坑侧位移监测方法

监控方在进行工程项目的侧向位移监测中,通过这种测量,可以为基坑开挖/支护提供基坑围护结构及坑壁不同深度,不同范围的倾斜位移的具体分布情况数据,在基坑的施工中,侧向位移监测的有关数据对于基坑的建设安全特别重要,因此需要在测量和数据分析时特别重视。进行侧向位移监测时,可在测量中采用石英挠性加速器作为敏感元件的滑动式测量斜度的测斜仪,测斜仪在工作过程中,是将倾斜的角度以电压的形式输出,其电压转换精度在mv级别,从而可以在滑动过程中连续不断地测量基坑预埋测斜管(轨道)整体倾斜方位角和累计变形量。在测量斜度的仪器当中,通常采用伺服加速度计式以及电阻应变式两种形式,在具体工程项目中可根据实际情况灵活选用,通常情况下,通过对比试验得出,伺服加速度计式测斜仪精密度比较高,并且在进行监测的过程当中工况相对稳定。但是伺服加速度测斜仪在价格方面也比较昂贵,监控方应根据实际情况和工程经济论证进行仪器比选。

1.2压力的监测方法

对于深基坑土体的压力监测,通常包括的是对于基坑内外土压力(主动土压力、被动土压力、静止土压力)以及土层孔隙水压力的具体监测。可以通过上述两种压力监测方法来掌握基坑开挖过程中的土体压力变化情况以及具体的土体压力变化规律,来及时的发现影响基坑土层稳定性的有关因素,及时采取具体控制措施来确保土层以及围护结构的安全稳定。

在工程项目当中,在进行工程基坑的开挖以及边坡支护时,在施工的基坑现场都会采取土层压力以及土层孔隙水压力的有关观测措施,且该观测方法已经在建筑行业实行了很长的时间,与此同时,业已在观测施工中积累了较多的工程经验,对于监测行业来说,也促进了很多监测传感器的改进发展。在当前,我国通常使用的压力传感器可以依据不同的工作原理分成电阻应变片式和电感调频式,还包括了钢弦式(振弦式)等等。在这些众多类型的传感器当中,根据工程现场的使用情况,以钢弦式(振弦式)压力传感器性质最为稳定,并且对于电的绝缘性要求也不高,可以在长期的基坑工程中埋设使用而不易损坏,在基坑恶劣的自然环境下也不影响土层压力以及土层孔隙水压力的正常观测。但是在进行传感器的埋设之前,必须要对于所使用的传感器进行工程防水性检测,线路保护,以及具体的传感器温度设定,初始监测频率记录等工作。

1.3 基坑边坡支护结构的内力监测

1.3.1基坑边坡支护结构中主受力结构应力的监测方法

基坑维护结构类型较多,对支撑式以板桩,灌注桩,型钢桩,地下连续墙等类型居多。工程基坑的边坡支护结构的施工时,一般情况下,最重要的结构受力体当属基坑当中钢筋混凝土支护桩和地下连续墙的主要受力钢筋,在这其中进行结构受力的监测时,应布置钢筋应力(应变)计,以此对基坑支护结构进行应力监测。在进行应力监测点的设置时,应该要全方位的进行考虑整体受力情况和薄弱点监测,

基坑监测方案-

基坑监测方案-

监测方案 批准:审核:编写:

监测方案 2012年05月6日 目录 §1概况 (1) 1.1工程概况 1.2环境概况 §2监测技术要求与目的 (1) §3监测方案编制依据 (2) §4监测方案编制原则 (2) 4.1系统性原则 (2) 4.2可靠性原则 (3) 4.3与设计、施工相结合原则 (3) 4.4经济合理原则 (3) §5监测内容 (3) 5.1塔机基础监测 (3) 5.2基坑围护监测 (3) 5.3坑底回弹监测 (4) §6监测点的布设 (4) §7监测控制网的布设 (5) §8监测仪器及方法 (5) 8.1垂直、水平位移监测 (7) 8.2坑底回弹监测 (10) §9报警 (10) §10监测工作计划、周期及频率 (11) §11资料整理与成果提交 (11) §12技术保障措施 (12) §13质量保障措施 (12) §14应急预案 (13) 14.1应急小组 (13)

监测方案 14.2应急小组职责及工作程序 (13) 14.3实施注意事项 (14) §15监测方案布点图 (14)

监测方案 §1概况 1.1工程概况 本工程基坑开挖面积约75000m2,基坑围护周长约1300m,基坑开挖深度为11m,基坑采用钻孔灌注桩,局部门式刚架围护结构,三轴搅拌桩止水,二道混凝土/型钢斜支撑体系。基坑安全等级为二级,周边环境等级为二/三级。支撑按照××市《基坑工程设计规程》(DG/TJ08-61-2010)中相关规定,本基坑按二级基坑要求进行施工监测。 1.2环境概况 项目四周分布有道路、楼房和高架桥等建筑物,道路下埋设有信息、雨水、煤气等管线。基坑开口线距最近的建筑物边线仅有15米左右。 拟建场地地貌类型属××平原,地貌形态单一。勘察期间测得勘探点孔口标高一般为3.45~5.11m之间,场地平均标高约4.20m。 拟建场地处于上海地区古河道地层,缺失上海市统编的第⑥层、第⑦层土,地表下深度85m范围内地基土均属第四纪滨海~河口相、滨海~浅海相、滨海、沼泽相、溺谷相、滨海~浅海相、滨海~河口相沉积物。主要由粘性土、粉性土和砂土组成,一般呈水平状分布。此次监测重点为基坑围护桩墙和施工用塔机基础。 §2监测技术要求与目的 本工程的信息化施工监测充分考虑到以下各因素的影响: 1、本工程基坑形状不规则,开挖面积较大,边线较长。工程施工周期长,施工流程较多,包括围护施工、基坑开挖及地下结构施工等部分,工艺复杂。 2、基坑监测数据反馈的及时性和与施工的联动性要求较高。因此,本工程监测工作必须严格按设计及有关管理部门的有关变形控制要求进行实施,同时对基坑围护结构、塔机基础进行重点监测。 在基坑开挖过程中,由于受地质条件、荷载条件、材料性质、施工条件和外界其他因素的复杂影响,很难单纯的从理论上预测工程中可能出现的问题,而且,从理论

最新基坑开挖监测方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

基坑第三方监测的必要性

基坑监测的必要性 1、将监测数据与预测值相比较判断前一步施工参数是否符合预期要求,同时检验设计所采取的各种假设和参数的正确性,以确定和优化下一步的施工参数,做到信息化施工。 2、将监测结果用于反馈优化设计,为改进设计提供依据。基坑工程设计方案的定量化预测计算是否真正反映了工程实际情况,只有在方案实施过程中才能获得最终的答案,其中现场监测是确定上述数据的重要手段。由于各种场地地质条件不同、施工工艺不同和周边环境不同,设计计算中未曾计入的各种复杂因素,都可以通过对现场的检测结果进行分析、研究,加以局部的修改、补充和完善。 3、为施工开展提供及时的反馈信息。通过监测随时掌握土层和支护结构的内力变化情况,以及临近建(构)筑物的变形情况,提供客观正确的数据,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,使得监测数据和成果成为现场施工工程技术人员判断工程是否安全的依据,成为工程决策机构的眼睛。 4、通过对监测数据的相关分析和信息反馈,掌握施工过程中结构受力与变形的关系,及时修正设计和指导施工,进行信息化施工,对施工过程进行有效的预测和控制,及时优化施工工序和调整施工措施,以确保施工效果,施工安全及提高施工工艺水平,使基坑支护结构的设计和施工既安全可靠又经济合理。 5、基坑施工第三方监测还起到检核和指导施工单位的基坑监测数据的作用,保证整个施工过程中,施工监测的正常工作。 6、通过对基坑和周边(构)建筑物等的监测,及时了解它们的现状和变形情况,根据现场监测数据与设计值进行比较,当达到或超过警戒变形值时及时报警,必要时采取有力措施确保基坑支护结构和周边重要建(构)筑物的稳定与安全。 7、积累工程经验、监测数据,为今后类似工程设计与施工提供参考数据,为提高基坑工程的设计和施工的整体水平提供依据。 8、为业主提供及时信息,以便业主对整个项目进行科学化管理。

深基坑施工监测技术

镇江万达广场 十项新技术应用总结之11 深基坑施工监测技术

二0一一年八月 目录 一、工程简况2 二、监测目的、依据、原则3 三、监测内容及代表照片4 四、监测实施5 五、测量精度6 六、仪器设备7 七、测量周期7 八、预警报告7 九、预防措施、应急措施以及质量安全措施8 十、经济和社会效益以及应用体会12 一、工程简况 镇江万达广场位于镇江市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,黄山南路西。镇江万达广场地块总面积约为8万平方M,总建筑面积约38.88万平方M,地上面积约30万平方M,地下面积约8.88万平方M,分为写字楼、公寓、商业及酒店等。公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方M,框剪结构;商业用房2—3层,面积4.17万平方M,结构埋深约4M;商务区由2栋写字楼及购物广场构成,2栋写字楼26层,面积5.07万平方M,均为框剪结构;裙房购物广场5层,面积8.57万

平方M,框架结构,结构埋深约10M。酒店区由五星级酒店及商务酒店和独立酒楼及裙房组成,五星级酒店主楼20层,主楼面积为2.14万平方M,酒店裙房为4层,面积1.41万平方,地下二层,商务酒楼为9层,0.78万平方M,独立酒楼为5层,面积为0.42万平方。整体地下室为两层,局部一层,面积约8.88万平方M。以上拟建工程基坑面积约为54840平方M左右,周长约为1173.8M。基坑开挖深度在4.5到13.7M之间不等,基坑南侧采用悬臂桩的支护形式,基坑北侧采用放坡土钉和支护桩加两层锚索相结合的支护桩形式,桩间挂网喷浆。两侧采用排桩加两层支撑的支护形式,两侧CD、CM、NO及PQ段采用自然放坡的支护形式,其余两段均采用放坡支护形式。 二、监测目的、依据、原则 2.1监测目的 在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。如果超过一定的范围,会引起基坑的倒塌和对周围道路及管线的破坏。因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。 2.2监测依据

基坑监测施工规划方案报审版本.docx

. 目录 一.工程概况 ........................................- 1 -二.监测依据 ........................................- 1 -三.监测项目及目的 ..................................- 2 -四.基坑监测组织架构及仪器设备......................- 3 -五.基坑监测工作程序 ................................- 4 -六.基坑沉降观测 ....................................- 5 -七.基坑水平位移监测 ................................- 6 -八.监测控制值﹑监测频率及测点布控 ..................- 7-九.监测相关技术和数据处理 ..........................- 9-十.突发性事件的监测及抢险措施.....................- 10-十一.作业安全及其他管理制度 .......................- 12-

一.工程概况 拟建场地位于东莞市南城科技大道宏二路1号,拟建场地大致为正四边形,东西长 160米,南北长约 158米,北侧为宏图路、南侧为法仕路、西侧为宏二路、东侧规划支路;拟建物 3~ 36F/5 栋,地下室 2层, 相对标高± 0.00 相当于绝对标高 17.60m;占地面积约 21284.13m2,基坑开挖深度至底板底,挖深为11.30 ~12.80m。基坑周长约为 602m,基坑面积约为 24550m。 基坑安全等级为一级,有效使用期限至基坑开挖到设计标高后一年。 基坑支护形式为采用钻孔桩 +预应力锚索支护,支护桩外侧设置水泥搅拌桩 作为止水帷幕兼挡淤泥土作用。 工程名称南方物流电商综合项目基坑工程 建设单位东莞市奇乐实业投资有限公司 监理单位广东天衡工程建设咨询监理有限公司 勘察单位韶关地质工程勘察院 施工单位上海明鹏建设集团有限公司 支护设计单位韶关地质工程勘察院 基坑面积24550m2 基坑深度11.30~12.8m 挖土方量26 万 m3 安全等级一级 二.监测依据 (1)本项目设计图纸要求; (2)《建筑变形测量规范》 JGJ8-2007; (3)《建筑基坑工程监测技术规范》 GB50497-2009 (4)《工程测量规范》 GB50026-2007; (5)《建筑基坑支护工程技术规程》 DBJ/T15-20-97 ; (6)《建筑基坑支护技术规程》 JGJ120-99; (7)《建筑地基基础设计规范》 GB5007-2002; - 1 -

基坑工程监测方案完整版

长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期项目 基坑工程 监 测 方 案 扬州大学工程设计研究院 二○一九年一月

监测方案 工程名称:长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期 工程地点: 建设单位: 编写: 校对: 审核: 扬州大学工程设计研究院 2019年01月25日

目录 1. 工程概况 (4) 2. 监测目的及编制依据 (4) 2.1. 监测目的 (4) 2.2. 编制依据 (4) 3. 监测内容及布点方法 (5) 3.1. 本工程主要监测项目 (5) 3.2. 基准点布设 (5) 3.3. 监测点布设 (6) 4. 监测方法及精度 (9) 4.1. 平面控制网及水准基准网 (11) 4.2. 观测注意事项 (11) 4.3. 数据处理及分析 (11) 4.4. 围护桩(坡)顶面位移及沉降 (12) 4.5. 围护结构外围地下水位观测 (13) 4.6. 周围道路及建筑沉降 (14) 4.7. 深层土体水平位移 (14) 4.8. 锚杆内力 (14) 4.9. 巡视检查 (15) 5. 仪器设备和人员组成 (15) 6. 监测频率 (16) 7. 预警值和预警制度 (17) 7.1. 监测报警 (17) 7.2. 监测报警措施 (17) 8. 监测数据的处理及信息反馈 (17) 8.1. 监测数据的分级管理 (17) 8.2. 监测数据的分析和预测 (18) 8.3. 监测数据的反馈 (18) 9. 技术保证措施 (18) 9.1. 测试方法 (19) 9.2. 测试仪器 (19) 9.3. 监测点的保护 (19) 9.4. 数据处理 (19) 10. 服务承诺 (19) 11. 合理化建议 (20)

基坑监测方案资料

海曙科技创业大厦基坑支护工程监测方案 一、编制依据 1.国家行业标准《建筑基坑支护技术规程》(JGJ120-99); 2.《建筑变形测量规程》(JGJ/T 8-97); 3.浙江省标准《建筑基坑支护技术规程》(DB33/T1008-2000); 4.宁波市建筑设计研究院勘察分院提供的《宁波天元大厦工程地质 勘察报告》; 5.《海曙科技创业大厦基坑支护工程施工图》(宁波市建筑设计研究 院); 6.宁波市城乡建委专家组编写的宁波市行业标准《宁波市软土深基 坑支护设计与施工暂行技术规定》; 二、工程概况 宁波海曙科技创业大厦基地位于宁波市海曙区,位于中山西路的北侧,南临花池巷,东靠亨六巷,西到布政巷。基地面积为8084平方米。总建筑面积为59916平方米。地上26层,地下2层,为剪力墙结构,采用孔灌注桩桩基础。 本工程±0.00相当于黄海高程3.8m,基坑开挖深度为约9.5m,基坑开挖面积6645m2,基坑四周延米350m。地下室采用排桩加两道混凝土支撑的支护形式。场地由宁波市建筑设计研究院勘察分院勘察。结构部分由宁波市建筑设计研究院一所设计。 三、监测人员

主要监测管理人员表

四、监测目的、内容、布设及要求 (一)监测目的 为了确保支护结构的安全施工,了解基坑开挖过程中支护结构的安全状况,验证支护结构设计对整个基坑施工过程和内部结构进行施工监测非常必要,监测还可以发现在设计中因地质等因素而没有考虑到可能在施工中影响安全的状况为及时对局部进行加固调整施工提供依据,同时可以根据监测资料总结工程经验,为提高设计水平提供依据。 (二)监测内容 1、深层土体位移观测 基坑侧向变形观测是基坑开挖支护施工过程监测中一项地下各处水平位移的监测方法,常用测斜仪进行测量,它是一种可以精确测量垂直方向土层或围护结构内部水平侧向位移的工程测量仪器,本次工程布设9个水平位移测量监测孔。 2、环梁及立柱水平位移观测 基坑开挖工程施工场地变形观测的目的是通过对设置在支护场地的观测点进行周期性的测量,求得各观测点坐标的变化量,提供评价支护结构和地基土的稳定性技术数据, 本次工程布设了33个环梁和立柱水平位移监测点。 3、环梁及立柱沉降测量 沉降测量是通过精密水准仪以某一起始点为基准测量各点每次高程变化得到各相应点的沉降量(可以用国家水准控制网中的水准控制

建筑基坑工程检测技术规范

建筑基坑工程检测技术规范 3.0.1 开挖深度大于等于5m或者开挖深度小于5m但是现场地质情况和周边环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。 3.0.2基坑工程设计提出的对基坑工程监测的技术要求应包括检测项目、检测频率和检测报警值等。 3.0.3 基坑工程施工前,应由建设方委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案,监测方案需经过建设方、设计方、监理方等认可,必要时还需与基坑周边环境涉及的有关管理单位协商一致后方可实施。(第三方监测并不取代施工单位自己开展的必要的施工监测,施工单位在施工过程中仍应进行必要的施工监测。监测单位拟定出监测方案后,提交工程建设单位,建设单位应该遵照建设主管部门的有关规定,组织设计、监理、施工、监测等单位讨论审定监测方案。当基坑工程影响范围内有重要的市政、公用、供电、通讯、人防工程以及文物等时,还应组织有相关主管单位参加的协调会议,监测方案经协商一致后,监测工作方能正式开始。) 3.0.5 按监测需要收集基坑周边环境各监测对象的原始资料和使用现状等资料。必要时可采用拍照、录像等方法保存有关资料或进行必要的现场测试取得有关资料。 3.0.7 下列基坑工程的监测方案应进行专门论证: 1 地质和环境条件复杂的基坑工程 2 临近重要建筑和管线,以及历史文物、优秀近现代建筑、地铁、隧道等破坏后果很严重的基坑工程。 3 已发生严重事故,重新组织施工的基坑工程。 4 采用新技术,新工艺、新材料、新设备的一、二级基坑工程。 5 其他需要论证的基坑工程。 3.0.8 监测单位应严格实施监测方案。当基坑工程设计或者施工有重大变更时,监测单位应与建设方及相关单位研究并及时调整监测方案。 4.1.2 基坑工程现场监测的对象应包括: 1 支护结构。 2 地下水状况。 3 基坑底部及周边土体。 4 周边建筑。 5 周边管线及设施。 6 周边重要的道路。 7 其他应监测的对象。

基坑监测方案-

监测方案 批准: 审核: 编写: 2012年05月6日 目录

监测方案 §1概况............................................错误!未定义书签。 工程概况 ........................................... 错误!未定义书签。 环境概况 ........................................... 错误!未定义书签。§2监测技术要求与目的...............................错误!未定义书签。§3监测方案编制依据.................................错误!未定义书签。§4监测方案编制原则.................................错误!未定义书签。 系统性原则 .......................................... 错误!未定义书签。 可靠性原则 .......................................... 错误!未定义书签。 与设计、施工相结合原则.............................. 错误!未定义书签。 经济合理原则 ........................................ 错误!未定义书签。§5监测内容.........................................错误!未定义书签。 塔机基础监测 ....................................... 错误!未定义书签。 基坑围护监测 ....................................... 错误!未定义书签。 坑底回弹监测 ....................................... 错误!未定义书签。§6监测点的布设.....................................错误!未定义书签。§7监测控制网的布设.................................错误!未定义书签。§8监测仪器及方法...................................错误!未定义书签。 垂直、水平位移监测.................................. 错误!未定义书签。 坑底回弹监测 ........................................ 错误!未定义书签。§9报警............................................错误!未定义书签。§10监测工作计划、周期及频率.........................错误!未定义书签。§11资料整理与成果提交...............................错误!未定义书签。§12技术保障措施....................................错误!未定义书签。§13质量保障措施....................................错误!未定义书签。§14应急预案........................................错误!未定义书签。 应急小组 ........................................... 错误!未定义书签。 应急小组职责及工作程序............................. 错误!未定义书签。 实施注意事项 ....................................... 错误!未定义书签。§15监测方案布点图..................................错误!未定义书签。

基坑工程监测方案

基坑工程监测方案 启东市名仕豪庭 基坑围护工程监测方案 南通星辰测绘咨询有限公司 二00七年三月 东方银座大厦基坑工程监测方案 彭东海 2019年3月10日 1 工程概况 1.1 工程特点 1.2 地理状况 本地区属长江三角洲冲击平原,施工场地位于启东市和平路和人民路交叉口,地势较平坦,为民房或工业厂房拆迁后整平地面,广泛分布块石。场地地面高程为1.1-2.1m,最大高差1m左右。 施工现场水电已引到现场,临时道路已修筑,三通一平工作已完成。根据地质资料,地下水位较高,约在地面下0.8-1.0m。基坑围护面积狭长,基底土为粉土或粉砂层,东侧紧邻住宅小区,对基坑的开挖有一定的难度。 3.施工准备与施工部署 3.1工程定位测量 根据上海市测绘院提供的平面坐标控制点和高程控制点TP1及启东市建筑设计研究院提供的总平面图,定位建筑物,做好控制轴线,并将高程引测至施工现场,做好高程控制点,对轴线控制桩及高程控 制点加以保护。挖土前根据测量定位放出挖土灰线。 3.2围护桩及冠梁锚杆施工 基坑开挖前围护桩施工完毕,圈梁强度达到80%,锚杆施工完成,基础支护结构全部完成,具备开挖条件。 6.技术措施 6.1基坑监测

由于本工程围护基坑开挖深度相对较大,形状狭长,且东侧紧临住宅小区,基坑开挖 对周围道路、建筑物及地下管线等影响较大,若有疏忽,就会带来巨大的经济损失。为确 保基坑安全,委托有资质的单位对基坑进行监测跟踪,及时了解基坑安全相关的情况,准 备好应急措施。 根据基坑开挖深度、支护的特点及周边所处环境的条件,监测的主要内容包括下列内容:支护结构的水平位移、周边道路及建筑物的沉降监测、深层土体的水平位移、支护结 构内外侧的地下水位监测。 各种监测措施的布置与具体的监测方法等见基坑监测方案。 1.2 建设地点及环境特征 该工程位于河南路和公园路路口交界处,东邻河南路,南邻公园路,北侧距离坑边 4.5~6.5m处有已使用的新建住宅2栋,西侧距离坑边 5.5m处有两栋正在使用的商住楼。 该工程位于城市繁华闹市区,开挖基坑造成的地层位移影响范围内(1~3倍基坑深度)有重要的城市主干道(埋设有煤、电、水等管 线)和需保护的建筑物,且施工场地狭窄,环境特征复杂。 1.3 工程地质及水文地质条件 场区地层自上而下为:杂填土、粉质粘土、中砂、粉质粘土、粗砂,地下水埋深 12.31m(资料见岩土工程勘察报告)。 1.4 基坑工程安全等级评价 依据现行的《建筑地基基础工程施工质量验收规范》GB50202-2002、《建筑基坑支护 技术规程》JGJ120-99、《建筑基坑监测技术规范》DBJ14-024-2019有关规定,该基坑工 程安全等级属于二级基坑工程,应按二级基坑工程实施监测。 2 监测目的、任务、依据和程序 2.1 监测目的 为基坑工程优化设计、指导基坑工程施工,确保基坑稳定和保护周边环境安全提供科 学依据。 2.2 监测任务 (1)基坑支护结构监测:包括挡土墙顶部水平位移和沉降观测、 土体深部水平位移观测等; (2)周边环境监测:周围建筑物变形观测、周围地面沉降观测、

基坑监测规范要求

基坑监测内容摘要 基坑围护体系随着开挖深度增加必然会产生侧向变位,关键是侧向变位的发展趋势如何。一般围护体系的破坏都是有预兆的,因而进行严密的基坑开挖监测非常重要。通过监测可及时了解围护体系的受力状况,对设计参数进行反分析,以调整施工参数,指导下步施工,遇异情可及时采取措施。应该说,基坑监测是保证基坑安全的一个重要的措施。 基坑监测规范要求如下: 一、监测点布置 1、土体的深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位;当测斜管埋设在土体中,测斜管长度不宜小于基坑开挖深度的 1."5倍,并应大于维护墙的深度。以测斜管底为固定起算点,管底应嵌入到稳定的土体中。 2、地下水位监测点的布置应符合下列要求: (1)、基坑内地下水位当采用深井降水时,水位监测点宜布置在基坑中央和两相邻降水井的中间部位;当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,监测点数量应视具体情况确定; (2)、基坑外地下水位监测点应沿基坑、被保护对象的周边或在基坑与被保护对象之间布置,监测点间距宜为20~50m。相邻建筑、重要的管线或管线密集处应布置水位监测点;当有止水帷幕时,宜布置在止水帷幕的外侧约2m处; (3)、水位观测管的管底埋置深度应在最低设计水位或最低允许地下水位之下3~5m。承压水水位监测管的滤管应埋置在所测的承压含水层中; (4)、回灌井点观测井应设置在回灌井点与被保护对象之间。 3、基坑周边环境监测点的布置应符合下列要求: (1)、从基坑边缘以外1~3倍基坑开挖深度范围内需要保护的周边环境应作为监测对象。

必要时尚应夸大监测范围。 (2)、位于重要保护对象安全保护区范围内的监测点的布置,尚应满足相关部门的技术要求。 (3)、建筑竖向位移监测点布置应符合下列要求: a、建筑四角、沿外墙每10~15m处或每隔2~3根柱基上,且每侧不小于3个监测点; b、不同地基或基础的分界处; c、不同结构的分界处; d、变形缝、抗震缝或严重开裂处的两侧; e、新、旧建筑或高、低建筑交接处的两侧; f、高耸构建筑基础轴线的对称部位,每一构筑物不应少于4点。 (4)、建筑水平位移监测点应布置在建筑的外墙墙角、外墙中间部位的墙上或柱上、裂缝两侧以及其他有代表性的部位,监测点间距视具体情况而定,一侧墙体的监测点不宜少于3点。 (5)、相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型。荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度 1."5- 2."0倍的距离范围内,由外墙向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外。 (6)、建筑裂缝、地表裂缝监测点应选择有代表性的裂缝进行布置,当原有裂缝增大或出现新裂缝时,应及时增设监测点。对需要观测的裂缝,每条裂缝的监测点至少应设2个,- 1 - 且宜设置在裂缝的最宽处及裂缝末端。

基坑工程监测方案

XXXX城市广场基坑工程监测方案 XXXX检测中心 2011年4月

目录 目录 (1) 1 监测依据 (2) 2 监测项目和监测点布置 (2) 3 监测的具体措施 (7) 4 监测周期和频率 (9) 5 监测仪器设备、技术要求与精度要求 (11) 6 监测报警 (11) 8 资料成果提交 (13)

1 监测依据 1、《建筑基坑支护技术规程》(JGJ120-99) 2、《建筑基坑工程监测技术规范》(GB50497-2009) 3、《建筑地基基础设计规范》(GB50007-2002) 4、《建筑地基基础工程施工质量验收规范》(GB50202-2002) 5、《工程测量规范》(GB50026-2007) 6、《国家三、四等水准测量规范》(GB12897-91) 7、《建筑变形测量规程》(JGJ/8-2007) 8、设计单位的要求 2 监测项目和监测点布置 监测的目的:受工程地质条件、临近建筑物的结构性能、气候等因素的影响基坑在开挖及维护期间,必须采用信息施工法进行施工。 根据相关规范和支护设计要求,监测项目及测点布置如下: 1.基坑坑顶的水平位移和垂直位移监测 测点布置:沿基坑坑顶设置测点,根据实际情况布点。 水平、竖向位移监测基准点埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,具体监测布置点根据实际情况进行调整。 建议使用基康BGK-2800-GSDM全球星位移测量系统。我们只需确定要监测的点,并且在测点上建立固定装置,该固定装置尽量不受干扰,将接收器放置在不同测点记录观测前后的数值,对比算出水平及垂直位移量。测点数目不限。 建议测点建立标准观测墩,现浇混凝土桩或者钢管,安装基面>300mm直径的方台或者平台,量程不限。

新时期深基坑工程安全监测和信息化监控

新时期深基坑工程安全监测和信息化监控 发表时间:2018-09-06T10:30:08.670Z 来源:《防护工程》2018年第9期作者:张宇 [导读] 其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。 张宇 昆明勘测设计研究院云南省昆明650031 摘要:最近几年,伴随着社会经济的不断发展,深基坑工程数量有了明显增加,其在快速增加的同时也产生了很多新的问题和理论。基于此,本文主要从基坑安全监测的角度入手,详细分析了深基坑现有的研究方向、监测方式、信息化等方面的现状,然后在此过程中,论述了深基坑监测后期发展趋势。 关键词:新时期;深基坑工程安全监测;信息化监控 深基坑在开挖支护施工期间,因工程岩土构造具有地质条件复杂、受力性能特殊等特点,因此,在监测参数设定,监控方案设计环节中,预估值计算值和具体施工中的实测值存在较大的差别性,离散性,随机性。从中看出,对于深基坑工程的质量和安全管理,不仅和规范设计有一定的联系,同时还在一定程度上取决于施工整个过程的安全监测情况。安全监测作为保证深基坑工程施工安全的关键性措施,其具有十分重要的作用。 在深基坑施工期间,对土体以及支护结构实际现状进行定性分析和定量检测/监测,能够为后期工程稳定运行提供有利的条件,对此,进行深基坑施工的时候,要从基坑周围支护结构和工程地质,水文地质分析入手,在全面了解和掌握施工过程安全控制的基础上保证工程整体质量和毗邻建筑物、构筑物,相关施工人员及设施的安全。 1、监测项目以及监测方法 1.1位移的具体监测方法 在工程项目当中,监控方通常使用的位移监测方法有两种:水平以及侧向监测。在具体的监测过程中,通常所说的位移速率的监测是指的在拟定监测的计划之内,把相应监测位间隔的时间段作为项目参考的过程。同时,项目的位移监测是最为重要的安全监测项目。 1.1.1项目工程的水平位移监测方法 监控方在进行工程项目的位移监测后,可以在监测后数据处理提供基坑边壁的水平变形量以及位移的变形速率和整个基坑平面几何变形分布信息。一般可以通过分析信息数据,进一步研究基坑边壁的稳定性及变形发展趋势。与此同时,通常情况下,水平位移监测使用经纬仪、全站仪、固定点GPS等方法来进行相关的测量工作。进行视准线方法的操作时,可以依据不同的标准分为距离变化方法以及角度变化方法。在工程项目当中,利用精密全站仪来测量某个监测点的具体坐标,将其称为坐标变化方法。在项目工程监测过程中,使用后一种测量方法与人工三角网监测来比较,目前如使用TCA2003自动全站仪进行工程监测时,监测过程具有精度高,响应快,数据处理快,人工工作量较小等优点。 GPS已经在工程项目的基坑监测过程中得到了广泛的应用。根据测量技术的使用案例,从相关工程基坑施工监测的实践数据以及实践效果来看,使用这种测量方法不仅可以避免光学仪器方法对于工地现有条件的项目限制,还可以在工程施工的工作效率和工程测量数据的精准度上得到较大提高,确保监测工作的质量始终处于受控状态。 1.1.2深基坑侧位移监测方法 监控方在进行工程项目的侧向位移监测中,通过这种测量,可以为基坑开挖/支护提供基坑围护结构及坑壁不同深度,不同范围的倾斜位移的具体分布情况数据,在基坑的施工中,侧向位移监测的有关数据对于基坑的建设安全特别重要,因此需要在测量和数据分析时特别重视。进行侧向位移监测时,可在测量中采用石英挠性加速器作为敏感元件的滑动式测量斜度的测斜仪,测斜仪在工作过程中,是将倾斜的角度以电压的形式输出,其电压转换精度在mv级别,从而可以在滑动过程中连续不断地测量基坑预埋测斜管(轨道)整体倾斜方位角和累计变形量。在测量斜度的仪器当中,通常采用伺服加速度计式以及电阻应变式两种形式,在具体工程项目中可根据实际情况灵活选用,通常情况下,通过对比试验得出,伺服加速度计式测斜仪精密度比较高,并且在进行监测的过程当中工况相对稳定。但是伺服加速度测斜仪在价格方面也比较昂贵,监控方应根据实际情况和工程经济论证进行仪器比选。 1.2压力的监测方法 对于深基坑土体的压力监测,通常包括的是对于基坑内外土压力(主动土压力、被动土压力、静止土压力)以及土层孔隙水压力的具体监测。可以通过上述两种压力监测方法来掌握基坑开挖过程中的土体压力变化情况以及具体的土体压力变化规律,来及时的发现影响基坑土层稳定性的有关因素,及时采取具体控制措施来确保土层以及围护结构的安全稳定。 在工程项目当中,在进行工程基坑的开挖以及边坡支护时,在施工的基坑现场都会采取土层压力以及土层孔隙水压力的有关观测措施,且该观测方法已经在建筑行业实行了很长的时间,与此同时,业已在观测施工中积累了较多的工程经验,对于监测行业来说,也促进了很多监测传感器的改进发展。在当前,我国通常使用的压力传感器可以依据不同的工作原理分成电阻应变片式和电感调频式,还包括了钢弦式(振弦式)等等。在这些众多类型的传感器当中,根据工程现场的使用情况,以钢弦式(振弦式)压力传感器性质最为稳定,并且对于电的绝缘性要求也不高,可以在长期的基坑工程中埋设使用而不易损坏,在基坑恶劣的自然环境下也不影响土层压力以及土层孔隙水压力的正常观测。但是在进行传感器的埋设之前,必须要对于所使用的传感器进行工程防水性检测,线路保护,以及具体的传感器温度设定,初始监测频率记录等工作。 1.3 基坑边坡支护结构的内力监测 1.3.1基坑边坡支护结构中主受力结构应力的监测方法 基坑维护结构类型较多,对支撑式以板桩,灌注桩,型钢桩,地下连续墙等类型居多。工程基坑的边坡支护结构的施工时,一般情况下,最重要的结构受力体当属基坑当中钢筋混凝土支护桩和地下连续墙的主要受力钢筋,在这其中进行结构受力的监测时,应布置钢筋应力(应变)计,以此对基坑支护结构进行应力监测。在进行应力监测点的设置时,应该要全方位的进行考虑整体受力情况和薄弱点监测,

基坑工程施工监测方案

项目名称:镇江新区姚桥安置房地下车库 基坑监测 施工方案 建设单位:镇江瑞城房地产开发有限公司 总包单位:镇江振兴建筑安装工程有限公司 设计单位:常州市基础工程公司 施工单位:无锡水文工程地质勘察院

二○一三年四月六日 一、工程概况 镇江新区城市建设投资公司为加快安置房建设,拟在镇江新区姚桥镇北侧、X105县道东侧、滨江路西侧兴建姚桥安置房住宅区项目。拟建场地内没有任何建构筑物。根据甲方提供的资料表明场地内没有地下管线。拟建两地下车库,地库A和地库B,挖深 3.5M。总包单位为:镇江振兴建筑安装程有限公司。 二、监测目的与技术要求 在基坑桩基施工期间,须周期性对周边环境进行观测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应的措施,确保道路、市政管线及建(构)筑物的正常使用。 在基坑开挖过程中,由于地质条件、荷载条件、材料性质、施工条件和外界其它因素的复杂影响,很难单纯从理论上预测工程中可能遇到的问题,而且,理论预测值还不能全面而准确地反映工程的各种变化。所以,在理论指导下有计划地进行现场工程监测十分必要。特别是对于类似本工程复杂的、规模较大的工程,就必须在施工组织设计中制定和实施周密的监测计划。 本工程监测的目的主要有: (1)通过将监测数据与预测值作比较,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,; (2)通过监测及时发现围护施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建(构)筑物、道路、管线影响的目的; (3)将现场监测结果反馈设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的; (4)通过跟踪监测,保障基坑始终处于安全运行的状态。 三、设计基本原则 1、系统性原则 (1)所设计的监测项目有机结合,并形成有效四维空间,测试的数据相互能进行校

施工监测专项方案设计设计

编号:040 上海合生国际广场商业项目建筑安装总承包工程 施工监测专项方案 (SH.HSGJ.JC-040a) 2011年09月

目录 第1章工程概况 (1) 1.1工程简介 (1) 1.2周边环境 (1) 1.3围护设计 (2) 第2章监测方案编制的依据 (3) 第3章变形监测的目的 (3) 第4章变形监测内容及方法原理 (3) 4.1基坑变形监测 (4) 4.1.1 方法原理 (4) 4.1.2 监测点位设计 (4) 4.2塔吊及电梯监测 (5) 4.2.1 塔吊及电梯垂直度监测 (5) 4.2.2 塔吊基础承台监测 (7) 4.3模板监测 (7) 4.4脚手架监测 (7) 4.5降水水位监测 (8) 第5章施工进度及技术要求 (9) 5.1测量仪器的配备 (9) 5.2施工监测频率 (9) 5.3技术要求 (10) 5.4监测数据处理 (10) 第6章质量保证措施 (11) 附表一:垂直位移和水平位移监测报表 (12) 附表二:小角法角度观测记录表 (13) 附表三:水准观测记录表 (14) 附表四:垂直度测试记录表 (15) 附表五:脚手架监测记录表 (16) 附表六:模板监测记录表 (17)

第1章工程概况 1.1工程简介 上海合生国际广场处于上海市杨浦区五角场旁边NS-1、292地块,南至安波路,北至翔殷路,东至国定东路,西至黄兴路。本工程拟建建筑物概况详见下表: 本工程基坑呈倒马蹄形,东西长约340m,南北宽约110~190m。根据本次围护设计方案,基坑总面积约4.2万m2,围护总长度约954m。地下室层高分别为6.55m、5.5m、3.65m和5.25m,垫层厚度取0.2m,则基坑开挖深度为: 坑内局部集水井落深1.5m,电梯井落深3.5m~4.4m。 1.2周边环境 东侧:地下室外墙距离红线约4.8~4.9m,红线外为宽约26m的国定东路,道路对面是上海拖拉机内燃机有限公司(1~2层建筑物,条形基础,基础埋深约1m),地下室外墙距离建筑物约42m。 南侧东部:地下室外墙距离红线约4.6~4.7m,红线外为4~24层建筑物(新建建筑,桩基),地下室外墙距离建筑物约28.6~48.1m。 南侧中部:地下室外墙距离红线约4.5~5.7m,红线外为2层建筑物(老建筑,

深基坑施工中测量方法

深基坑施工中测量 基坑支护监测一般需要进行下列项目的测量:(1)监控点高程和平面位移的测量;(2)支护结构和被支护土体的侧向位移测量;(3)基坑坑底隆起测量;(4)支护结构内外土压力测量;(5)支护结构内外孔隙水压力测量;(6)支护结构的内力测量;(7)地下水位变化的测量;(8)邻近基坑的建筑物和管线变形测量等。 深基坑施工监测的特点 1.1时效性 普通工程测量一般没有明显的时间效应。基坑监测通常是配合降水和开挖过程,有鲜明的时间性。测量结果是动态变化的,一天以前(甚至几小时以前)的测量结果都会失去直接的意义,因此深基坑施工中监测需随时进行,通常是1次/d,在测量对象变化快的关键时期,可能每天需进行数次。 基坑监测的时效性要求对应的方法和设备具有采集数据快、全天候工作的能力,甚至适应夜晚或大雾天气等严酷的环境条件。 1.2高精度 普通工程测量中误差限值通常在数毫米,例如60m以下建筑物在测站上测定的高差中误差限值为 2.5mm,而正常情况下基坑施工中的环境变形速率可能在0.1mm/d以下,要测到这样的变形精度,普通测量方法和仪器部不能胜任,因此基坑施工中的测量通常采用一些特殊的高精度仪器。 1.3等精度 基坑施工中的监测通常只要求测得相对变化值,而不要求测量绝对值。例如,普通测量要求将建筑物在地面定位,这是一个绝对量坐标及高程的测量,而在基坑边壁变形测量中,只要求测定边壁相对于原来基准位置的位移即可,而边壁原来的位置(坐标及高程)可能完全不需要知道。 由于这个鲜明的特点,使得深基坑施工监测有其自身规律。例如,普通水准测量要求前后视距相等,以清除地球曲率、大气折光、水准仪视准轴与水准管轴不平行等项误差,但在基坑监测中,受环境条件的限制,前后视距可能根本无法相等。这样的测量结果在普通测量中是不允许的,而在基坑监测中,只要每次测量位置保持一致,即使前后视距相差悬殊,结果仍然是完全可用的。 因此,基坑监测要求尽可能做到等精度。使用相同的仪器,在相同的位置上,由同一观测者按同一方案施测。

基坑工程安全等级

基坑工程安全等级 基坑工程监测项目的选择与基坑工程的安全等级有关。目前基坑工程安全等级的划分不同规范中有所不同。 (1)《建筑地基基础工程施工质量验收规范》GB 50202-2002的划分方法 符合下列情况之一的基坑,定为一级基坑: 1)重要工程或支护结构作为主体结构的一部分; 2)开挖深度大于10m; 3)与邻近建筑物、重要设施的距离在开挖深度以内的基坑; 4)基坑范围内有历史文物、近代优秀建筑、重要管线等需要严加保护的基坑。 三级基坑为开挖深度小于7m,且周围环境无特别要求的基坑。除一级基坑和三级基坑外的基坑均属二级基坑。 (2)《建筑基坑支护技术规范》JGJ 120-99的划分方法 基坑侧壁安全等级按照基坑破坏后果划分,见表2-1-1. 基坑侧壁安全等级表 2-1-1 安全等级破坏后果 一级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工影响很严重 二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工影响一般 支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工

影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 (3)《建筑地基基础设计规范》GB 50007-2002的划分方法 该规范中的基坑监测项目的选择是按照地基基础设计等级确定的,它将地基基础设计等级分为甲、乙、丙三个设计等级。其中“位于复杂地质条件及软土地区的二层及二层以上地下室的基坑工程”属于甲级设计等级。 (4)其他相关规范中的划分方法 冶金部的行业标准《建筑基坑工程技术规范》YB 9258-97对基坑工程安全等级的划分同建设部的行业标准《建筑基坑支护技术规范》JGJ 120-99基本相同,也是按照破坏后果确定为一级、二级、三级。(5)上海市标准《基坑工程设计规程》DBJ 08-61-97中的划分方法关于基坑工程安全等级的划分同《建筑地基基础工程施工质量验收规范》GB 50202-2002基本相同。 (6)《深圳地区建筑深基坑支护技术规范》SJG 05-96中的划分 关于基坑工程安全等级的划分主要依据工程的复杂程度和破坏程度,分为一级、二级、三级。 (7)山东省地方标准《建筑地基工程监测技术规范》DBJ 14-024的划分方法 该规范突出国家标准《建筑地基基础工程施工质量验收规范》

相关主题