搜档网
当前位置:搜档网 › 什么是临界温度和临界压力

什么是临界温度和临界压力

什么是临界温度和临界压力
什么是临界温度和临界压力

什么是临界温度和临界压力

简单地说,临界温度就是某种气体能压缩成液体地最高温度,高于这个温度,无论多大压力都不能使它液化。这个温度对应地压力就是临界压力。

1869年Andrews首先发现临界现象.任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。

超临界流体(SCF)是指在临界温度和临界压力以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称之为SCF.自从1869年Andrews首先发现临界现象以来,各种研究工作陆续开展起来,其中包括1879年Hannay和Hogarth测量了固体在超临界流体中的溶解度,1937年Michels等人准确地测量了CO2近临界点的状态等等。在纯物质相图上,一般流体的气-液平衡线有一个终点——临界点,此处对应的温度和压力即是临界温度(Tc)和临界压力(Pc)。当流体的温度和压力处于Tc和Pc之上时,那么流体就处于超临界状态(supercritical状态,简称SC 状态)。超临界流体的许多物理化学性质介于气体和液体之间,并具有两者的优点,如具有与液体相近的溶解能力和传热系数,具有与气体相近的黏度系数和扩散系数。同时它也具有区别于气态和液态的明显特点:

(1)可以得到处于气态和液态之间的任一密度;

(2)在临界点附近,压力的微小变化可导致密度的巨大变化。

由于黏度、介电常数、扩散系数和溶解能力都与密度有关,因此可以方便地通过调节压力来控制超临界流体的物理化学性质。与常用的有机溶剂相比,超临界流体特别是SC CO2、SC H2O 还是一种环境友好的溶剂。正是这些优点,使得超临界流体具有广泛的应用潜力,超临界流体萃取分离技术已得到了广泛的医药方面应用。

超临界流体萃取(Supercritical Fluid extrac-ion,SPE)是一项新型提取技术,超临界流体萃取技术就是利用超临界条件下的气体作萃取剂,从液体或固体中萃取出某些成分并进行分离的技术。

超临界条件下的气体,也称为超临界流体(SF),是处于临界温度(Tc)和临界压力(Pc)以上,以流体形式存在的物质。通常有二氧化碳(CO2)、氮气(N2)、氧化二氮(N2O)、乙烯(C2H4、三氟甲烷(CHF3)等。

超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加,极性增大,利用程序升压可将不同极性的成分进行分部提取。提取完成后,改变体系温度或压力,使超临界流体变成普通气体逸散出去,物料中已提取的成分就可以完全或基本上完全析出,达到提取和分离的目的。

物质的四种状态(固态、液态、气态和超临界状态)随着它的温度和压力而改变。以CO2为例,CO2在三相点(T)上,固、液、气三相共存的温度T(tr)为-56.4℃(217K),压力P(tr)为5.2×105Pa。CO2的蒸气压线终止于临界点C(Tc=31.3℃,Pc=73.8×105Pa,ρc=0.47 g/cm3)。超过临界点以上,液气两相的界面消失,成为超临界流体(SF)[2]。SF的扩散系数(~10-4cm2/s)比一般液体的扩散系数(~10-5cm2/s)高一个数量级,而它的粘度(~10-4N s/m2)要低于一般液体(~10-3Ns/m2)一个数量级。与液-液萃取系统相比,SF系统具有较快的质量传递和萃取速度。

因此能有效地穿入固体样品的空隙中进行萃取分离。SF的密度随着温度和压力改变,导致它的溶解度参数(solubility parameter)的改变。在较低的密度下,SF-CO2的溶解度参数接近己烷;在较高的密度下,它可接近氯仿。因此控制SF的密度(温度和压力),可获得所需要的溶剂强度。这种能力使得SF可任意改变溶剂强度而适合于不同的溶质。一般而论,SF能有效地溶解非极性固体,它亦能按溶质的极性做选择性的萃取,这在分离和分析化学的领域用途很广。

CO2具有较低的临界温度和压力,且价格便宜,无毒,具有较低的活性,因此SF-CO2常被用来萃取非极性和略有极性的物质。

在超临界状态下,流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内出成比例,故可通过控制温度和压力改变物质的溶解度。超临界流体已用于药物的提取合成分析及加工

中文名称:临界温度

英文名称:critical temperature

定义:临界点的温度。水的临界温度为374.15℃。

定义或解释

①物质处于临界状态时的温度。

②物质以液态形式出现的最高温度。

③温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度叫该气体的临界温度。在临界温度下,使气体液化所必须的最小压力叫临界压力。

简单定义

使物质由气相变为液相的最高温度叫临界温度。

说明

①每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,气态物质不会液化,这个温度就是临界温度。降温加压,是使气体液化的条件。但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。因此要使物质液化;首先要设法达到它自身的临界温度。水的临界温度为374℃,远比常温度要高,因此,平常水蒸汽极易冷却成水,有些物质如氨、二氧化碳等,它们的临界温度高于或接近室温,对这样的物质在常温下很容易压缩成液体。有些物质如氧、氮、氢、氦等的临界温度很低,其中氦气的临界温度为一268℃。要使这些气体液化,必须相应的要有一定的低温技术,以使能达到它们各自的临界温度,然后再用增大压强的方法使它液化。

②通常把在临界温度以上的气态物质叫做气体,把在临界温度以下的气态物质叫做汽体。

导体由普通状态向超导态转变时的温度称为为超导体的转变温度,或临界温度,用Tc 表示

临界温度和临界压力

临界温度和临界压力 因为任何气体在一点温度和压力下都可以液化,温度越高,液化所需要的压力也越高,但是当温度超过某一数值时,即使在增加多大的压力也不能液化,这个温度叫临界温度,在这一温度下最低的压力就叫做临界压力,例如:水的临界温度为374.15℃,临界压力为225.65kgf/cm2;,氨的临界温度为132.4℃,临界压力为115.2kgf/cm2;。 通常我们所见到的物质常以三种形态存在,即固体、液体和气体。形态是物质的一种属性,不同物质的形态有所不同,如铁是固体,水是液体,空气是气体等。一种物质所具有的形态与其所存在的客观条件有关,并非永恒不变。例如,在一般情况下二氧化碳是气体,但在一定的低温和一定压力下也可以是液体或固体(俗称干冰)。其它物质的形态也同样随着外界条件的变化而改变。 气体变成液体的过程叫做气体的液化。对气体能否变成液体的问题是有个认识过程的。早在19世纪以前,曾认为气体本质上就是气体,不能使之改变。只是在19世纪20年代,人们才成功地用加大压力的办法做氨气、氯气、二氧化碳及其它一些气体变成液体。但是还有许多其它气体(如组成空气的主要成分——氮气和氧气),虽然作了很大努力,也不能使之液化。因此,人们曾错误地认为当时还不能液化的这些气体是“永久气体”,这种形而上学的观点,阻碍了人们进一步研究如何使空气液化的工作。随着科学的不断发展,人们逐渐认识到:组成物质的分子间都存在相互吸引和相互排斥的两种作用力,当分子间相互排斥力>分子间相互吸引力时,物质的气体;当分子间的相互吸引力>分子间的相互排斥

力或至少等于排斥力的时候,气体才有可能转变为液体。分子间的相互吸引作用,实际上可以认为不依赖于温度;相反,由分子的相互撞击而引起互相排斥作用则强烈地依赖于温度,所以只有当气体的温度降低到一定程度时,才有可能使分子间的吸引作用≥分子间的排斥作用。即才有可能使气体变为液体。这种使分子间的吸引作用等于分子间的排斥作用时,所许可存在的最高温度叫做该气体的临界温度。当高于临界温度时无论外加多大的压力,都不能使气体液化。在临界温度下使气体液化所需的最低压力,叫做临界压力。 不同的气体,它们的临界温度和临界压力也不相同,临界温度较高的气体,如氨、氯气、二氧化碳,二氧化硫和乙炔等气体,在常温下(低于它们的临界温度)加压就能液化,临界温度较低的气体,如氧气、一氧化碳等,需经压缩并冷却到一定温度以下才能液化;临界温度很低的气体如氢和氦等,需经压缩并冷却到接近绝对零度(-273.16℃)的低温才能液化。氦的临界温度最低,它是最后一个转变成液体的气体。 随着生产的发展,液化气体有着广泛的应用。将气体变成液体后体积大为减小,便于贮存运输和使用。例如我们常见的液氨、液氯和液化石油气(主要成分是丙烷、丁烷、丙烯、丁烯)等。气体的液化也常用于混合气体的分离,如空气液化后,可用来分离出氮气、氧气及其它稀有气体等,此外,气体的液化对现代科学技术的发展也具有重要的意义,例如液氧可用于制造液氧炸药和高能燃料的助燃剂。液氢可用作高能燃料;液氦可用来获得绝对零度(-273.16℃)的低温等。

什么是临界温度和临界压力

什么是临界温度和临界压力 简单地说,临界温度就是某种气体能压缩成液体地最高温度,高于这个温度,无论多大压力都不能使它液化。这个温度对应地压力就是临界压力。 1869年Andrews首先发现临界现象.任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(SCF)是指在临界温度和临界压力以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称之为SCF.自从1869年Andrews首先发现临界现象以来,各种研究工作陆续开展起来,其中包括1879年Hannay和Hogarth测量了固体在超临界流体中的溶解度,1937年Michels等人准确地测量了CO2近临界点的状态等等。在纯物质相图上,一般流体的气-液平衡线有一个终点——临界点,此处对应的温度和压力即是临界温度(Tc)和临界压力(Pc)。当流体的温度和压力处于Tc和Pc之上时,那么流体就处于超临界状态(supercritical状态,简称SC 状态)。超临界流体的许多物理化学性质介于气体和液体之间,并具有两者的优点,如具有与液体相近的溶解能力和传热系数,具有与气体相近的黏度系数和扩散系数。同时它也具有区别于气态和液态的明显特点: (1)可以得到处于气态和液态之间的任一密度; (2)在临界点附近,压力的微小变化可导致密度的巨大变化。 由于黏度、介电常数、扩散系数和溶解能力都与密度有关,因此可以方便地通过调节压力来控制超临界流体的物理化学性质。与常用的有机溶剂相比,超临界流体特别是SC CO2、SC H2O 还是一种环境友好的溶剂。正是这些优点,使得超临界流体具有广泛的应用潜力,超临界流体萃取分离技术已得到了广泛的医药方面应用。 超临界流体萃取(Supercritical Fluid extrac-ion,SPE)是一项新型提取技术,超临界流体萃取技术就是利用超临界条件下的气体作萃取剂,从液体或固体中萃取出某些成分并进行分离的技术。 超临界条件下的气体,也称为超临界流体(SF),是处于临界温度(Tc)和临界压力(Pc)以上,以流体形式存在的物质。通常有二氧化碳(CO2)、氮气(N2)、氧化二氮(N2O)、乙烯(C2H4、三氟甲烷(CHF3)等。 超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加,极性增大,利用程序升压可将不同极性的成分进行分部提取。提取完成后,改变体系温度或压力,使超临界流体变成普通气体逸散出去,物料中已提取的成分就可以完全或基本上完全析出,达到提取和分离的目的。 物质的四种状态(固态、液态、气态和超临界状态)随着它的温度和压力而改变。以CO2为例,CO2在三相点(T)上,固、液、气三相共存的温度T(tr)为-56.4℃(217K),压力P(tr)为5.2×105Pa。CO2的蒸气压线终止于临界点C(Tc=31.3℃,Pc=73.8×105Pa,ρc=0.47 g/cm3)。超过临界点以上,液气两相的界面消失,成为超临界流体(SF)[2]。SF的扩散系数(~10-4cm2/s)比一般液体的扩散系数(~10-5cm2/s)高一个数量级,而它的粘度(~10-4N s/m2)要低于一般液体(~10-3Ns/m2)一个数量级。与液-液萃取系统相比,SF系统具有较快的质量传递和萃取速度。

蒸汽温度压力对照表

根据1MPa=1000kPa=10.2kgf/cm2(kg/cm2),通过与饱和蒸气压(单位为MPA)和蒸汽标准表的比较,可以计算出饱和蒸气压(kgf/cm2)与蒸汽温度的关系。温度如下:饱和蒸汽的温度和压力之间只有一个自变量。理想饱和蒸汽状态是指温度、压力和蒸汽密度之间存在一一对应关系。如果其中一个已知,其他两个值为常量。有此关系的蒸汽为饱和蒸汽,有饱和蒸汽压力和温度的对照表。饱和蒸汽压力与蒸汽温度标准对照表按国际单位制编制,压力单位为兆帕,温度单位为摄氏度。 扩展数据 测量饱和蒸气压有两种方法 1动态方法。测定液体在不同外压下沸点的方法,又称沸点法。这种方法只能测量接近大气压的饱和蒸气压,精度高。 2静态法。它是指直接测量液体在不同温度下的饱和蒸气压,即在恒定温度下测量饱和压力。静态方法相对简单,用途更广。通常的方法是将被测材料置于密闭容器中,使其处于

气液共存状态,然后放入恒温槽中。通过调节恒温槽的温度,可以测量不同温度下的饱和蒸气压数据。 在封闭条件下,在一定温度下,与固体或液体平衡的蒸气压称为饱和蒸气压。饱和蒸汽压力也称为蒸汽压力。同一种物质在不同的温度下有不同的蒸气压,并且随着温度的升高而增加。对于同一种物质,固体的饱和蒸气压低于液体的饱和蒸气压。 饱和蒸汽是指由于气体分子之间的热运动而处于饱和状态的蒸汽。当液体在有限的封闭空间内蒸发时,液体分子通过液体表面进入上层空间,成为蒸汽分子。因为蒸汽分子处于湍流热运动中,它们相互碰撞。蒸汽压力与饱和蒸汽温度之间存在对应关系,不同压力下存在一定的饱和温度。换言之,在一定的压力下,水完全蒸发并继续吸收热量,但直到温度开始升高,温度才上升,变成饱和蒸汽。

蒸汽温度压力对照表

蒸汽: 亦称“水蒸气”。根据压力和温度对各种蒸汽的分类为:饱和蒸汽,过热蒸汽。蒸汽主要用途有加热/加湿;还可以产生动力;作为机器驱动等。 工业革命又称产业革命,是资本主义时期由工场手工业阶段到大机器生产阶段的一个飞跃,它是生产领域里的一场变革又是社会关系方面的一次革命,是资本主义政治经济发展的必然结果。工业革命的完成对资本主义国家,对世界产生了深远的影响。英国是最早进行工业革命的国家,始于18世纪60年代。19世纪初扩展到法国、美国,随后是德国、俄国、日本。而各国工业革命主要是从英国引进机器进行的。英国在工业革命中的特殊地位,使它在一个相当长的时期里成为“世界工厂”。 蒸汽温度压力对照表: 按1MPa=1000kPa=10.2kgf/cm2(公斤/平方厘米),对照饱和蒸汽压力(MPa表示)与蒸汽温度的标准表,可以计算得到饱和蒸汽压力(kgf/cm2表示)与蒸汽温度之间的关系。 饱和蒸汽的温度与压力之间一一对应,二者之间只有一个独立变量。理想的饱和蒸汽状态,指的是温度、压力及蒸汽密度三者存在一一对应的关系,知道其中一个,其他二个值就是定数。存在这种关系的蒸汽就是饱和蒸汽,并存在饱和蒸汽压力与温度对照表。标准的饱和蒸汽压力与蒸汽温度对照表是根据国际单位制进行编制的,即压力单位为MPa,温度单位为℃。

饱和蒸汽压的测量方法可以分为两类: 1.动态法。指在不同外界压力下,测定液体的沸点,又称沸点法。这种方法只在测量常压附近的饱和蒸汽压时测量精度较好。 2.静态法。指在不同温度下,直接测量液体饱和蒸汽压,即在恒温条件下测量饱和压力。静态法测量相对简单,更具普遍性,通常的做法就是将待测物质充人密闭容器,并使其处于气液两相共存状态,然后放人恒温槽中,通过调节恒温槽温度来测量不同温度下的饱和蒸汽压数据。

关于气体的临界温度及状态

关于气体的临界温度及状态 临界温度 (1)定义或解释 ①物质处于临界状态时的温度。 ②物质以液态形式出现的最高温度。 (2)说明 ①每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,气态物质不会液化,这个温度就是临界温度。因此要使物质液化;首先要设法达到它自身的临界温度。有些物质如氨、二氧化碳等,它们的临界温度高于或接近室温,对这样的物质在常温下很容易压缩成液体。有些物质如氧、氮、氢、氦等的临界温度很低,其中氦气的临界温度为一268。C。要使这些气体液化,必须相应的要有一定的低温技术,以使能达到它们各自的临界温度,然后再用增大压强的方法使它液化。 ②通常把在临界温度以上的气态物质叫做气体,把在临界温度以下的气态物质叫做汽。 临界温度 物质处于临界状态时的温度,称为“临界温度”。降温加压,是使气体液化的条件。但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。如果气体温度超过临界温度,无论怎样增大压强,气态物质也不会液化。例如,水蒸汽的临界温度为374℃,远比常温度要高,因此,平常水蒸汽极易冷却成水。其他如乙醚、氨、二氧化碳等,它们的临界温度高于或接近室温,这样的物质在常温下很容易被压缩成液体。但也有一些临界温度很低的物质,如氧、空气、氢、氦等都是极不容易液化的气体。其中氦的临界温度为-268℃。要使这些气体液化。必须具备一定的低温技术和设备,使它们达到它们各自的临界温度以下,而后再用增大压强的方法使其液化。 临界状态 纯物质的气、液两相平衡共存的极限热力状态。在此状态时,饱和液体与饱和蒸气的热力状态参数相同,气液之间的分界面消失,因而没有表面张力,气化潜热为零。处于临界状态的温度、压力和比容,分别称为临界温度、临界压力和临界比容。例如,水的临界温度T=647.30K、临界压力Tc=22.1287兆帕、临界比容vc=0.00317立方米/千克。在气、液两相平衡共存的范围内,包括临界点,其定压比热容、容积热膨胀系数、等温压缩系数和绝热指数均趋于无限大。

蒸汽压力和温度对照表

饱和蒸汽表 以压力为准
压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa
(绝压, 绝压-0.1=表压 MPa) 以温度为准
温度 ℃ 压力 MPa 温度 ℃ 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa
0.001 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
6.983 32.898 45.833 53.997 60.086 64.992 69.124 72.702 75.886 78.743 81.345 85.954 89.959 93.512 96.713 99.632 104.81 109.31 113.32 116.93 120.23 123.27 126.09
0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.65 0.70 0.75 0.80
128.73 131.20 133.54 135.75 137.86 139.86 141.78 143.62 145.39 147.09 148.73 150.31 151.84 153.33 154.76 156.16 157.52 158.84 161.99 164.96 167.76 170.41
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
172.95 175.36 177.67 179.88 182.02 184.07 186.05 187.96 189.81 191.61 193.35 195.04 196.69 198.29 199.85 201.37 202.86 204.31 205.72 207.11 208.47 209.80 211.10
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.80 3.10 3.30 3.50 3.70 3.80 3.90 4.00 4.10
212.37 213.63 214.85 216.06 217.24 218.41 219.55 220.68 221.78 222.87 223.94 225.00 226.04 230.05 235.67 239.18 242.54 245.75 247.31 248.84 250.33 251.80
0 5 10 15 20 25 30 35 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0.00061 0.00087 0.00123 0.00170 0.00234 0.00317 0.00424 0.00562 0.00738 0.01234 0.01992 0.03117 0.04736 0.07011 0.1013 0.1433 0.1985 0.2701 0.3614 0.4760 0.6180 0.7920
180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 374.15
1.003 1.255 1.555 1.908 2.320 2.798 3.348 3.978 4.694 5.505 6.419 7.445 8.592 9.870 11.29 12.87 14.61 16.54 18.67 21.05 22.13

饱和蒸汽温度与压力对照表

饱和蒸汽温度压力对照表 问题:饱和蒸汽温度与压力对照表 说明:

蒸汽是常用的换热介质,而温度控制是 通过一定压力下的流量调节来实现的, 希望大家建立一个基本的概念。在热交 热器或者其它需要蒸汽阀门的地方,大家在选型时经常会用到。现将饱和蒸汽的温度与压力对照表整理,供大家参考!

可以说对的,10公斤绝对大气压对应的饱和蒸汽温度就是179度,楼上的说的184度是10公斤表压(也就是压力表上指示的压力;压力表是从0开始记数的,而大气本身就有1公斤的压力,绝对大气压=表压+1),184度是11公斤绝对大气压下的饱和蒸汽对应温度。这里都强调“饱和蒸汽”,因为还有“过热蒸汽”,过热蒸汽的温度是不于压力成对应关系的。 Antoine公式: ln(P)=9.3876-3826.36/(T-45.47)【T在290~500K之间】 P:MPa T:K 我用这个公式算出来是T=452.77K 约179度. 不知道对不对?请高手指教! 《饱和蒸汽压力、温度对照表》 制硝2008-05-24 10:53:57 阅读16207 评论10 字号:大中小订阅

加热室温度差=壳层压力(真空度)相应温度-加热室料液温度 蒸汽过热度=蒸汽温度-饱和蒸汽压力相应温度 压力单位非常的多,如果要全部写出来……呵呵,我还做不到,我至今也没都认识全,不过有很多很少使用。主要还是学习国际单位和几个常用单位就可以了。 常用压力单位有: 帕斯卡N/m2(Pa)千帕(kPa) 兆帕(MPa) 巴(bar)毫巴(mbar)微巴(μbar) 标准大气压(atm) 磅力/英寸^2 lb/inch2(psi) 工程大气压(kgf/cm2) 托(Torr)=毫米汞柱(mmHg) 英寸汞柱(inchHg) 毫米水柱(mmH2O) 达因/厘米2(dyn/cm2) 换算关系: 1兆帕(MPa)=1000000帕(Pa) 1巴(bar)=1000毫巴(mbar) 1毫巴(mbar)=1000微巴(μbar)=1000达因/厘米2(dyn/cm2) 1托(Torr)=1毫米汞柱(mmHg)=133.329帕(Pa) 1工程大气压=1千克力/厘米2(kgf/cm2) 1物理大气压=1标准大气压(atm)

临界温度

水的临界温度是374.℃ 在通常情况下,液体与气体全然不一样。液体具有固定的体积;你可以在一个容器中注入一半的液体。但是,气体却没有固定的体积,它总是会充满整个容器。,液体能够溶解固体和其他液体,但气体却不能。液体的密度远比气体大,液态水的密度约是气态水(水蒸气)的1250倍。换句话说,1夸脱(译者注:夸脱,英美制液量单位。1夸脱约合1.136升(英)或0.946升(美))水的重量约是1夸脱水蒸气的1250倍。通过加热,你可以把液体变为气体。当你把水不断加热,最终会使它达到沸点,并且化为蒸气蒸发掉。在海平面的正常条件下,水的沸点是100℃。 不过,如果你想不让水在100℃沸腾的话,你必须对它加压,目的是压住水分子——姑且这么说吧!当温度继续上升时,为了使水不沸腾,你必须施加越来越大的压力。最后,当温度足够高时,再高的压力也不能阻止它沸腾了。 无论压力多大,只要达到某个温度以上,液体就会沸腾,这个温度被称作“临界温度”。水的临界温度是374.2℃。当在临界温度时,恰好还能使水保持液态的那个压力,被称作水的“临界压力”。它大约是标准大气压的218.3倍。 当温度与压力高于上述数值时,就能得到“超临界水”。与水蒸气相似,它没有固定体积并能充满任何容器。然而,它的密度远比水蒸气高,事实上是液态水密度的三分之一。而它最令人惊奇的性质是,它能像液态水一样溶解物质。 每一种液体都有它自己的临界温度和压力,其中有比水高的,也有比水低的。这一现象是在1869年首先由爱尔兰化学家托马斯·安德鲁斯(Thomas Andrews)发现的。例如,二氧化碳的临界温度是31℃,临界压力是72.85标准大气压。氢的临界温度是-204℃,临界压力是12.8标准大气压。 当然,在地球表面的普通情况下,自然界中不可能存在超临界液体。但是,超临界液体会在行星中心存在,那里的温度与压力已经足够高。例如,巨行星木星的内层是由大量超临界氢所组成的,其温度高达几万摄氏度。在实验室中,科学家已经能够产生足够高的温度和压力,以至形成超临界液体,美国缅因大学的化学工程师埃尔多安·希兰(Erdogan Kiran)设计了一个钢罐,其中的压力可高达1000标准大气压,同时温度也可以足够高,从而生成

蒸汽温度与压力对照表

饱和蒸汽温度与绝对压力对照 压力温度压力温度压力温度压力温度压力温度压力温度 0.10 0.11 0.12 0.13 0.14 99.634 102.316 104.810 107.138 109.318 0.35 0.36 0.37 0.38 0.39 138.891 139.885 140.855 141.803 142.732 0.70 0.72 0.74 0.76 0.78 164.983 166.123 167.237 168.328 169.397 1.50 1.55 1.60 1.65 1.70 198.327 199.887 201.410 202.895 204.346 2.75 2.80 2.85 2.90 2.95 229.115 230.096 231.065 232.020 232.962 5.0 5.1 5.2 5.3 5.4 263.980 265.221 266.443 267.648 268.835 0.15 0.16 0.17 0.18 0.19 111.378 113.326 115.178 116.941 118.625 0.40 0.41 0.42 0.43 0.44 143.642 144.535 145.411 146.269 147.112 0.80 0.82 0.84 0.86 0.88 170.444 171.471 172.477 173.466 174.436 1.75 1.80 1.85 1.90 1.95 205.764 207.151 208.508 209.838 211.140 3.0 3.1 3.2 3.3 3.4 233.893 235.718 237.499 239.238 240.936 5.5 5.6 5.7 5.8 5.9 270.005 271.159 272.298 273.422 274.530 0.20 0.21 0.22 0.23 0.24 120.240 121.789 123.281 124.717 126.103 0.45 0.46 0.47 0.48 0.49 147.933 148.751 149.550 150.336 151.108 0.90 0.92 0.94 0.96 0.98 175.389 176.325 177.245 178.150 179.040 2.00 2.05 2.10 2.15 2.20 212.417 213.669 214.898 216.104 217.289 3.5 3.6 3.7 3.8 3.9 242.597 244.222 245.812 247.370 248.897 6.0 6.1 6.2 6.3 6.4 275.625 276.706 277.773 278.827 279.868 0.25 0.26 0.27 0.28 0.29 127.444 128.740 129.998 131.218 132.403 0.50 0.52 0.54 0.56 0.58 151.867 153.350 154.788 156.185 157.543 1.00 1.05 1.10 1.15 1.20 179.916 182.048 184.100 186.081 187.995 2.25 2.30 2.35 2.40 2.45 218.452 219.596 220.722 221.829 222.918 4.0 4.1 4.2 4.3 4.4 250.394 251.862 253.304 254.719 256.110 6.5 6.6 6.7 6.8 6.9 280.897 281.914 282.920 283.914 284.897 0.30 0.31 0.32 0.33 0.34 133.556 134.677 135.770 136.836 137.876 0.60 0.62 0.64 0.66 0.68 158.863 160.148 161.402 162.625 163.817 1.25 1.30 1.35 1.40 1.45 189.848 191.644 193.386 195.078 196.725 2.50 2.55 2.60 2.65 2.70 223.990 225.046 226.085 227.110 228.120 4.5 4.6 4.7 4.8 4.9 257.447 258.820 260.141 261.441 262.721 7.0 7.1 7.2 7.3 7.4 285.869 286.830 287.781 288.722 289.654

什么是临界温度和临界压力

什么是临界温度和临界 压力 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

什么是临界温度和临界压力 简单地说,临界温度就是某种气体能压缩成液体地最高温度,高于这个温度,无论多大压力都不能使它液化。这个温度对应地压力就是临界压力。 1869年Andrews首先发现临界现象.任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(SCF)是指在临界温度和临界压力以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称之为SCF.自从1869年Andrews首先发现临界现象以来,各种研究工作陆续开展起来,其中包括1879年Hannay和Hogarth 测量了固体在超临界流体中的溶解度,1937年Michels等人准确地测量了CO2近临界点的状态等等。在纯物质相图上,一般流体的气-液平衡线有一个终点——临界点,此处对应的温度和压力即是临界温度(Tc)和临界压力(Pc)。当流体的温度和压力处于Tc和Pc之上时,那么流体就处于超临界状态(supercritical状态,简称SC 状态)。超临界流体的许多物理化学性质介于气体和液体之间,并具有两者的优点,如具有与液体相近的溶解能力和传热系数,具有与气体相近的黏度系数和扩散系数。同时它也具有区别于气态和液态的明显特点: (1)可以得到处于气态和液态之间的任一密度; (2)在临界点附近,压力的微小变化可导致密度的巨大变化。

临界温度和临界压力

临界温度和临界压力 通常物质都存在四种形态,随着它的温度和压力而改变,即固态、液态、气态和超临界状态。物质所具有的形态与其所存在的客观条件有关,随着外界条件的变化而改变。1869年,Andrews首先发现临界现象,三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。组成物质的分子间都存在相互吸引和相互排斥的两种作用力,当分子间相互排斥力>分子间相互吸引力时,物质表现为气体;当分子间的相互吸引力>分子间的相互排斥力或至少等于排斥力的时候,气体才有可能转变为液体。分子间的相互吸引作用,实际上可以认为不依赖于温度;相反,由分子的相互撞击而引起互相排斥作用则强烈地依赖于温度,所以只有当气体的温度降低到一定程度时,才有可能使分子间的吸引作用≥分子间的排斥作用,即才有可能使气体变为液体。任何气体在一定温度和压力下都可以液化,温度越高,液化所需要的压力也越高,但是当温度超过某一数值(临界温度)时,无论外加多大的压力,也不能使气体液化,这种使分子间的吸引作用等于分子间的排斥作用时,所许可存在的最高温度叫做该气体的临界温度,在临界温度下使气体液化所需的最低压力就叫做临界压力。例如水的临界温度为374.15℃,临界压力为225.65kgf/cm2,氨的临界温度为132.4℃,临界压力为115.2kgf/cm2。临界温度较高的气体,如氨、氯气、二氧化碳和乙炔等,在常温下加压就能液化,临界温度较低的气体,如氧气、一氧化

碳等,需经压缩并冷却到一定温度以下才能液化;临界温度很低的气体如氢和氦等,需经压缩并冷却到接近绝对零度(-273.16℃)的低温才能液化。氦的临界温度最低,它是最后一个转变成液体的气体。随着生产的发展,液化气体有着广泛的应用。将气体变成液体后体积大为减小,便于贮存运输和使用。气体的液化也常用于混合气体的分离,如空气液化后,可用来分离出氮气、氧气及其它稀有气体等,此外,气体的液化对现代科学技术的发展也具有重要的意义,例如液氧可用于制造液氧炸药和高能燃料的助燃剂。液氢可用作高能燃料;液氦可用来获得绝对零度(-273.16℃)的低温等。 超临界流体(SCF)是指在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨。1879年Hannay和Hogarth测量了固体在超临界流体中的溶解度,1937年Michels等人准确地测量了CO2近临界点的状态。在纯物质相图上,一般流体的气-液平衡线有一个终点——临界点,此处对应的温度和压力即是临界温度(Tc)和临界压力(Pc)。当流体的温度和压力处于Tc和Pc之上时,那么流体就处于超临界状态(SuperCritical状态,简称SC状态)。超临界流体的许多物理化学性质介于气体和液体之间,并具有两者的优点,如具有与液体相近的溶解能力和传热系数,具有与气体相近的黏度系数和扩散系数。同时它也具有区别于气态和液态的明显特点:(1)可以得到处于气态和液态之间的任一密度;(2)在临界点附近,压力的微小变化可导致密度的巨大变化。由于

蒸汽温度压力对照表

饱和蒸汽: 未经过热处理的蒸汽称为饱和蒸汽,饱和蒸汽是在一个大气压下,温度为100度的蒸汽,温度不能再升高,是饱和状态下的蒸汽。饱和蒸汽由气体分子之间的热运动现象造成的。 原理: 当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其对应的蒸汽是饱和蒸汽,但最初只是湿饱和蒸汽,待蒸汽中的液态水完全蒸发后才是干饱和蒸汽。蒸汽从不饱和到湿饱和再到干饱和的过程温度是不增加的,干饱和之后继续加热则温度会上升,成为过热蒸汽。 特点: 饱和蒸汽具有如下特点: (1)饱和蒸汽的温度与压力之间一一对应,二者之间只有一个独立变量。理想的饱和蒸汽状态,指的是温度、压力及蒸汽密度三者

存在一一对应的关系,知道其中一个,其他二个值就是定数。存在这种关系的蒸汽就是饱和蒸汽,否则都可以视为过热蒸汽进行计量,如图为饱和蒸汽压力与温度对照表; (2)饱和蒸汽容易凝结,在传输过程中如有热量损失,蒸汽中便有液滴或液雾形成,并导致温度与压力的降低。含有液滴或液雾的蒸汽称为湿蒸汽。严格来说,饱和蒸汽或多或少都含有液滴或液雾的双相流体,所以,不同状态下不能用同一气体状态方程式来描述。饱和蒸汽中液滴或液雾的含量反映了蒸汽的质量,一般用干度这一参数来表示。蒸汽的干度是指单位体积饱和蒸汽中干蒸汽所占的百分数,以“x”表示; (3)准确计量饱和蒸汽流量比较困难,因为饱和蒸汽的干度难以保证,一般流量计都不能准确检测双相流体的流量,蒸汽压力波动将引起蒸汽密度的变化,流量计示值产生附加误差。所以在蒸汽计量中,必须设法保持测量点处蒸汽的干度以满足要求,必要时还应采取补偿措施,实现准确的测量。

名词释义 绝压,饱和蒸汽,过热蒸汽,定压比热容,定容比热容,临界压力,临界温度,冲击功,腐蚀

绝压的定义 就是绝对压力(工程学称谓,物理学称谓是绝对压强)绝压,指绝对压力:介质(液体、气体或蒸汽)所处空间的所有压力。绝对压力是相对零压力而言的压力。相对应的,表压力(相对压力):如果绝对压力和大气压的差值是一个正值,那么这个正值就是表压力,即表压力=绝对压力-大气压>0,如果是负值,就叫真空度。绝压PaA,表压PaG。 饱和蒸汽的定义 当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其对应的蒸汽是饱和蒸汽,但最初只是湿饱和蒸汽,待蒸汽中的水分完全蒸发后才是干饱和蒸汽。蒸汽从不饱和到湿饱和再到干饱和的过程温度是不增加的,干饱和之后继续加热则温度会上升,成为过热蒸汽。 过热蒸汽的定义 当湿蒸汽中的水全部汽化即成为饱和蒸汽,此时蒸汽温度仍为沸点温度。如果对于饱和蒸汽继续加热,使蒸汽温度升高并超过沸点温度,此时得到的蒸汽称为过热蒸汽。 定压比热容的定义 在压强不变的情况下,单位质量的某种物质温度升高1K所需吸收的热量,叫做该种物质的“定压比热容”,用符号Cp表示,国际制单位是:J/(kg·K)。因为气体在压强不变的条件下,当温度升高时,气体一定要膨胀而对外作功,除升温所需热量外,还需要一部分热量来补偿气体对外所作的功,因此,气体的定压比热容比定容比热容要大些。由于固体和液体在没有物态变化的情况下,外界供给的热量是用来改变温度的,其本身体积变化不大,所以固体与液体的定压比热容和定容比热容的差别也不太大。因此也就不需要区别了。 定容比热容的定义 在物体体积不变的情况下,单位质量的某种物质温度升高1K (开尔文)所需吸收的热量,叫做该种物质的“定容比热容”以符号Cv表示,国际单位是:J/(kg·K)。 临界压力的定义 物质处于临界状态时的压力(压强)。就是在临界温度时使气体液化所需要的最小压力。也就是液体在临界温度时的饱和蒸气压。

CO2临界温度与压力对应关系

CO2临界温度与压力对应关系温度(℃)压力(MPa) -20.000 1.9696 -19.000 2.0310 -18.000 2.0938 -17.000 2.1581 -16.000 2.2237 -15.000 2.2908 -14.000 2.3593 -13.000 2.4294 -12.000 2.5010 -11.000 2.5740 -10.000 2.6487 -9.0000 2.7249 -8.0000 2.8027 -7.0000 2.8821 -6.0000 2.9632 -5.0000 3.0459 -4.0000 3.1303 -3.0000 3.2164 -2.0000 3.3042 -1.0000 3.3938 0.0000 3.4851 1.0000 3.5783 2.0000 3.6733 3.0000 3.7701 4.0000 3.8688 5.0000 3.9695 6.0000 4.0720 7.0000 4.1765 8.0000 4.2831 9.0000 4.3916 10.000 4.5022 11.000 4.6149 12.000 4.7297 13.000 4.8466 14.000 4.9658 15.000 5.0871 16.000 5.2108 17.000 5.3368 18.000 5.4651 19.000 5.5958 20.000 5.7291 21.000 5.8648

22.000 6.0031 23.000 6.1440 24.000 6.2877 25.000 6.4342 26.000 6.5837 27.000 6.7361 28.000 6.8918 29.000 7.0509 30.000 7.2137

饱和温度与压力对应表

kg/cm2 MPa ℃kg/cm2 MPa ℃kg/cm2 MPa ℃ 0.1 0.01 101.76 3.6 0.353 148 19 1.862 211.39 0.2 0.02 104.24 3.7 0.363 148.8 20 1.96 213.85 0.3 0.03 106.56 3.8 0.372 149.58 21 2.058 216.23 0.4 0.04 108.73 3.9 0.382 150.35 22 2.156 218.53 0.5 0.05 110.78 4.0 0.392 151.11 23 2.254 220.75 0.6 0.06 112.72 4.2 0.412 152.58 24 2.371 222.90 0.7 0.07 114.57 4.4 0.431 154.01 25 2.45 224.90 0.8 0.08 116.32 4.6 0.451 155.41 26 2.548 227.01 0.9 0.09 118.00 4.8 0.47 156.76 27 2.646 228.18 1.0 0.098 119.61 5.0 0.49 158.07 28 2.744 230.89 1.1 0.108 121.15 5.2 0.51 159.35 29 2.842 232.76 1.2 0.118 122.64 5.4 0.529 160.60 30 2.94 234.57 1.3 0.127 124.07 5.6 0.549 161.81 31 3.038 236.34 1.4 0.137 125.45 5.8 0.568 163.01 32 3.14 238.07 1.5 0.147 126.78 6.0 0.588 16 4.17 33 3.234 239.76 1.6 0.157 128.08 6.2 0.608 16 5.30 34 3.34 241.03 1.7 0.167 129.33 6.4 0.627 166.41 35 3.43 244.62 1.8 0.176 130.33 6.6 0.647 16 7.50 36 3.53 246.17 1.9 0.186 131.72 6.7 0.666 168.56 37 3.626 249.17 2.0 0.196 13 3.99 7.0 0.686 169.60 38 3.73 247.68 2.1 0.206 135.08 7.2 0.706 170.62 39 3.822 249.17 2.2 0.216 136.14 7.4 0.725 171.63 40 3.92 250.63 2.3 0.225 136.44 7.6 0.745 172.61 41 4.018 252.07 2.4 0.235 137.17 7.8 0.764 173.58 42 4.12 253.48 2.5 0.245 138.18 8.0 0.784 174.58 43 4.212 254.86 2.6 0.255 139.17 9.0 0.882 177.03 44 4.32 256.22 2.7 0.265 140.14 10 0.98 183.20 45 4.41 257.56 2.8 0.274 141.08 11 1.078 187.08 46 4.51 258.87 2.9 0.284 142.01 12 1.176 190.71 47 4.606 260.16 3.0 0.294 142.92 13 1.274 19 4.13 48 4.71 261.44 3.1 0.304 143.80 14 1.372 197.36 49 4.802 262.69 3.2 0.314 144.68 15 1.47 200.43 50 4.9 263.92 3.3 0.323 14 5.53 16 1.568 203.35 51 4.998 265.14 3.4 0.333 14 6.37 17 1.666 206.14 52 5.096 266.34 3.5 0.343 14 7.19 18 1.764 20 8.32 53 5.194 267.52 54 5.292 268.68 95 9.31 306.55 55 5.39 269.83 96 9.408 307.30 56 5.488 270.88 97 9.506 308.05 57 5.586 272.08 98 9.604 308.79 58 5.684 273.19 99 9.702 309.52

蒸汽温度与焓值对照表

热焓表(饱和蒸汽或过热蒸汽) 1)饱和蒸汽压力- 焓表(按压力排列) 压力MPa 温度℃焓KJ / kg 压力MPa 温度℃焓KJ / kg 0.001 6.98 2513.8 1.00 179.88 2777.0 0.002 17.51 2533.2 1.10 184.06 2780.4 0.003 24.10 2545.2 1.20 187.96 2783.4 0.004 28.98 2554.1 1.30 191.6 2786.0 0.005 32.90 2561.2 1.40 195.04 2788.4 0.006 36.18 2567.1 1.50 198.28 2790.4 0.007 39.02 2572.2 1.60 201.37 2792.2 0.008 41.53 2576.7 1.40 204.3 2793.8 0.009 43.79 2580.8 1.50 207.1 2795.1 0.010 45.83 2584.4 1.90 209.79 2796.4 0.015 54.00 2598.9 2.00 212.37 2797.4 0.020 60.09 2609.6 2.20 217.24 2799.1 0.025 64.99 2618.1 2.40 221.78 2800.4 0.030 69.12 2625.3 2.60 226.03 2801.2 0.040 75.89 2636.8 2.80 230.04 2801.7 0.050 81.35 2645.0 3.00 233.84 2801.9 0.060 85.95 2653.6 3.50 242.54 2801.3 0.070 89.96 2660.2 4.00 250.33 2799.4 0.080 93.51 2666.0 5.00 263.92 2792.8 0.090 96.71 2671.1 6.00 275.56 2783.3 0.10 99.63 2675.7 7.00 285.8 2771.4 0.12 104.81 2683.8 8.00 294.98 2757.5 0.14 109.32 2690.8 9.00 303.31 2741.8 0.16 113.32 2696.8 10.0 310.96 2724.4 0.18 116.93 2702.1 11.0 318.04 2705.4 0.20 120.23 2706.9 12.0 324.64 2684.8 0.25 127.43 2717.2 13.0 330.81 2662.4 0.30 133.54 2725.5 14.0 336.63 2638.3 0.35 138.88 2732.5 15.0 342.12 2611.6 0.40 143.62 2738.5 16.0 347.32 2582.7 0.45 147.92 2743.8 17.0 352.26 2550.8 0.50 151.85 2748.5 18.0 356.96 2514.4 0.60 158.84 2756.4 19.0 361.44 2470.1 0.70 164.96 2762.9 20.0 365.71 2413.9 0.80 170.42 2768.4 21.0 369.79 2340.2 0.90 175.36 2773.0 22.0 373.68 2192.5

相关主题