搜档网
当前位置:搜档网 › 5kW全桥软开关DCDC电源

5kW全桥软开关DCDC电源

5kW全桥软开关DCDC电源
5kW全桥软开关DCDC电源

浙江大学电气工程学院

硕士学位论文

5kW全桥软开关DC/DC电源

姓名:施贻蒙

申请学位级别:硕士

专业:电力电子与电力传动指导教师:陈国柱

20080701

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

一种基于软开关三电平DCDC开关电源的研制.pdf

目前,开关电源正朝着高频、高效、环保等方向发展。与传统拓扑结构相比,三电平变换器由于具有开关管电压应力为输入直流电压的一半,适合输入电压较高的场合,输出电压谐波小等优点,从而备受关注。此外,伴随着高频化发展,出现了软开关技术,并结合三电平产生了不同拓扑的DC/DC变换器。传统ZVS半桥三电平DC/DC变换器轻载时滞后管难以实现ZVS,且开通损耗严重。ZVZCS变换器消除了ZVS三电平变换器零状态时变压器初级环流,减小了初级通态损耗,同时改善了占空比丢失问题,近年来得到了广泛研究。 这里提出一种新型ZVZCS半桥三电平DC/DC变换器,其次级采用了一个简单的无源筘位网络,通过这个无源箝位网络实现了超前桥臂在一定负载范围内的ZVS和滞后桥臂的ZCS。 2 主电路工作原理 图1为新型半桥三电平DC/DC变换器拓扑。 由图1可见,次级采用的无源箝位网络主要由箝位电容CA和二极管VDA1,VDA2,VDA3构成。变压器次级中心抽头通过VDA1连接到CA,将次级电压箝位在一个较低的水平。Cs1,Cs2为等值的输入分压电容,VDc1,VDc2为箝位二极管,Css为飞跨电容,Llk为变压器漏感,n为变比,VDR1~VDR4为整流二极管,Lf,Cf分别为滤波电感、电容,Uin,Uo 为输入、输出直流电压。采用移相PWM控制策略,工作波形如图2所示。 为简化分析,作如下假设:电路各器件均为理想元件;Lf足够大,其电流不变;将Cf看作

恒压源。变换器在半个稳态开关周期内有9个工作模态,分析如下: 新周期开始前超前管VS1导通,负载电流通过整流二极管续流,a,b间电压、次级电压、初级电流分别为uab,urec,ip,此时uab=urec= 0,ip=0. 模态1(t1~t2) t1时刻,滞后管VS2导通,新周期开始。由于ip=0,VS2此时ZCS开通。uab=Uin/2,ip线性增加。由于ip仍小于负载电流Io折算到初级的值Io/n,VDR1~VDR4全部导通,urec为零,说明该模态中次级存在占空比丢失现象。 模态2(t2~t3) t2时刻,ip达到Io/n,VDR1,VDR4关断,初级开始向负载传递能量。由于CA上电压为零,VDR1,VDR4为ZVS关断。同时VDA1导通,输入部分能量通过Ilk,VDA1向CA充电。记Uins(m2)为此模态中初级折算到次级的等效电压,Llk(m2)为折算到次级的等效漏感,则CA的电流iCA电压uCA,ip及urec分别为: 由于CA通过变压器次级中心抽头充电,urec=2uCA.t3时刻,uCA=Uo,VDA3导通,urec 被箝位为2Uo.记UrecP为次级电压峰值,则UrecP= 2Uo. 模态3(t3~t4)记uCA电压峰值为UCAM,UCAM=Uo保持不变,Llk中的谐振电流经过VDA3流向Cf,iCA迅速减小为零,urec保持2Uo不变。t4时刻Llk电流谐振到零,VDA1,VDA3 ZCS关断。 模态4(t4~t5) uCA仍保持UCAM不变,由于该模态下urec>Uo,VDA2不会导通,有ip(t)=Io/n,urec(t)=Uin/(2n)。 模态5(t5~t6) t5时刻,VS1 ZVS关断,记电容C1,C4电压分别为uC1,uC4,则UC1(t5)=0,UC4(t5)=Uin/2,ip向C1充电,C4放电,次级电压和整流二极管电压迅速减小,则有: 模态6(t6~t7)随着urec的减小,整流二极管两端电压迅速下降,在t6时刻被箝位为UCAM,此时VDA2 ZVS导通,CA开始放电,ip下降。则有:

开关电源软启动电路设计

开关电源软启动电路设计 1 简介 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流如图1所示,特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置的防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 2 常用软起动电路 2.1 采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。

2.2 采用SCR-R电路 该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1-VD4和限流电阻R对电容器C充电。当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。 2.3 具有断电检测的SCR-R电路 该电路如图4所示。它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选 取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。 2.4 继电器K1与电阻R构成的电路 该电路原理图如图5所示。电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助是电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

移相谐振全桥软开关控制器UC3875引脚及功能介绍(特制材料)

UC3875引脚及功能介绍 UC3875是Unitrode公司生产的移相谐振全桥软开关控制器,它有4个独立的输出驱动端可以直接驱动四只功率MOSFET管,见图1,其中OUTA和OUTB相位相反,OUTC和OUTD相位相反,而OUTC和OUTD相对于OUTA和OUTB的相位θ是可调的,也正是通过调节θ的大小来进行PWM控制的。 图1管脚示意图

UC3875的管脚功能 UC3875有20脚和28脚两种,这里仅介绍20脚的UC3875的管脚功能,表1为管脚功能简要说明。 表1 PIN 功能 1 VREF 基准电压 2 E/AOUT 误差放大器输出 3 E/A-误差放大器反相输入 4 E/A+误差放大器同相输入 5 C/S+电流检测 6 SOFT-START 软起动 7,15 DELAYSETA/B,C/D 输出延迟控制8,9,13,14 OUTA~OUTD 输出A~D 10 VC(对应PWRGND)驱动输出电源 11 VIN(对应GND)芯片供电电源 12 PWRGND 电源地 16 FREQSET 频率设置端 17 CLOCK/SYNC 时钟/同步 18 SLOPE 陡度 19 RAMP 斜波 20 GND 信号地

UC3875各个管脚的使用说明 管脚1可输出精确的5V基准电压,其电流可以达到60mA。当VIN比较低时,芯片进入欠压锁定状态VREF消失。直到VREF达到4.75V以上时才脱离欠压锁定状态。最好的办法是接一个0.1μF旁路电容到信号地。 管脚2为电压反馈增益控制端,当误差放大器的输出电压低于1V时实现0°相移。 管脚3为误差放大器的反相输入端,该脚通常利用分压电阻检测输出电源电压。 管脚4为误差放大器的同相输入端,该脚与基准电压相连,以检测E/A(-)端的输出电源电压。 管脚5为电流检测端,该脚为电流故障比较器的同相输入端,其基准设置为内部固定2.5V(由VREF分压)。当该脚的电压超过2.5V时电流故障动作,输出被关断,软起动复位,此脚可实现过流保护。 管脚6为软起动端,当输入电压(VIN)低于欠压锁定阈值(10.75V)时,该脚保持低电平,当VIN正常时该脚通过内部9μA电流源上升到4.8V,如果出现电流故障时该脚电压从4.8V下降到0V,此脚可实现过压保护。 管脚7、15为输出延迟控制端,通过设置该脚到地之间的电流来设置死区,加于同一桥臂两管驱动脉冲之间,以实现两管零电压开通时的瞬态时间,两个半桥死区可单独提供以满足不同的瞬态时间。 管脚8、9、13、14为输出OUTA~OUTD端,该脚为2A的图腾柱输出,可驱动MOSFET 和变压器。 管脚10为驱动输出电源电压端(对应管脚12 PWRGND),该脚提供输出级所需电源,Vc通常接3V以上电源,最佳为12V。此脚应接一旁路电容到管脚12 PWRGND。 管脚11为芯片供电电源端(对应管脚20 GND),该脚提供芯片内部数字、模拟电路部分的电源供应,接于电压为12V以上的稳压电源。为保证芯片正常工作,在该脚电压低于欠压锁定阈值(10.75V)时停止工作。此脚应接一旁路电容到信号地。 当电源电压超过欠压锁定阈值时,电源电流(IIN)从100μA猛增到20mA;如果供电电源性能不良,因负载迅速增加导致电压下降,UC3875将立即重新进入UVLO欠压锁定状态。如果接一旁路电容,它就很快脱离欠压锁定状态。 管脚12为驱动输出电源地端。其它相关的阻容网络与之并联,驱动输出电源地和信号地应一点接地以降低噪声和直流降落。

开关电源与线性电源的区别及用途

开关电源和线性电源的区别,各用在什么场合? 线性电源的调整管工作在放大状态,因而发热量大,效 率低(35%左右),需要加体积庞大的散热片,而且还需要同样 也是大体积的工频变压器,当要制作多组电压输出时变压器会 更庞大。开关电源的调整管工作在饱和和截至状态,因而发热 量小,效率高(75%以上)而且省掉了大体积的变压器。但开 关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关 管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁 珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可 以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为 佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电 检测)多选用线性电源。另外当电路中需要作隔离的时候现在 多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说 就是开关电源)。还有,开关电源中用到的高频变压器可能绕 制起来比较麻烦。 开关电源介绍 开关电源设计 1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数 设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为 任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源 产品可靠性设计的重要性。 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电 质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因 供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能 源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式 供电系统可以满足高可靠性设备的要求。 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激 式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式 的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推 挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平 衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大 输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这 两类电路拓扑。 2.3 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优 点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与 短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压 控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电 压控制型。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.sodocs.net/doc/1e5732843.html, 查询1203P60供应商

SIMetrix在“开关电源及其软开关技术”教学中的应用

SIMetrix 在“开关电源及其软开关技术”教学中的应用 为了完善专业的知识结构、配合学校培养应用型人才的办学思路,华南理工大学广州学院电气工程学院为本科生开设了“开关电源及其软开关技术”这门课程。该课程是“电力电子技术” 的后续课程,系统地介绍了开关电源电路的结构组成、工作原理、设计方法和开发过程,其综合性、工程性和实用性很强。目前,课程在教学中存在的主要问题:第一,虽然在课堂教学中使用了多媒体课件,但依然需要花费大量精力对电路工作原理及其波形进行描述和分析,学生仅凭听讲还是很难深入理解。第二,在本科生中开设该课程的高校较少,在市场上很难找到针对该课程的实验装置,学生学习的理论知识得不到很好的验证。第三,开关电源的硬件开发是一项知识面要求宽、难度大又危险的复杂技术工作,受时间、空间、物质条件等因素限制,在这方面不能做过多要求,因此学生动手能力得不到真正的锻炼。 为了弥补以上不足,本文提出在课程教学中引入SIMetrix 仿真工具。借助该仿真软件,学生更容易理解理论知识,还可以在课堂外对所学的知识加以验证以及进行一些设计应用,从而激发学习的兴趣并增强实践能力。 一、SIMetrix 仿真软件介绍 特点一:包含丰富的器件模型。模型库不仅包含了理想的电路元件,同时还提供了比较通用的、常见的半导体器件和各类应用广泛的

集成电路控制芯片,在此基础上足以构建完整的开关电源系统。 特点二:先进的测量功能。波形可通过选择检测器然后点击原理图生成,或在原理图上放入固定的检测器生成,可在仿真后甚至仿真时查看波形,非常方便。 特点三:强大的波形处理功能。为波形分析提供RMS、frequency、-3dB、FFT等40多种函数,选择这些函数可获得计算结果并显示在波形旁边。 特点四:具有多种分析功能。包括瞬态分析、交流分析、直流分析、噪声分析、传输函数分析等,每种分析功能下又提供多种扫描模式,如频率扫描、器件扫描、参数扫描、模型参数扫描、温度扫描、蒙特卡罗扫描等等。 此外,SIMetrix 仿真软件的仿真结果与实际非常接近,用户图形界面友好,仿真直观,使用者容易掌握。 二、基于UC3842的反激电路仿真实例分析 反激变换器具有高可靠性、高效率、电路拓扑简洁、输入输出电气隔离、升/ 降压范围宽、易于多路输出等优点,是小功率开关电源的理想电路拓扑。UC3842是SIMetrix仿真工具模型库 自带的集成芯片,其外围器件少、性能良好、价格低廉。综上所述,以UC3842空制的反激电源为仿真实例,电路简单且具有代表性,满足初学者的基本学习要求,具体的仿真电路如图1 所示 1. 仿真电路原理 (1)主电路原理。交流输入电压经D1-D4 组成的桥式整流

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

关于开关电源可靠性的报告

一.开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI (电磁干扰Electro-Magnetic ) 二.开关电源的可靠性 1.引言 开关电源是各种系统的核心部分。开关电源的需求越来越大, 同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全 或基本上归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。 在民用电子产品领域,日本的统计资料表明:可靠性问题 80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。数据表明,设计及元器件(元器件的选型、质量级别的确定、元器件的负荷率)的原因造成的故障,在开关电源故障原因中占80%左右。减少这两方面造成的开关电源故障具有重要的意义。总之,对系统的设计者而言,需要明确建立“可靠性”这个重要概念,把系统的可靠性作为重要的技术指标,认真对待开关电源可靠性的设计工作,并采取足够的措施提高开关电源的可靠性,才能使系统和产品达到稳定、可靠的目标。 2.影响开关电源可靠性的因素 从各研究机构研究成果可以看出, 环境温度和负荷率对可靠性影响很大, 这两个方面对 开关电源的影响很大,下面将从这两方面分析,如何设计出高可靠的开关电源. 4可靠性设计的原则 我们可以从上面的分析中得出开关电源的可靠性设计原则. 4.1 可靠性设计指标应包含定量的可靠性要求. 4.2 可靠性设计与器件的功能设计相结合,在满足器件性能指标的基础上,尽量提高器 件的可靠性水平. 4.3 应针对器件的性能水平,可靠性水平,制造成本,研制周期等相应制约因素进行综 合平衡设计. 4.4 在可靠性设计中尽可能采用国,内外成熟的新技术,新结构,新工艺和新原理. 4.5 对于关键性元器件,采用并联方式,保证此单元有足够的冗佘度. 4.6 原则上要尽一切可能减少元器件使用数目. 4.7 在同等体积下尽量采用高额度的元器件. 4.8 选用高质量等级的元器件. 4.9 原则上

17 他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践1115300605

他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践关键词:自激振荡,无源、无辅助开关准谐振,零电压开关(ZVS),PWM自适应同步,分布电容电流尖刺消除。 一、小功率AC/DC开关电源的技术现状: 现有离线式小功率AC/DC开关电源从线路结构形式来分类大致有正激式、反激式、半桥式等等几种;按驱动结构分类大致有自激式、它激式;按控制结构分类大致有PWM 控制、PFM控制。 AC/DC开关电源从核心技术上讲主要是控制方式。PWM控制方式制作的开关电源是当今开关电源方式制作的主流。由于PWM控制方式控制特性好,控制电路较简单,控制频率固定,成本低,在小功率开关电源中应用广泛。 但随着对开关电源的高功率密度,高可靠性、低成本要求的市场需求,对硬开关PWM 控制电路提出了挑战。由于主开关器件结电容,变压器及线路板的分布电容的不可避免。硬开关PWM控制电路暴露出了主开关器件随功率增大、频率进一步提高损耗会明显增大的缺点,表现为主开关器件温升高,影响了开关电源的可靠性,且变换效率无法再进一步提高。 常规(非正向式)硬开关PWM控制线路的主开关电压、电流波形(图1)及功耗分析: 由以上V/I波形可以看到,两种电路的波形有一个共同的特点:在主开关开通(T on)时,都有一电流上冲尖刺,并且尖刺电流与主开关电压波形明显重叠。在主开关关断(T off)时,主开关电压和电流波形明显重叠。正是由于这种重叠的存在,使主开关的动态损耗在电流大及频率高时更加严重。

如果用一个MOSFET作主开关,这个MOSFET的C oss为300P,变压器及线路板的分布电容为100P,Cr总共为400P,假设频率f=100KHz。 由线路原理可知,MOSFET在开通时的电压(即Cr上的电压)为 V f=V in+V clam V clam=N·(V out+V d+V tsr), V f:MOSFET漏极上的回扫电压, V in:电源的DC输入电压, N:变压器初次级匝比, V out:输出DC电压, V d:输出整流二极管上的压降, V tsr:变压器次级绕组上内阻引起的压降, 得到:V f=V in+ N·(V out+V d+V tsr) 假设有一回扫线路 V f= V in+N·(V out+V d+V tsr)=310+10×(12+1+0.2)=442(V), V cr=V f=442V, MOSFET开通(Ton)时Cr电容的损耗可用下式计算: P cr=(C r·V cr2·f)/2 代入计算:P cr= (400×10-12×4422×100×103 )/2 =7.81456/2=3.90728(w)≈4W。 由以上计算可知,MOSFET主开关输出电容Coss,及变压器、线路板的分布电容全部等效为C r在MOSFET主开关内要消耗4W左右(不包括MOSFET主开关关断时的消耗,及MOSFET导通电阻所引起的消耗)。 由RCC式线路原理可知,自激RCC式电路也工作在初级电感能量释放完状态,MOSFET在开通时的电压(即Cr上的电压)因自激条件需要为恒定V f=V in。仍根据以上条件可计算出MOSFET开通时Cr电容的损耗为: P cr= (400×10-12×3102×100×103 )/2=1.922(w)。 回扫式及他激RCC式电路如果工作在初级电感能量释放完的状态,MOSFET在开通时的电压(即C r上的电压)在不同负载条件下是不同的,P cr损耗的大小由于负载的轻重不能确定而无法预知,所以不能保证低的P cr功耗。 有朋友在做充电器时,可能会遇到,在输出电压的某一段时感觉MOSFET的温升还可以、但在另一电压段时MOSFET的温升很高而无从着手。

开关电源的软启动电路

开关电源的软起动电路 1引言 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 2常用软起动电路 (1)采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。 (2)采用SCR R  电路  和限流电阻R对电容器C充电。该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1VD4 当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。  电路 (3)具有断电检测的SCR R 该电路如图4所示。它是图3的改进型电路, 图1合闸瞬间滤波电容电流波形

开关电源保护电路

开关电源保护电路 为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 关键词:开关电源;保护电路;可靠性 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。 图1 采用晶闸管和限流电阻组成的软启动电路

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。 图2 采用继电器K1和限流电阻构成的软启动电路 图3 替代RC的延迟电路 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

相关主题