搜档网
当前位置:搜档网 › 高温耐火材料有哪些

高温耐火材料有哪些

高温耐火材料有哪些
高温耐火材料有哪些

58200浏览。耐火度不低于1580℃的一类无机非金属材料。耐火度是指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。但仅以耐火度来定义已不能全面描述耐火材料了,1580℃并不是绝对的。现定义为凡物理化学性质允许其在高温环境下使用的材料称为耐火材料。耐火材料广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。那么具体有分为哪些分类呢?

耐火材料品种繁多、用途各异,有必要对耐火材料进行科学分类,以便于科学研究、合理选用和管理。耐火材料的分类方法很多,其中主要有化学属性分类法、化学矿物组成分类法、生产工艺分类法、材料形态分类法等多种方法。

1、根据耐火度的高低分:

普通耐火材料:1580℃~1770℃

高级耐火材料:1770℃~2000℃

特级耐火材料:>2000℃

2、依据制品形状及尺寸的不同分:

标准型:230mm×114mm×65mm;

不多于4个量尺,(尺寸比)Max:Min<4:1;

异型:不多于2个凹角,(尺寸比)Max:Min<6:1;或有一个50~70°的锐角;

特异型:(尺寸比)Max:Min<8:1;

或不多于4个凹角;或有一个30~50°的锐角;

特殊制品:坩埚、器皿、管等。

3、按制造方法耐火材料可分为:

烧成制品、不烧成制品、不定形耐火材料

4. 按材料化学属性分类:

酸性耐火材料、中性耐火材料、碱性耐火材料

以上就是高温耐火材料的相关内容,感谢您的阅读!

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。 国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

耐火材料各性质

耐火材料的力学性质 耐火材料的力学性质是指材料在不同温度下的强度、弹性、和塑性性质。耐火材料在常温或高温的使用条件下,都要受到各种应力的作用而变形或损坏,各应力有压应力、拉应力、弯曲应力、剪应力、摩擦力、和撞击力等。 此外,耐火材料的力学性质,可间接反映其它的性质情况。 检验耐火材料的力学性质,研究其损毁机理和提高力学性能的途径,是耐火材料生产和使用中的一项重要工作内容。 4.1 常温力学性质 4.1.1 常温耐压强度σ压 定义;是指常温下耐火材料在单位面积上所能承受的最大压力,也即材料在压应力作用下被破坏的压力。 常温耐压强度σ压=P/A ,(pa) 式中;P—试验受压破坏时的极限压力,(N); A—试样的受压面积,(m2)。 一般情况下,国家标准对耐火材料制品性能指标的要求,视品种而定。其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);而耐火材料的体积密度一般为2.5g/cm3左右。据此计算,因受上方砌筑体的重力作用,导致耐火材料砌筑体底部受重压破坏的砌筑高度,应高达2000m以上。 可见,对耐火材料常温耐压强度的要求,并不是针对其使用中的受压损坏。而是通过该性质指标的大小,在一定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。 体现材料性能质量优劣的性能指标的大小,不仅反映出来源于各种生产工艺因素与过程控制,而且反映过程产物气、固两相的组成和相结构状态以及相关性质指标间的一致性。一般而言,这是一条普遍规律。 4.1.2 抗拉、抗折、和扭转强度 与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应力、弯曲应力、剪应力的作用下,材料被破坏时单位面积所承受的最大外力。与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备工艺情况和相关性质指标间的一致性,也体现了材料在使用条件下的必须具备的强度性能。抗折强度σ折按下式计算。

耐火砖成份及能耐多少度高温介绍

耐火砖成份及能耐多少度高温介绍 耐火砖能耐多少度高温?是根据产品的耐火成份及含量有关,例如粘土砖的主要成份是硅酸铝质,耐火度为1580-1750,下面介绍几种耐火砖的主要成份及耐火温度。 耐火砖能耐多少度高温? 粘土砖:1580~1750℃; 结晶硅石砖:1730~1770℃; 高铝砖:>1770~2000℃; 硅砖:1690~1730℃; 镁砖:>2000℃ 镁铬砖:>2000度 硬质粘土:1750~1770℃ 白云石砖:>2000℃ 氧化锆砖:>2400℃ 刚玉砖:1770~2000℃,荷重软化开始温度大于1700℃;

耐火砖主要成分是什么? 耐火砖是耐火材料的定形制品,主要成份是由化学矿物组成,以下分类法能够很直接地表征各种耐火材料的基本组成和特性,在生产、使用、科研上是常见的分类法,具有较强的实际应用意义。 (1)硅质成份 含SiO2在90%以上的材料通常称为硅质耐火材料,主要包括硅砖及熔融石英制品。硅砖以硅石为主要原料生产,其SiO2含量一般不低于93% ,主要矿物组成为鳞石英和方石英。 (2)硅酸铝质 硅酸铝质耐火材料是由Al2O3和SiO2及少量杂质所组成,根据其Al2O3含量不同可分为:1、半硅质耐火材料(含A12O3 15-30%) 2、粘土质耐火材料(含Al2O3 30-48%) 3、高铝质耐火材料(含A12O3>48%) (3)镁质耐火材料 镁质耐火材料是指以镁砂为主要原料,以方镁石为主晶相,MgO 含量大于80% 的碱性耐火材料。 镁质制品:MgO 含量≥87% ,主要矿物为方镁石; 镁铝质制品:含MgO >75% ,Al2O3含量一般为7-8% ,主要矿物成分为方镁石和镁铝尖晶石(MgAl2O4); 镁铬质制品:含MgO>60%,Cr2O3含量一般在20%以下,主要矿物成分为方镁石和铬尖晶石; 镁橄榄石质及镁硅质制品:主成分:MgO,第二化学成分为SiO2。镁橄榄石砖比镁硅砖含有更多的SiO2,前者的主要矿物成分为镁橄榄石,其次为方镁石;后者的主要矿物为方镁石,其次镁橄榄石; 镁钙质制品:此种镁质材料中含有一定量的CaO,主要矿物成分除方镁石外还含有一定量的硅酸二钙(2CaO?SiO2)。 (4)白云石质 以天然白云石为主要原料生产的碱性耐火材料称为白云石质耐火材料。主要化学成分为:30-42% 的MgO和40-60% 的CaO ,二者之和一般应大于90% 。其主要矿物成分为方镁石和方钙石(氧化钙)。 (5)碳复合制品 碳复合耐火材料是指以不同形态的碳素材料与相应的耐火氧化物复合生产的耐火材料。 (6)含锆耐火材料 含锆耐火材料是指以氧化锆(ZrO2)、锆英石等含锆材料为原料生产的耐火材料。含锆耐火材料制品通常包括锆英石制品、锆莫来石制品、锆刚玉制品等。

耐火材料的热学性质

耐火材料的热学性质 耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。 3.1 耐火材料的热膨胀 耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。 3.1.1 热膨胀率 热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。测定出热膨胀率,才能计算出热膨胀系数。 线膨胀率=[(L T-L0)/L0]×100% 式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。 3.1.2 热膨胀系数 热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。 热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT 式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。 体热膨胀系数β=ΔV/V0ΔT 式中:V0—为试样在初始温度T0时的体积,(mm3)。 真实热膨胀系数αT=dL/LdT 式中;L—为试样在某温度时的长度,(mm)。 如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。 影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。 ①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。 ②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较

耐火材料的基本知识

第一节耐火材料的基本知识 1、耐火材料的定义? 耐火材料就是指耐火度不低于 1500℃的无机非金属材料。 2、耐火材料必须具备的基本性能? (1)耐火度(2)高温体积稳定性(3)耐急冷急热性 3、耐火材料在电炉炼钢厂的应用? (1)电炉炉衬、炉盖、炉底、炉坡、渣线修补料。 (2)精炼钢包包衬、包盖、滑动水口、透气砖系统。 (3)连铸中间包包衬、包盖、长水口、整体塞棒、浸入式水口。(4)模铸用漏斗砖,中注管,中心砖,汤道砖,尾砖,模底砖。 4、按耐火度不同,耐火材料可分几类? (1)普通耐火材料,耐火度1580~1770℃; (2)高级耐火材料,耐火度1770~2000℃; (3)特级耐火材料,耐火度> 2000℃; 5、按化学矿物组成的性质不同,耐火度可分为几类?

(1)酸性耐火材料,如硅砖;(2)碱性耐火材料,如镁砖、白云石砖、镁碳砖;(3)中性耐火材料,如高铝砖、碳砖。 6、按外形尺寸的多少,耐火材料可分为几类? (1)标准型耐火砖,外形尺寸≤4个;(2)普通型耐火砖,外形尺寸≤6个;(3)异型耐火砖,外形尺寸<10个,带孔、槽、角;(4)特异型耐火砖,外形尺寸>10,带多个孔、槽、角。 7、按外形耐火材料可分类为几类? (1)耐火砖——具有一定的形状。(2)不定形耐火材料——散状实,需按所要形状进行施工用耐火材料。(3)耐火泥——砌砖填缝用耐火材料。 8、学习耐火基本知识的目的? (1)掌握基本技能,科学合理使用耐火材料。 (2)掌握使用特性,防止穿炉、穿包、漏钢、跑钢事故发生。 (3)掌握使用规律,不断提高炉衬,包衬使用寿命,降低炼钢生产成本,减轻劳动强度,提高经济效益。 第二节耐火材料的基本性能 9、什么叫气孔率?

耐热高分子材料及其应用

耐热高分子材料及其应用 姓名 (常州轻工职业技术学院常州 213164) 摘要:随着尖端科学技术的发展,特别是高速飞行、火箭、宇宙航行、无线电、工程技术等的飞跃发展,对高分子材料的耐热性提出了越来越高的要求。近年来世界各国科学家正在开发这方面新技术,很多材料已经进行大规模生产。耐高温高分子材料一直是大家关注的热点,本文首先对耐热高分子材料作一概述,然后从多方面介绍耐热高分子材料在实际中的应用以及对其未来的展望。 关键词:耐热高分子耐热性高分子材料耐热材料应用 1 耐热高分子材料 1.1 耐热高分子材料的定义 耐热高分子材料一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料[1]。在电气绝+缘材料范畴,通常把使用温良长期在150℃以上的高分子材料称为谢热高分子绝缘材科. 1.2 耐热高分子材料的影响因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐射等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指树料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一种热塑性聚合物的耐热性低于热稳定性。 1.3 耐热高分子材料的分类 耐热高分子材料按结构可分为: (1)芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酷咬等; (2)杂环聚合物类,如聚酰亚胺、聚苯并咪唑、喹恶林等; (3)梯形聚合物,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹恶林类梯形聚合物等: (4)元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物; (5)无机聚合物类. 2 高分子材料的耐热性与结构 2.1 对高分子材料耐热性的要求 关于高分子材料的耐热性,至今尚无完全统一的规定,不同研究者往往有不同的解释[2]。Eirich,等人在1961年曾对高分子材料的耐热性提出三条基本要求:有高熔点和高软化点;高的抗热解性;有良好的耐热氧化性和耐化试学剂性。但通常首先注意材料的最高工作

耐火材料

一、填空题 1,硅酸盐矿物显微结构:硅酸盐结合物胶结晶体颗粒晶体颗粒直接结合 成结晶网2,熔渣让耐火材料破坏的三种方式:单纯溶解、反应溶解、侵入变质溶解 3,让坯料重新分布的力:静电引力、机械结合力、内摩擦力 4,镁砖的分类:烧 成镁砖、不烧镁砖、再结合镁砖5,颗粒料的组成原则:两头大,中间小 6,氧化铝含量:<%72(莫来石) >%72(莫来石,刚玉) 7,测耐火材料的抗拉性的 两种方法:动态法、静态法 8,ZrO2增韧机理:①应力诱导相变增韧 ②微裂纹增韧 ③裂纹分支增韧④裂纹偏转和弯曲增韧 9,铬镁质材料:方镁石,尖晶石 其基质有三种:M2S 、 CMS 、 C3MS2 1.耐火材料的概念:指主要由无机非金属材料构成的且耐火度不低于1580℃的材料和 制品。耐火材料的品种和质量取决与耐火材料的原料和其生产工艺。 2.耐火材料 分类Ⅰ、化学矿物组成分类:氧化硅质、硅酸盐质、刚玉质、镁质、白云石质、橄榄 石质、尖晶石质、含炭质、含锆质、特殊等耐火材料。Ⅱ、按耐火度高低分为:①普 通耐火制品(耐火度1580-1770℃)、②高级耐火制品(耐火度1770-2000℃)、特级 耐火制品(耐火度2000℃以上)。Ⅲ、按制品形状和尺寸分为:标准砖、异形砖、特 异型砖等。Ⅳ、按化学性质分类:酸性耐火材料、中性耐火材料、碱性耐火材料。 (化性分类对了解耐火材料的化学性质,判断在使用过程中它们之间及耐火材料与接 触物间化学作用情况有着重要意义)3、氧化硅耐火材料为典型的酸性耐火材料, 其矿物组成为:主晶相为磷石英和方石英,基质为石英玻璃相。 4、两种矿物组成:①结晶相(主晶相和次晶相):主晶相是耐火制品结构的主体而且熔点较高的结晶相。其性质、数量、结合状态直接决定着耐火材料的性质。次晶相又称第二固相,也是熔 点较高的晶体,提高耐火制品中固相间的直接结合,改善制品性能。②玻璃相:基质 是指填充于主晶相之间的不同成分的结晶矿物(次晶相)和玻璃相,也称结合相。硅 砖的主晶相:磷石英、方石英粘土砖的主晶相:莫来石、方石英5、耐火材料的气孔 存在形态分类:封闭在制品中不与外界想通的闭口气孔,一端封闭另一端与外界相通 的开口气孔,两端都与外界相通的贯通气孔。气孔的存在主要影响材料的致密度,显 气孔率高时,材料结构疏松,强度低,抗渣性能弱。 耐火材料的化学组成是决定其矿物组成、组织结构的基础。根据各种化学成分的含量 和作用分为:主成分、杂质和外加成分三种。。主成分:指耐火材料中占绝大多数的,对材料高温性质起决定性作用的化学成分。杂质:指耐火材料中不同于主成分的,含 量微少而对耐火材料的抵抗高温性质带来危害的化学成分。外加成分:常称为外加剂,是在耐火制品生产中为特定目的另外加入的少量成分。 矿物:由相对固定的化学组分构成的有确定的内部结构和物理性质的单质或化合物 密度分为:体积密度、视密度、真密度。①体积密度d b:指材料的质量M与其含材料 的实体积Vb和全部气孔体积之和的总体积V b之比 d b=M/V b=M/(Vt+Vc+Vo)。②视密度(表观)da:指材料的质量与其含材料的实体积和封闭气孔体积之和的体积之比。 da=M/(Vt+Vc)③真密度dt:指材料质量与其实体积之比.dt=M/Vt 主晶相:指构成结构结构的主体且熔点较高,对材料的性质起支配作用的一种晶相,(其性质,数量,分布和结合状态直接决定耐火制品性质)。次晶相:又称第二晶相 或第二固相,指耐火材料中在高温下与主晶相和液相并存的,一般其数量较少和对材 料高温性能的影响较主晶相为小的第二种晶相。基质:指在耐火材料大晶体间隙中 存在,或由大晶体嵌入其中的那部分物质,也可认为是大晶体之间的填充物质或胶结物。 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能,表征材料 抵抗高温作用的性能。其意义与熔点不同。熔点是结晶体的液相与固相处于平衡时的

耐火材料的六大使用性能

耐火材料的六大使用性能 ??? 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 ??? 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) ??? 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

耐火材料的主要性能指标

耐火材料的主要性能指标 耐火材料的主要性能指标有: 1.耐火度:耐火度是耐火材料在高温下抵抗熔化的性能。耐火度主要取决于耐火材料的化学成份和材料中的易熔杂质(如FeO、NaO等)的含量。耐火度并不代表耐火材料的实际使用温度,因为在高温载负作用下耐火材料的软化变形温度会降低,所以耐火材料的实际允许最高使用温度比耐火度低。耐火度一般通过试验测定。耐火度大于1580℃的材料方可称为耐火材料。 2.高温结构强度:高温结构强度是指耐火制品在高温下承受压力而不发生变形的抗力。常以负重软化温度来评定。所谓负重软化温度是指耐火制品在0.2压力下,以一定的升温速度加热,测出样品开始变形的温度和压缩变形达4%或40%的温度。前者的温度叫负重软化开始湿度,后者叫负重软化4%或40%的软化点。 3.热稳定性:热稳定性是指抵抗温度急剧变化而不破裂或剥落的能力,有时也称之为耐急冷急热性。它的测定是将耐火制品加热到一定温度(850℃)然后用流动的冷水冷却,直至进行到因制品破裂而部分剥落的重量为原重量的20%时,所经爱冷热交替次数即为评定热稳定性的指标。 4.体积稳定性:体积稳定性是指耐火制品在一定温度下反复加的热、冷却的体积变化百分率。一般在多次高温作用下,耐火制品内组成相会发生再结晶和进一歩烧结,会产生残余的膨胀或收缩现象。一般允许的残

余膨胀或收缩不应超过0.5-1.0%。 5. 高温化学稳定性:高温化学稳定性系指耐火制品在高温下,抗金属氧化物、熔盐和炉气侵蚀的能力。常用抗渣性来评定,这种性质主要取决于耐火制品本身相组成物的化学特点和物理结构,如气孔率、体积密度等。 6.体积密度、气孔率、透气性:体积密度是指包括全部气孔在内的单位耐火制品的重量,其单位为g/cm3. 气孔率(%)分显气孔率和真气孔率。显气孔率是耐火制品上与大气相通的孔洞体积与总体积之比。真气孔率是指不与大气相通的孔洞体积与总体积之比。 透气性常以透气系数评定,透气系数是在9.8Pa的压差下,1h内通过厚1m,面雊1m2耐火制品的空气量。 7.热导率、比热容、热膨胀性:热导率表示耐火材料的导热性能,常以符号“λ”表示。其物理意义为当温度差为1K时、单位时间内通过厚为1m,面积为1m2耐火制品的热量,单位为W/(m.K) 比热容反映耐火材料的蓄热能力,单位为kJ/(kg*℃),其值随温度升高而增大。 热膨胀性常用线性膨胀百分数“α”来表示,即耐火材料制品在t℃下的长度L,与0℃时的长度L。之差值L。之比的百分数。

耐火材料的理化性能

1.耐火度:耐火度是耐火材料在高温下抵抗熔化的性能。耐火度主要取决于耐火材料的化学成份和材料中的易熔杂质(如FeO、NaO等)的含量。耐火度并不代表耐火材料的实际使用温度,因为在高温载负作用下耐火材料的软化变形温度会降低,所以耐火材料的实际允许最高使用温度比耐火度低。耐火度一般通过试验测定。耐火度大于1580℃的材料方可称为耐火材料。 2.高温结构强度:高温结构强度是指耐火制品在高温下承受压力而不发生变形的抗力。常以负重软化温度来评定。所谓负重软化温度是指耐火制品在0.2压力下,以一定的升温速度加热,测出样品开始变形的温度和压缩变形达4%或40%的温度。前者的温度叫负重软化开始湿度,后者叫负重软化4%或40%的软化点。 3.热稳定性:热稳定性是指抵抗温度急剧变化而不破裂或剥落的能力,有时也称之为耐急冷急热性。它的测定是将耐火制品加热到一定温度(850℃)然后用流动的冷水冷却,直至进行到因制品破裂而部分剥落的重量为原重量的20%时,所经爱冷热交替次数即为评定热稳定性的指标。 4.体积稳定性:体积稳定性是指耐火制品在一定温度下反复加的热、冷却的体积变化百分率。一般在多次高温作用下,耐火制品内组成相会发生再结晶和进一歩烧结,会产生残余的膨胀或收缩现象。一般允许的残余膨胀或收缩不应超过0.5-1.0%。 5. 高温化学稳定性:高温化学稳定性系指耐火制品在高温下,抗金属氧化物、熔盐和炉气侵蚀的能力。常用抗渣性来评定,这种性质主要取决于耐火制品本身相组成物的化学特点和物理结构,如气孔率、体积密度等。 6.体积密度、气孔率、透气性:体积密度是指包括全部气孔在内的单位耐火制品的重量,其单位为g/cm3. 气孔率(%)分显气孔率和真气孔率。显气孔率是耐火制品上与大气相通的孔洞体积与总体积之比。真气孔率是指不与大气相通的孔洞体积与总体积之比. 透气性常以透气系数评定,透气系数是在9.8Pa的压差下,1h内通过厚1m,面雊1m2耐火制品的空气量。 7.热导率、比热容、热膨胀性:热导率表示耐火材料的导热性能,常以符号“λ”表示。其物理意义为当温度差为1K时、单位时间内通过厚为1m,面积为1m2耐火制品的热量,单位为W/(m.K) 比热容反映耐火材料的蓄热能力,单位为kJ/(kg*℃),其值随温度升高而增大。 热膨胀性常用线性膨胀百分数“α”来表示,即耐火材料制品在t℃下的长度L,与0℃时的长度L。之差值L。之比的百分数。

耐火材料的发展历史

1. 耐火材料的发展历史,研究现状,发展趋势,资源的回收与利用 时间:2010-10-10来源:国炬高温科技点击:587次 1.1. 概述 中国在4000多年前就使用杂质少的粘土,烧成陶器,并已能铸造青铜器。东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于1600℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料,例如熔点高于2000℃的氧化物、难熔化合物和高温复合耐火材料等。 耐火材料-分类分为普通和特种耐火材料两大类。普通耐火材料按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。特种耐火材料按组成分为高温氧化物、难熔化合物和高温复合材料此外,按照耐火度强弱可分为普通耐火制品(1580~1770℃)、高级耐火制品(1770~2000℃)和特级耐火制品(2000℃以上)。按照制品的外形可分为块状(标准砖、异形砖等)、特种形状(坩埚、匣钵、管子等)、纤维状(硅酸铝质、氧化锆质和碳化硼质等)和不定形状(耐火泥、浇灌料和捣打料等)。按照烧结工艺分为烧结制品、熔铸制品、熔融喷吹制品等。 耐火材料-主要品种在普通和特种耐火材料中,常用的品种主要有以下几种: 酸性耐火材料 中性耐火材料 碱性耐火材料 用量较大的有硅砖和粘土砖。硅砖是含93%以上的硅质制品,使用的原料有硅石、废硅砖等。硅砖抗酸性炉渣侵蚀能力强,但易受碱性渣的侵蚀,它的荷重软化温度很高,接近其耐火度,重复煅烧后体积不收缩,甚至略有膨胀,但是抗热震性差。硅砖主要用于焦炉、玻璃熔窑、酸性炼钢炉等热工设备。粘土砖中含30%~46%氧化铝,它以耐火粘土为主要原料,耐火度1580~1770℃,抗热震性好,属于弱酸性耐火材料,对酸性炉渣有抗蚀性,用途广泛,是目前生产量最大的一类耐火材料。 高铝质制品中的主晶相是莫来石和刚玉,刚玉的含量随着氧化铝含量

耐火材料分类及性能

耐火材料分类及性能 能承受高温下物理、化学作用而不易损坏或不损坏的确材料,称为耐火材料,是各种工业炉的基础材料之一。 一、耐火材料的分类 按材料高低,通常分为普通耐火材料和特种耐火材料;按材料密度,分为重质耐火材料和轻质耐火材料;按耐火的主要化学成分,分为粘土砖、高铝砖、硅砖、氯化铝砖、石墨和碳制品以及碳化硅制品等。 二、普通耐火材料 普通耐火材料是用量最多,应用而最广的耐火材料。主要材料见表1.3.1。 表1.3.1 普通耐火材料表 名称 主要化学 成分 主要特点常用温度 粘土砖Al2O330~4 8% 热震稳定性好, 弱酸性 <1350℃ 高铝砖Al2O348~7 5% 抗渣性,热震稳定 性好,中性 1400~1650 ℃ 半硅SiO2>65% 高温体积稳定抗<1250℃

砖15%80% Al2O3 5%~10% 与镁砖相似,热震 稳定性较好 1600℃以 上 镁铬砖MgO>60% Cr2O3~40% 与镁砖相似,热震 稳定性较好 1600℃以 上 镁橄榄石砖MgO35~55 % SiO2 30~40% 荷重软化温度稍 高,抗渣性比镁砖 差 1500℃以 上 镁硅砖MgO>82% SiO2 5~11% 荷重软化温度比 镁砖高, 热震稳 定性差 1600℃以 上 高温烧成MgO35~55 % 荷重软化温度高, 抗渣性好,但抗水 1600℃以 上

高温耐火材料

超轻质高温耐火材料的主导产品系多晶莫来石纤维,是一种热容小、容重小、热导率低、热敏性好的保温绝热材料。从广义上讲,属于不定型耐火隔热材料,它包括高温耐火纤维及其复合制品两类。属“九·五”期间国家重点推广的新型环保节能材料。1 超轻质高温耐火材料的应用范围超轻质高温耐火材料具有良好的耐急冷急热性能,低的比热和低的线膨胀性能,容重在100600kg/m3 (纤维可达到80kg/ m3 ) ,具有一定的抗震性能,产品耐冲刷、易加工,具有施工灵活、工期短的特点,可根据不同行业的需要加工成各种不定型的棉、砖、板、毡、毯、标异制品,产品适用于1600 ℃以下的冶金、化工、机械、电子、玻璃建材、军工、科研与航天航空等领域的窑炉内衬绝热与密封,并可替代国外高档进口耐火材料和构筑全纤维窑炉,应用范围十分广阔,具有较好的市场发展前景。2 超轻质高温耐火材料在窑炉内衬上的应用根据窑炉温度高低和工作环境的不同要求,选择不同种类和厚度的超轻质高温耐火材料作为内衬, 不仅可以大大减少窑炉炉壁的厚度,而且还可大大减轻窑炉的重量,加快窑炉升温速度。如浙江欧诗漫集团德清晶体纤维厂采用超轻质高温耐火材料,匹配先进的控制仪器,研制成使用温度在130021500 ℃的新型SX 系列电阻炉,经浙江省能源利用监测中心监测,属间歇式电阻炉最高级别C 级炉,空炉升温至1500 ℃,升温时间≤20min ,比传统的电炉升温时间快了18 倍之多。因此,超轻质高温耐火材料现已广泛应用于陶瓷行业的梭式窑、隧道窑、辊道窑、机械行业的钟罩窑,以及其它热工设备上作窑炉内衬。像钢材品种规格频繁变化的轧钢厂连续式加热炉上应用超轻质高温耐火材料作内衬,其综合节能可达56 %;用于间歇式电加热炉上作内衬,其能更为显著,节能率可高达30 %左右,已经冶金部科学技术成果鉴定[ 编号( 90) 冶科成鉴字417号] 。浙江华莹电子有限公司1999 年3 月将8 台原采用刚玉与泡沫砖结构的箱式电阻炉,改造成采用超轻质高温耐火材料结构, 每月单台耗电从1000kWh 左右下降至600kWh , 节约用电约为40 %;炉体顶端表面温度从80 ℃以上降低至 56 ℃以下。又如鞍钢有一台82m2 台车式热处理炉是一座比较特殊的热处理炉,在1987 年大修时就进行了高层次的技术改造,整个炉顶全部采用了超轻质高温耐火材料,从而使炉体结构轻型化;炉顶重量12t ,跟原炉顶(磷酸盐耐热混凝土预制块) 112t 相比重量减少了十分之九,结构简单,绝热效果非常好。该炉仅用钢材20t ,跟原炉钢材用量37t 相比减少了45 % ,处理同样的工件,新旧炉燃耗相比节能38 %。成都无缝钢管有限责任公司也通过应用实践,验证了采用超轻质高温耐火材料做窑炉内衬,不仅可节约天然气带来异常显著的节能效果,而且还可延长炉衬寿命,减少维修周期,降低维护费用,因此积极将欧诗漫超轻质高温耐火材料粘贴在加热炉内膛的项目申报节能环保重点示范项目。3 超轻质高温耐火材料作窑炉填充密封超轻质高温耐火材料不仅可以作为窑炉内衬(或整体炉胆) 应用于工业窑炉,而且还可作为高温窑炉的填充密封与隔热材料,广泛应用于窑炉加热元件的炉壁间隙与金属部件的间隙处,辊道窑两端头转动部分的孔洞处,吊顶式窑炉的接缝处,窑车及接头处以及窑炉炉门、炉盖的填充或密封特别是超轻质高温耐火材料本身所具有的弹性和填充性,在1600 ℃以下的高温窑炉上作膨胀缝可缓解砖壁膨胀热应力,减少散热损失。像商丘振华玻璃厂浮法玻璃生产线以及广东江门益胜浮法玻璃厂熔窑应用超轻质高温耐火材料作保温绝热贴面和窑炉膨胀缝填充,在1500 ℃以上的情况下使用良好,有效地解决了高温状态下的高温窑炉膨胀缝填充难题,填补了国内13001600 ℃高温窑炉膨胀收缩填充材料的空白。武钢公司下属炼钢厂的连铸钢包旋转塔原设计的保温盖是采用浇注料,由于浇注料容重大,在使用中易发生脱落危及安全。鉴于此,在1996 年底采用欧诗漫超轻质高温耐火材料做保温盖,经过3a 多来的实际使用,效果良好,能有效降低钢水热损失,提高保温盖使用寿命和安全性。欧诗漫轻质耐材在今年4 月又被推荐为2000 年节能环保产品。4 超轻质高温耐火材料替代国外高档进口耐火材料超轻质高温耐火材料是一种新型的环保节能型材料,其研制与应用是国家计委、冶金部“六·五”、“七·五”期间的国家重点科研攻关项目,并已列入“九·五”期间的国家级重点科技成果推广项目。80年代,国际上仅有英国、日本等几个少数发达国家在部分

耐火高温粘结剂

工业上循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫、氮氧化物排放量低、给料点少、负荷调节比例大及负荷调节快等优势。在我国得到了长足的发展。 工业上循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫、氮氧化物排放量低、给料点少、负荷调节比例大及负荷调节快等优势。在我国得到了长足的发展。该类锅炉由于燃烧颗粒流化速度高,高温下对炉衬耐火材料具有强烈的冲刷、磨损作用,尤其是锅炉的燃烧室及旋风分离器等部位承受着颗粒、气流和烟尘介质磨损及热震作用,导致耐火材料内衬冲蚀、磨损、剥落和坍塌,严重影响了锅炉的正常运行和生产。因此必须开发新型的具有耐中高温度、抗侵蚀、耐磨损和抗热震性能的粘结剂来提高耐火材料的性能。由于锅炉长期处于900℃—1100℃的温度状态下工作,耐材在此温度下难于达到陶瓷烧结状态,严重影响到耐火材料的性能。因此解决问题的关键是高温粘结剂在循环流化床锅炉的使用温度范围内达到陶瓷烧结状态,从而获得稳定良好的耐压强度及耐磨抗热震性能。 对此,北京志盛威华化工有限公司研制出了一种循环流化床锅炉用新型耐高温无机粘结剂,采用志盛威华特制高温溶液,耐温高。该种循环流化床锅炉用快速升温粘结剂是一种利用无机纳米材料经缩聚反应制成的耐高温无机纳米复合粘结剂,通过对成分配比以及制备工艺参数的筛选,得到粘结剂是PH值为中性的悬浮分散体系,不仅粘结力强且对金属基体无腐蚀性,耐高温无机粘结剂应用温度范围广,可在1800℃的高温下保持良好的粘接性能和抗腐蚀性,使用寿命长,让锅炉运行的更安全。 该种新型粘结剂具有如下特点: (1)新型粘结剂中使用了高级材料稀土氧化物。可以促使耐火材料在900℃—1100℃的温度状态下烧结,使耐火材料的耐压强度达到较高的数据,增强了耐火材料的耐磨性能,使产品能够抵抗高浓度粉尘的冲刷,减少磨损,因此很适合在循环流化床锅炉中使用。

耐火材料的应用

第二篇耐火材料的应用 耐火材料作为高温炉窑及热工设备的结构材料及元部件材料,广泛用于钢铁、有色金属、建材、石油化工、机械工业等部门。 10.1冶金炉窑对耐火材料的要求 冶金炉窑种类繁多,结构复杂,耐火材料的选择和应用往住有很大差别。但是,必须满足下列要求: 能承受高温作用而不软化、不熔化; 能承受高温荷重作用,不丧失结构强度,不发生变形和坍塌; 有好的体积稳定性,在高温下不发生过大的体积膨胀和收缩,重烧线变化小; 能抵抗温度急剧变化; 能抵抗高温熔体的化学侵蚀和物理冲刷作用; 外形尺寸规整,公差小。 10.2耐火材料在使投中损毁的机理 冶金炉窑长期连续处在高温下运行,耐火材料工作条件恶劣,极易损毁,其中以熔炼炉最为典型。造成耐火材料损毁的因素很多,但归纳起来主要有以下几点。 (1)渣蚀作用:是由于熔渣和金属液或含尘腐蚀性气体的物理化学作用而引起的侵蚀。据统计有色冶金炉窑的炉衬60%~70%是由于熔渣的侵蚀而损毁。炼钢转炉和电炉渣线区域主要是由于渣蚀,而成为损毁最严重的部位,并决定着炉衬的寿命。。 (2)温度剧烈变化作用:许多炉窑,特别是间歇式操作炉窑,温度波动大,骤然变化产生很大的内应力,砖砌体开裂、剥落,严重时变形或坍塌倾倒。如炼钢转炉、电弧炉和铜锡熔炼反射炉,熔炼期最高炉温可达1250~1650℃,而放渣和出钢、出铜后,炉内温度急剧,降至600~800℃,温度在短时间内波动太快太大,造成耐火材料内应力大,产生崩裂、剥落而损毁。 (3)气相的沉积作用:很多熔炼炉和火焰炉,在生产过程中会产生CO分解和铅、锌及碱金属氧化挥发,并在耐火材料气孔及砌缝内沉积,造成砖砌体龟裂、变形和化学侵蚀。这种现象在高炉、鼓风炉、竖窑及焦炉的上部较为突出,甚至成为这些部位损毁的主要原因。 (4)机械冲击和磨损作用:许多炉窑内的物料是运动的。如高炉、鼓风炉及竖窑内的物料连续不断地由炉顶向下运动;回转窑内物料作回转前进运动;转炉内液态金属作沸腾搅动等。并且在运动的同时,物料还要发生一系列的物理化学变化。因此,对炉衬产生很大的

耐火材料

1、耐火材料:主要由无机非金属材料构成的耐火度不低于1580℃且在高温下能承受相应的物理化学变化及机械作用的的材料和制品。 主晶相:指构成制品结构的主体且熔点较高的晶相。 基质:指耐火材料中大晶体或骨料间隙中存在的物质。 2、无定形耐火材料的一般生产工艺流程。 原料的加工→配料→混炼→成型→干燥→烧成→拣选→成品。 1) 原料的加工主要包括原料的精选、提纯、均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 2)配料包括各种原料组成配比和粒度级配。 3) 混炼是按配料要求制成各组分,各种颗粒均匀分布的级料,并使级料实现预密实化。 4) 成型的目的是使级料制成具有一定形状和适当密度与强度的砖坯。 5) 砖坯的干燥是热湿传递过程。 6) 烧成是使砖坯在高温下发生一系列的物理化学反应达到烧结,包括固相和液相烧结。 3、含有晶相、玻璃相和仅含晶相的耐火材料两种材料的显微组织结构的不同。 耐火材料按其主晶相和基质的成分可以分为两类:一类是含有晶相和玻璃相的多组分耐火制品,如硅砖、粘土砖。二是仅含晶相的多组分结晶体,如镁砖等碱性耐火材料。 若主晶相是由硅酸盐玻璃结合起来,按主晶相和基质的分布状态,其显微结构可分为两类:一类是液相数量较多或对主晶相润湿良好,主晶相被玻璃相包围起来(图a),形成基质连续,主晶相不连续结构,如粘土砖;另一类是液相数量较少或对主晶相润湿不良,形成主晶相不是完全被基质包围,而是主晶相将基质孤立,主晶相与主晶相有接触点(图b),形成主晶相连续、基质不连续结构,如硅砖。 a:基质连续结构 b:主晶相连续结构4、高温下使用性能好的耐火材料低温下是否依然使用良好,为什么?并举例说明。(为什么硅质耐火材料在600℃下使用情况不好) 不一定。比如硅砖在600℃以下时性能差,是因为存在石英之间的晶型转化,如β-方石英会转化为α-方石英等,产生明显的体积效应,其抗热稳定性较差;而在850℃以上的高温下使用时,其不发生晶型转化,无体积效应或体积效应不明显,因此在高温下可以稳定的使用。 5、什么叫耐火度?影响耐火度的因素有哪些? 耐火度:耐火材料在无荷重时抵抗高温作用而不熔化的性质称为耐火度。 影响耐火度的因素:固相与液相的数量比、液相粘度和材料的分散度。具有强熔剂作用的杂质成分,会严重降低制品的耐火度。(提高原料纯度)

耐火材料的高温使用性质

耐火材料的高温使用性质 5.1 耐火度 5.1.1 耐火度定义 定义:耐火材料在无荷重时抵抗高温作用而不熔化的性质称为耐火度。耐火度是个耐火材料高温性质的技术指标,对于耐火材料而言,耐火度表示的意义与熔点不同。 熔点是纯物质的结晶相与其液相处于平衡状态下的温度,如氧化铝Al2O3熔点为2050℃,氧化硅SiO2的熔点为1713℃,方镁石MgO的熔点为2800℃等。但是,一般耐火材料是由各种物质组成的多相固体混合物,并非单相的纯物质,故没有固定的熔点,其熔融是在一定的温度范围内进行的,即只有一个固定的开始熔融温度和一个固定的熔融终了温度,在这个温度范围内液相和固相是同时存在的。 5.1.2 耐火度测定 在实际中,耐火度的测定并非采用直接测温的方法,而是通过具有固定弯倒温度的标准锥与被测锥弯倒情况的比较来测定的。 耐火度测定:将-180目的物料加上结合剂,用模具制成截头三角锥,上底边长2mm,下底边长8mm,高30mm,截面成等边三角形。将2只被测锥与4只标准锥用耐火泥交错固定于耐火材料台座上,6个锥锥棱向外成六角形布置,锥棱与垂线夹角为8o。台座转速为2r/min,快速升温至比估计的耐火度低100℃~200℃时,升温速度变为2.5℃/min。由于被测锥产生液相及自重的作用,锥体逐渐变形弯倒,锥顶弯至与台座接触时的温度,即为被测材料的耐火度(记下2个参考高温标准锥的锥号,例如WZ168~170)。 标准锥称为测温锥,我国测温锥用“WZ”表示锥体弯倒温度的1/10进行标号;前苏联用“ПK”,英国、日本等国用“SK”等标号测温锥。系列锥号及相应温度见教材书后的附表2。 锥体弯倒时的液相含量约为70~80%,其粘度约为10~50Pa.s 。 5.1.3 影响材料耐火度的因素 (1)决定耐火材料耐火度的因素:主要是材料的化学矿物组成及其分布情况。 各种杂质成分特别是具有强熔剂作用的杂质成分,会严重降低制品的耐火度,因此提

相关主题