搜档网
当前位置:搜档网 › 过滤器示意图

过滤器示意图

过滤器示意图
过滤器示意图

2014至2015学年第2学期

jsp/servlet应用开发

课程编码:______________________________________ 总学时/周学时:86 / 6

开课时间:2015年3月9日第1周至第15周

授课年级、专业、班级:13级软件技术应用开发

使用教材:《JSP程序设计实例教程》

授课教师:黄锵

一个元素实际宽度=左边界+左边框+左填充+内容宽度+右填充+右边框+右边界

2.【项目实训】在08-03用户登录模块的基础上,对界面进行美化。

(1)功能区域划分

定义表单区域和图片、广告区域

1.2 Web容器在处理过滤器链时,将按过滤器的先后顺序对请求进行处理,

过滤器的过滤顺序取决于web.xml配置文件中的元素的排列顺序。在大多数情况下,过滤器链排列的顺序非常重要。也就是说,在应用A过滤器前使用B过滤器与在使用B过滤器前使用A过滤器所得到的结果是完全不同的。如果一个应用程序中使用了一个以上的过滤器,那么在配置元素的时候需要特别注意,必须按照预期的过滤顺序排列元素。

2. 过滤器对象的类结构

液压过滤器选型设计

液压过滤器选型设计指南 1 范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2 规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3 术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 3.2 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 3.3 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 3.4 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。 3.5 洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 3.6 壳体压降△P壳体 过滤器不装滤芯时的压降。 3.7 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。

4 工作原理与结构型式 4.1 过滤器的工作原理与结构 过滤器的典型结构见图1。 图1 液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2 过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。 图2 过滤器安装位置示意图 设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。 表1 不同过滤方式的优缺点

高效空气过滤器洁净区压差监测标准规程

高效空气过滤器洁净区压差监测标准规程 高效空气过滤器洁净区压差监测标准规程 一.目的: 建立高效空气过滤器洁净区压差监测标准规程,通过对HVAC系统回、排、新风风量调整,使洁净区压差控制符合国家标准高效空气过滤器的洁净度要求,并采取有效监控方法,确保洁净区压差处于良好受控状态,最终保证洁净区不受外来环境污染或洁净区之间的交叉污染。 二.范围: 本标准适用于精烘包30万级空气过滤器洁净区压差的调整、监控、纠偏处理。包括四层洁净区,分别为JK101、JK201、JK301、JK401。 三.责任者: 1、洁净区操作人员:负责对洁净区的压差进行日常监测、记录,并将每天测试结果、压差异常情况及时反馈到HVAC系统操作人员; 2、HVAC系统操作人员:负责对洁净区压差、空调机组初、中效过滤器压差进行监控和报告压差异常情况,并配合HVAC系统维护人员,对压差实行纠偏; 3、HVAC系统维护人员:负责对洁净区的压差进行测试与调整,并对洁净区压差超标时,实行纠偏处理; 4、洁净区管理人员:对本规程的实施负责,对洁净区压差实行预警,并确保压差计进行必要的校验; 4、质量科:负责按规程要求,实行监督管理。 四.程序: 1、压差调整原则:

1.1超高效空气过滤器洁净厂房必须保持一定的正压,使外界未经净化的空气不会进入净化区域,保证洁净度。通过对不同净化级别要求的净化区域,实行不同的压差控制,达到净化分区的作用; 1.2同一洁净级别的洁净区,由于生产工艺实际情况,部份房间会产生大量粉尘、有害气体、蒸汽等,在保证与外界环境呈相对正压的状态下,还应保证与相邻的洁净区呈相对负压,以防止粉尘、有害气体、蒸汽等扩散,污染其它洁净区域; 1.3洁净区压差控制,是通过房间的送风量与回风量或排风量之间的差值来保证的。但是,在任何情况下,房间的送风量绝对不能小于回风量或排风量,否则,会造成房间与外界环境成绝对负压; 1.4洁净区压差调整,就是在已确定的送风量状态下,通过调整回风量或排风量的大小,来确定洁净区与外界环境、洁净区内房间与房间、房间与洁净走廊之间的压差大小,确保符合设计要求; 1.5洁净区各洁净室维持正压差的压差风量,需要由室外新风补充。新风比应根据洁净区内总送风量、总回风量计算得出,并在压差调节前,先调节新风比符合设计要求。 2、压差控制标准: 2.1维生素B2原料药生产的精烘包洁净区,共分四层,每层分别由独立的HVAC系统进行送风,共四个HV AC系统; 2.2精烘包洁净区内是生产非无菌原料药,按洁净级别划分为30万级。洁净区内的生产操作,有部份房间产尘,如接料、混合、内包等。有部份房间产热,如精制。有部份房间产生气体,如稀释沉降、抽洗等。涉及到产尘、产热、产气的区域,安装有捕尘和强排设施; 2.3根据以上情况,确定精烘包洁净区压差控制标准如下: 2.3.1洁净区相对于室外的压差,应≥10Pa; 2.3.2洁净区内产尘、产热、产气等区域,相对于相邻的洁净区的压差,应保持相对负压。 3、测定调整前的准备工作 3.1HVAC系统的送风、回风、排风和新风调整平衡后,可进行压差调整; 3.2准备测量仪器。测量仪器的精度及量程应能满足测试需要,并进行校准,以保证测定数据的准确性。回风、排风的测量,采用热球式风速仪测量风速,并根据空气过滤器的截面积计算风量。压差的测量,采用便携式微压差计测量。 3.3准备设计参数表、送、回、排风平面图、风量测试与调整记录、压差测试记录等; 4、压差调整方法 4.1初测各房间的回风口的回风量、强排风量; 4.2按设计要求调整各回风口的回风量(具体的调整方法与HVAC系统空气平衡调节规程中,对送风量的调整方法相同); 4.3按设计要求,调整总回风阀,使总回风量符合设计要求; 4.4在送风、回风系统进行风量调整时,应同时测定与调整新风量,检查系统的新风比是否满足设计要求; 4.5总回风量符合设计要求后,采用压差计进行压差测定; 4.6在压差测定时,应保证洁净区各个房间门全部关闭,所有的强排、捕尘风机全部启动;

自清洗过滤器选型

Nanjing Bolv Industrial Equipment Co.,Ltd 自清洗过滤器选型介绍 Automatic Self-cleaning Filtration ● 连续过滤 ● 自动清洗 ● 自动反吹 ● 压干排渣 南京博滤工业设备有限公司 https://www.sodocs.net/doc/20893981.html, 南京博滤工业致力于工业流体过滤与分离!始终秉持技术优势与严谨,提供一站式过滤解决方案。服务于各工业领域所需的过滤器材、过滤设备、膜分离设备、自清洗过滤器以及滤材备件与技术支持。自清洗过滤器产品是一种新型高效过滤设备,有多种结构和工作形式,可采用不同形式的内置滤元,对液相物料中的不溶性固形物、悬浮物、颗粒物杂质进行高效拦截。当过滤过程到工艺设定时,可在线进行自清洗,在快速清洗完毕后,设备重新恢复到初始过滤状态,从而实现连续过滤运行,无需人工清除滤渣或更换滤元操作。 ASC 自清洗刮刀过滤器 ● 产品概述 ASC 系列刮除式自动过滤器是一款电驱动过滤设备,不仅适用于悬浮液的杂质分离过滤,尤其适用于对粘稠液体的杂质分离,可用于广泛的工业过滤环境。过滤器内置滤元通常采用金属楔形丝网,基于表面过滤原理(直接拦截)。成套设备由过滤系统、过滤容器和驱动组件三部分组成。 液体物料由过滤器上进口流入,透过滤元表面后,清液流向过滤器下出口,而固形物杂质被截留在滤元表面;当滤元表面截留到一定量的杂质时,电机或气缸驱动紧贴于滤元表面的刮刀开始运动,将杂质刮出。杂质随下行液体聚集到过滤器底部收集腔内,当聚集到一定量时,系统打开收集腔处的排污阀,含高浓度杂质的液体被排出。 设备的自清洗和排污程序可定时或按压差进行操作设定。如定时每隔2h 排污一次,排污时间为10min;或当压差高于设定值(50kPa)时开始排污,排污时间10min。具体根据工况工艺进行最佳设定。 ● 运行方式 -- 电机驱动内刮型ASC-I 电机-减速机驱动刮刀(条形刮板或刮刷)旋转运行,刮出滤元内表面杂质 -- 电机驱动外刮型ASC-O 电机-减速机驱动板式刮刀旋转运行,刮出滤元外表面杂质 -- 气缸驱动内刮型ASC-A 气缸驱动环式刮刀采用上下运行方式,刮出滤元内表面杂质 ● 技术参数 -- 壳体材质:SS304/SS316L/CS -- 滤元材质:SS304/SS316L;以及进口、国产件可选 -- 过滤精度:25-500μm(标准型) -- 内表面处理:80目抛光/食品级抛光 -- 外表面处理:喷砂/喷漆/食品级抛光 -- 设计压力:1.0Mpa 标配,其他压力可特殊设计 -- 设计温度:0-200℃

高效空气过滤器更换规程

副本编号:***制药厂

一.目的: 建立高效空气过滤器更换规程,以明确为生产环境提供洁净空气的高效空气过滤器技术要求、购买与验收、安装及检漏、洁净度测试,最终保证空气洁净度符合规定要求。 二.范围: 1、本标准适用于***制药厂精烘包车间药品生产过程中,用于为生产环境提供洁净空气的空气过滤系统中高效空气过滤器的更换规定,包括以下部位: 1.1HVAC系统(又叫空气净化系统); 1.2医药喷雾干燥塔进风过滤系统; 1.3医药气流粉碎进风过滤系统。 三.职责: 1、提取车间维修人员:按本标准要求,负责对高效空气过滤器的验收、存放,更换前的卫生清洁和更换,并配合检测人员检漏测试工作。 2、洁净区操作人员:按本标准要求,负责配合维修人员对洁净区卫生清洁和高效空气过滤器更换工作。 3、HVAC系统操作人员:负责按本标准要求,对高效空气过滤器安装前的空吹工作。 4、QC人员:负责对已安装的高效过滤器检漏、风量测试、洁净度检测,并出具测试记录。 5、医药工段长、提取车间主任:按本标准要求,负责对高效空气过滤器的购买计划申报,并组织验收、存放、安装、检漏、洁净度测试工作。 6、设备科:负责高效空气过滤器计划审核,并报公司设备部审批,记录收集与存档管理。 7、质量科:负责按本标准要求,对高效空气过滤器实行全过程监督管理。 四.引用文件 1、高效空气过滤器国家标准 GB13554-92 2、洁净厂房设计规范 GB50073-2001 3、洁净室施工及验收规范 JGJ71 90 五.定义: 1、高效空气过滤器(HEPA):由滤芯、框架和密封垫组成。在额定风量下,对粒径大于等于0.3um粒子的捕集效率在99.9%以上及气流阻力在250Pa以下的空气过滤器。 2、有分隔板过滤器:滤芯是按所需深度将滤料往返折叠制成,在被折叠的滤料之间靠波纹分隔板支撑着,形成空气通道的过滤器。 3、无分隔板过滤器:滤芯是按所需深度将滤料往返折叠制成,但在被折叠的滤料之间是用纸带(或线、线状粘结剂或其他支撑物)支撑着,形成空气通道的过滤器。 4、检漏试验:检查空气过滤器及其与安装框架连接部位等的密封性试验。 5、洁净度测试:即通过测定洁净环境内单位体积空气中含大于或等于某粒径的悬浮粒子

自清洗过滤器说明书

全自动自清洗过滤器 产品手册 上海徐净环保设备有限公司工作原理

ZQ 系列全自动自清洗过滤器是一种全自动在线自清洗水过滤器,过滤器网内安装一套不锈钢刷,或吮吸扫描器,或丝刷+吮吸组合,以上装置由减速电机带动旋转,在过滤器端盖上或底部安装一个电动排污阀。工作时,浊水由进水口进入,通过不锈钢楔形网过滤污物。净水由出水口流出,当污物聚集过多时,造成过滤不畅,腔体压力上升,当进出水的压力差值达到一定值时(预先设定),压差开关发出信号给控制器,控制器启动减速机电机,带动内部装置旋转刷掉或吮吸污物杂质。同时打开电动排污阀,排出污物,清洗时间约为1分钟,自清洗期间无需断流,排污压力损失不超过0.05MPa ,流量损失不超过1%。 设备分类 按控制方式,可分为手动、自动两种类型; 按清洗方式,可分为刷式、吮吸式、刷吸式三种类型; 按构造方式,可分为L 、Y 型两种类型。 技术参数 产品特点

1) 过滤精度默认为 100 微米,且从 100 至 3000 微米可选,过滤面积大,纳污量高, 用户可根据实际工况定制。 2)清洗方式简单,且清洗循环电子监控,可实现自动清洗排污。全自动自清洗过滤 器控制系统中的参数可调节。 3)设有电机过载保护,可有效保护电机。 4)具有在清洗排污时不间断供水、无需旁路的特点,且清洗时间短,排污耗水量少, 不超过总流量的 1%。 5)维修性强、安装拆卸简便易行。 6)与用户管线的连接方式为法兰连接,法兰采用国标法兰,通用性强。 Y 型自清洗过滤器技术参数及规格尺寸

L型自清洗过滤器技术参数及规格尺寸 型号说明: 如: Z Q(S/X)-150 Y (S/Z) S表示手动控制,Z表示自动控制 表示为Y型 表示进出口经:DN150mm 表示自清洗过滤器(S刷式,X吮吸式,SX刷+吮吸结合) 用户选型参考因素: ▲系统处理水量,设备进出口通径; ▲杂质过滤精度要求; ▲系统工况要求,如:动力源、管道压力、空间布局、温度; ▲过滤水体的水质状况; ▲对于含强酸、强碱或其他特殊水质等情况,应用户要求特殊定制;

高效空气过滤器更换标准

高效空气过滤器更换标准(整理版) 2011-05-14 高效空气过滤器的更换标准(整理版) 本文取自某公司的内部管理规范,仅供参考: 1.每年定期检测洁净区域的风量、以及其他环境参数,在测定的同时对高效进行检测。 2.主要检测风速、终阻力以及泄露率。 3.当高效空气过滤器的风量下降为额定风量的75%需要更换高效。 4.当终阻力为初阻力的2倍时需要进行更换。 5.当风速低于0.35m/s时需要进行更换 6.DOP pao等我司无法自测的项目可外请测试。 高效过滤器更换 相关解答如下: 1 高效过滤器的使用寿命影响因素太多(如生产车间的湿度、粉尘情况、空调系统的持续/间歇运行模式、厂房设施的维护保养情况等),笼统的制定更换周期确实难,GMP标准好像也没有具体要求。建议根据验证结果确定,HVAC属于

药品生产的关键系统,每年要进行一次再验证,根据测定的风速、高效过滤器的检漏等情况确定是否更换,不堵、不漏、不霉,尘埃粒子、沉降菌(浮游菌)监测符合要求则无需更换。 3 高效过滤器要下降到额定风量的75%更换的问题,没有哪个规定里有这一条,理论上你们先检测洁净度,洁净度不合格时才对高效进行扫描,风速也可以用风速仪测试,GMP规定高效风速小于0.35时高效必须更换,一般洁净室设计时的送风量是额定风量的60%-80%,另外一个参数就是阻力了,阻力测试比较麻烦,要到技术夹层将送风口钻一个孔,因为安装时不会每个高效送风口都装压差表,这样测试阻力大于初阻力2倍就要更换,如果设计时用484*484*220的过滤器,那设计时就有问题,按你们房间大小回风量算,也许320*320*220就够。 3 <洁净厂房设计规范>所规定的高效过滤器更换条件: 1) 气流速度降到最低限. 2) 阻力达初阻值2倍 3) 出现无法修补的渗漏. 4 关于第3条的解答:无论是高效还是初/中效,当投入使用,并在系统中调节符合我们使用要求时(如阀门开启量、送风机送风量回风量等参数确定)我们测定并记录下这是初中高效过滤器的各项参数,如风速、阻力,然后再下次检测时,我们在确定系统没有变化后,才再次检测他们的风速、阻力,从而才能判断是否更换空气过滤器。但现实中,我们很可能没有确定和固定过这些参数(如在每个阀门上标记其开启大小),而是看到压差不合格,就随意调节回风窗大小,有时甚至调节送风阀门的开启度,从而破坏了整个系统的平衡。有点扯远了,回来继续说高效,最实用的检测方法是1.扫描风速,确定高效没有堵,且风速均匀并达到需要值;2,然后进行泄露测试,确定没渗漏就基本上算检测合格了。这是目前国内比较认可的做法。但DOP价格很高,所以不太可能每半年测一次,另外还有堵塞高效的风险。所以才提出测阻力的方法。也就是在每个高效目端安装压差计,或者开测试孔。然后通过阻力变化来确定是否需要更换高效。并且可是实现自动化监控。这据说是国外目前的做法。他们这样做后,高效过滤器的使用寿命可以达到3年以上。而我们国内高效寿命基本上可能不到1年。原因除了高效本身质量外,还与我们使用方法、检测方法等关系极大。

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

高效过滤器的更换

高效空气过滤器的更换 过滤器, 空气 在下列任何一种情况下,应更换高效空气过滤器: 表10-6洁净室的净化空气监测频数 1、气流速度降到最低限度。即使更换初效、中效空气过滤器后,气流速度仍不 能增加。 2、高效空气过滤器的阻力达到初阻力的1.5倍~2倍。 3、高效空气过滤器出现无法修补的渗漏。 在更换净化空调系统中各级空气过滤器时应注意以下几个 问题: 6、末端过滤器更换后的综合性能检测 净化空调系统中热、湿处理设备、风机在与过滤器更换后,应起动系统风机使净化系统投入运行,并进行综合性能的检测,检测的主要内容为: 1)系统送、回风量、新风量、排风量的测定 系统送、回风量、新风量、排风量的测定,是在风机空气入口处 或风管上有风量测定孔处进行测定,并调整有关调节机构。 测定时所使用的仪器仪表一般为:毕托管和微压计或叶轮风速仪、热球 式风速仪等。

2)洁净室内气流速度及均匀性的测定 单向流洁净室,垂直单向流洁净室在高效过滤器下方10cm处(美国标准定为30cm)和距地坪80cm工作区水平平面上进行测定,测点间距 ≯2m,测点数不少于10个。 非单向流洁净室(即乱流洁净室)内气流速度,一般为测定送风口下方10cm处风速,测点数可根据送风口的大小适当布置即可(一般为1~5个 测点)。 3)室内空气温度和相对湿度的检测 (1)室内空气温度和相对湿度测定之前,净化空调系统应已连续运行至少24h,对于有恒温要求的场所,根据对温度和相对湿 度波动范围的要求,测定宜连续进行8h以上。每次测定间隔 不大于30min。 (2)根据温度和相对湿度的波动范围,应选择相应的具有足够精 度的仪表进行测定。 (3)室内测点一般布置在以下各处: a、送、回风口处 b、恒温工作区内具有代表性的地点 c、室中心 d、敏感元件处 所有测点宜在同一高度处,离地坪0.8m,也可以根据恒温区的大小,分别布置在离地不同高度的几个平面上,测点距外表面应大于0.5m。 4)室内气流流型的检测 对于室内气流流型的检测,实际是检查洁净室内的气流组织方式是否能满足洁净室洁净度的一个关键问题,如果洁净室内的气流流型不能满足气流组织的要求,则洁净室内的洁净度也不会或很难达到要求。

高效空气过滤器安装规范

高效空气过滤器安装规范 高效空气过滤器的安装应注意高效过滤器的安装密封,密封方法有接触填料密封、液槽刀口密封和负压泄露密封。相关标准: o《洁净手术部和医用气体设计与安装》 o GB/T13554《高效空气过滤器》 o GB/T6165《高效空气过滤器性能试验方法、透过率和阻力》 o GB50073《洁净厂房设计规范》 o GB50333《医院洁净手术部建筑技术规范》 一、高效空气过滤器产品特性及用途 普通高效空气过滤器是洁净系统中的一种空气过滤设备,它能对空气中粒径为0.3μm的微粒过滤效率达到99.99% 以上。主要应用于电子、医药、食品、精密仪器等高洁净度的行业。它的运输、安装等都必须严格按本要求进行,以确保过滤器能正确、合理使用。 二、高效空气过滤器搬运与贮存 1.在搬运过程中,必须按箱体的对角线方向搬运。搬运人要认真小心, 防止搬运时过滤器滑动,使滤网损坏。 2.不能有超过20kg以上的外力作用在过滤器上。在搬运时,双手及 其它物体绝对不能碰撞滤料,如不小心触及滤料,即使目视无损伤,也应再次扫描。 3.贮存地点应是温、湿差度小,清洁、干燥且通风系统良好的环境。

4.贮存期限超过三年以上的应进行重新测试。 三、高效空气过滤器安装与调整 1.高效空气过滤器应安装在常温、常压、常湿的环境中。如果工作条 件恶劣,必然使过滤器寿命缩短,甚至安装后不能正常工作。安装前应先检测过滤器外观有无变形、破损、滤料有无损伤,如发现以上情况应及时与销售公司联系。 2.安装过程中一定要注意过滤器与安装框架(或箱体)之间的密封性。 3.更换过滤器时必须把静压箱或送风管内壁四周彻底擦拭干净,以免 箱壁上的铁锈和尘粒等落在过滤器上,造成滤料破损。 4.安装时务必注意过滤器的气流方向,可按过滤器标签上风向标识“” 安装。箭头方向为过滤器出风面。 5.安装时用手托住四周边框,慢慢移进送风口内,不能用手和头顶住 滤料,以免滤料断裂,影响过滤效率(如图)安装时用手托住四周边框,慢慢移进送风口内,不能用手和头顶住滤料,以免滤料断裂,影响过滤效率. 四、高效空气过滤器使用寿命与维修 a.一般情况下,当过滤器的终阻力为初阻力的2倍时,应进行更换。 b.平时应定期对洁净区域进行洁净度检测,所检测的数据应满足洁净 厂房的设计要求。如达不到要求时,应对过滤器进行扫描以及对系统的密封性进行检查。如过滤器泄漏,则应补胶或更换。系统长期停用后再次使用时,应对洁净室进行扫描。

自清洗过滤器工作原理

自清洗过滤器有多种形式:刷式,吸污式,刮盘式,转臂式 自清洗过滤器工作原理(刷式) 自清洗过滤器由电机、电控箱、控制管路(包括控制阀和压差变送器)、主管组件、滤芯组件、316L不锈钢刷、框架组件、传动轴、进出口连接法兰等主要零部件组成。电控箱和控制管路构成过滤机的控制部分,用于实现自动清洗排污过程。 待处理的水由入水口进入机体,水中的杂质沉积在不锈钢滤网上,由此产生压差。通过压差开关监测进出水口压差变化,当压差达到设定值时,电控器给水力控制阀、驱动电机信号,引发下列动作:电动机带动刷子旋转,对滤芯进行清洗,同时控制阀打开进行排污,整个清洗过程只需持续数十秒钟,当清洗结束时,关闭控制阀,电机停止转动,系统恢复至其初始状态,开始进入下一个过滤工序。设备安装后,由技术人员进行调试,设定过滤时间和清洗转换时间,待处理的水由入水口进入机体,过滤器开始正常工作,当达到预设清洗时间时,电控器给水力控制阀、驱动电机信号,引发下列动作:电动机带动刷子旋转,对滤芯进行清洗,同时控制阀打开进行排污,整个清洗过程只需持续数十秒钟,当清洗结束时,关闭控制阀,电机停止转动,系统恢复至其初始状态,开始进入下一个过滤工序。

水由进水口进入过滤器,首先经过粗滤芯组件滤掉较大颗粒的杂质,然后到达细滤网,通过细滤网滤除细小颗粒的杂质后,清水由出水口排出。在过滤过程中,细滤网的内层杂质逐渐堆积,它的内外两侧就形成了一个压差。当这个压差达到预设值时,过滤器将开始自动清洗过程:排污阀打开,主管组件的水力马达室和水力缸释放压力并将水排出;水力马达室及吸污管内的压力大幅下降,由于负压作用,通过吸嘴吸取细滤网内壁的污物,由水力马达流入水力马达室,由排污阀排出,形成一个吸污过程。当水流经过滤器水力马达时,带动吸污管进行旋转,由水力缸活塞带动吸污管作轴向运动,吸污器组件通过轴向运动与旋转运动的结合将整个滤网内表面完全清洗干净。整个清洗过程将持续数十秒。排污阀在清洗结束时关闭,增加的水压会使水力缸活塞回到其初始位置,过滤器开始准备下一个冲洗周期。在清洗过程中,过滤机正常的过滤工作不间断。

过滤器选择

过滤器选择系列——恒压载量测试实验Vmax(一) 从本期开始,我们将会逐步介绍如何选择符合工艺要求的过滤器。本期的内容是介绍最常用的恒压载量测试实验Vmax ,该实验是一种加速实验。它在很短的时间内用小量体积料液即可确定过滤器的载量,并根据该载量确定在要求的工艺时间内完成一定规模料液过滤的过滤器配置。因此,该实验可以在最短的时间内用最少的成本(包括滤器和料液),高效的完成预过滤和终端过滤器的配置。但该实验方法仅适用于膜过滤器和表面过滤器,不适用于以吸附机理为主的深层过滤器的放大。 通常对于恒定流速的过滤,存在两种堵塞模型(图一,见下期)。一种是压力随时间呈线性上升,我们称之为滤饼过滤。这种堵塞模型通常发生在料液中存在刚性颗粒时,在滤膜上方会形成一个滤饼层,这种堵塞模型不会引起滤膜的完全堵塞,只要提高过滤压力就会不断有滤液滤出。另一种堵塞模型是逐渐堵塞模型,对于这种堵塞情况,会引起滤膜的完全堵塞,在后期增加压力不能使更多滤液滤出。在绝大多数的情况下,特别是对于含生物大分子的料液,膜过滤器和表面过滤器均符合逐渐堵塞模型。对于不符合逐渐堵塞模型的工艺,需要用另一种载量测试实验进行(Pmax 恒流实验)。

图1. 两种堵塞模式 下面以一个实际例子来说明如何进行滤膜面积的确定 某未经充分预过滤含细小颗粒的原料液直接进行除菌过滤,批量为1000L,要求的工艺时间为2 小时。我们用Millipore Express SHF 0.2μm 膜片进行小规模实验,用时间和t/V 作图,可以做出如下图线。

我们可以从该直线求出Vmax 和Qi Vmax = 1/0.0008 =1250ml 由于该滤膜面积为13.8cm2,所以单位面积Vmax 为1.25L/0.00138 m2= 905.8 L/m2 Qi = 1/0.0056 = 178.6ml/min = 10.7 L/h 单位面积Qi 为10.7L/h / 0.00138 m2 = 7765.2 LMH 因此,在无时间要求时,所需Millipore Express SHF 最小面积为 Amin = Vb/Vmax = 1000L / 905.8 L/ m2= 1.10m2 要求在2 小时内完成过滤,所需Millipore Express SHF 最小面积为 Amin = Vb/Vmax + Vb/(QiTb) = 1000/905.8 + 1000/(7765.2X2) = 1.17m2 在通常情况下,需要在最小面积基础上设定一个1.2~1.5 左右的安全系数。所以在该工艺中一个30”的Millipore Express SHF 滤芯过滤器(实际过滤面积为1.62),可以满足过滤工艺的要求,安全系数为1.38。 过滤器选择系列——恒压载量测试实验Vmax(五) 下面以一个实际例子来说明如何进行滤膜面积的确定。 某未经充分预过滤含细小颗粒的原料液直接进行除菌过滤,批量为1000L,要求的工艺时间为2 小时。我们用Millipore Express SHF 0.2μm 膜片进行小规模实验,用时间和t/V 作图,可以做出如下图线。 我们可以从该直线求出Vmax 和Qi Vmax = 1/0.0008 =1250ml 由于该滤膜面积为13.8cm2,所以单位面积Vmax 为 1.25L/0.00138 m2= 905.8 L/m2

环保工程中的自动清洗过滤器知识点

自清洗过滤器的换代产品-----双级智控压差过滤机,是作为传统压差过滤器、自清洗过滤器的替代产品,具有“真正的全自动高压反冲洗、无需人工干预;冲洗无死角;过滤精度2um-200um ;316L不锈钢烧结滤网不需更换终身使用”等显著优点,详细介绍如下:产品相关类别:水净化设备、水过滤设备、水处理设备、自清洗过滤器、全自动反冲洗过滤器、压差过滤器、水过滤器、高精度过滤器。可作为多介质过滤、盘式过滤器、砂滤器、砂滤池的替代产品。 应用领域 1.生活供水、生产工艺给水过滤。 2.超滤、反渗透、软化、离子交换等预处理。 3.海珍品育苗用海水净化;工厂化海水及淡水养殖用水过滤。 4.油田回注水过滤,.循环冷却水过滤。 6.中水回用、废水深度处理过滤。 7.钢铁、石油、化工、造纸、汽车、食品、冶金等行业循环水过滤。 8.地下水、地表水除浊净化。 9.中央空调、锅炉回水过滤。 10.对水质有一定要求的设备给水过滤。 11.泳池、景观水质净化。 12.市政、绿地喷洒、浇灌,农业喷灌、滴灌用水过滤。 技术特点 1.自动清洗过滤器过滤精度高,出水水质稳定。 2.过自身的检索和应变功能,实现自动反冲洗,可应对不稳定的水质波动,无需人干预。3自动清洗过滤器控制系统反应灵敏,运行精确,具有压差和时间双重设定功能,可以根据不同水源和过滤精度灵活调整反洗压差或时间设定值。 4. 清洗高效、彻底,滤网可完全恢复初始状态,因而可终身使用,无需更换。 5自动清洗过滤器水过滤设备反冲洗的同时不中断正常产水,连续运行,稳定可靠。 6.反冲洗历时短,反洗水耗仅为正常产水量的0.001~0.002%,省水、省电,节约能源 7.自动清洗过滤器结构设计紧凑合理,占地面积小,安装移动灵活方便。 8.设备易损件少,无耗材,运行维护费用低,操作管理简单。 9.自动清洗过滤器应用领域广,可适用不同原水水质和用水要求 技术创新点 1.自动清洗过滤器首次采用316L不锈钢烧结滤网,强度大、精度高、耐腐蚀,最高过滤精度可达2微米 2.采用专利技术的内部机械结构,实现了真正意义上的高压反冲洗功能,滤网外部高压 反洗与内部自吸排污相结合,可轻松彻底地清除滤网截留的杂质,清洗无死角,通量无衰减,保障了过滤效率和长久的使用寿命。 3.自动清洗过滤器清洗压差信号采用压差变送器传递,克服了压差开关误差较大的缺点。 4.自动清洗过滤器传动装置采用内装式,与过流部件密封隔离,并设计有脱扣保护功能,防止电机或机 体部件损坏,运行稳定可靠。 5.排污口依靠水力密封,无需电磁阀或其它易损密封件,简单实用。 6.自动清洗过滤器进出水口法兰设计为活动结构,可任意旋转调节螺孔方向,方便现场安装。 7.内部防腐采用特殊无毒防腐材料,具有良好的耐候性、耐酸碱、耐盐雾、防霉等性能 8.过滤器电器采用集成控制模式,并可以实现远程控制。

过滤器选型标准

过滤器选型标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1. 过滤器(英文filter)介绍 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行 SH/T3411或HGT 21637标准执行。 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选形时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压将曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式 篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本

自清洗过滤器(立式刷式)技术性能说明

自清洗过滤器 技术性能说明 一、运行原理 该机为立式,安装于管道上,须过滤的水自入水口进入过滤器。在过滤过程中,滤网内侧表面逐渐积累水中的杂质,形成过滤杂质层,由于杂质层堆积在滤网的内侧,因此在滤网的内、外两侧就形成了一个压差。当滤网内外的这个压差(△P)达到差压控制器的预设值时,自动清洗功能被启动,此间系统的供水不中断:此时电力驱动单元开始工作,驱动清污器清扫滤网表面,同时排污阀打开,释放压力并将污水由排污阀排出。滤网内表面完全清洗干净。整个自清洗过程约1-2分钟。排污阀在一个自清洗周期结束时关闭,水力驱动单元停止工作。过滤器开始准备下一个自清洗周期。 在整个自清洗过程中,过滤后的净水由出水口持续流出。电子控制系统通过差压控制器来控制自清洗过程。差压控制器将压差信号送至电子控制单元,电子控制单元通过电磁阀来控制排污阀的开启和关闭。(电磁阀与排污阀组成排污总成)如果一次自清洗周期后,压差并无改变,第二次自清洗过程将会在30秒后进行。电子控制系统加装手动清洗按扭。 二、产品结构、特点 科益达自动清洗过滤器,1、滤网、3、进水口4、出水口5、

排污阀6、壳体、7、清污总成、8、电驱动总成、9、PLC控制器 产品技术特点: 1、由于采用先进独特的以色列滤网结构,过滤水效率高; 2、自动清洗过滤网,清洗时主管道供水不间断,反冲水耗量小; 3、智能控制、数字显示运行、操作方便;主要部件为进口件整机性能更可靠; 4、采用立式安装,更易于安装,并使维护所需时间、人工及费用更低。

三、产品技术性能参数 KLDS-12全自动自清洗过滤器具体性能参数如下: 1、流量:600m3/h 2、出入口管径:DN300 3、最大工作压力: 2.5MPa 4、最小工作压力:0.15MPa 5、过滤精度:0.5mm 6、过滤器清洁时的压力损失:<0.015MPa 7、最高工作水温:0-150℃ 8、工作电源电压:交流380V; 9、驱动方式:电机驱动 10、额定功率:0.75KW 11、反洗形式: 刷式 12、过滤器外壳材质:碳钢Q235A 13、表面防腐方式: 内外表面喷塑处理(蓝色) 14、滤网材质: 316L三角形不锈钢网 15、反洗时间:10秒~300秒(可以秒为单位任意设定) 16、反洗间隔时间:0-99小时(可以分钟为单位任意设定) 17、安装形式:立式 18、控制方式:PLC控制 四、重要零部件的质量:

液压过滤器的选型误区

液压过滤器的选型误区 引言 液压过滤器作为液压系统污染控制的主要元件,其设计选型是否合理,日常使用(维护)是否正确直接关系到系统的安全及可靠性。而在实际应用中,许多用户对过滤器选型及使用还存在着诸多误区,不加以纠正将会影响液压系统的正常可靠工作。 1液压系统中过滤器的选型误区 1.1误区一:选择高精度吸油过滤器既能有效的保护泵,又能保证系统的清洁度 由于油液中的颗粒污染物会加剧泵的磨损从而影响泵的使用性能和寿命,大颗粒污染物可能还会卡死泵,严重影响系统的安全、可靠性。因此,有些用户就选择了高精度吸油过滤器,认为其既能保护泵又能保证系统的清洁度。但是,高精度吸油过滤器由于承受了过多污染物而易堵塞,导致泵吸油不畅,以致吸空,加速泵的磨损,严重影响系统安全。所以,吸油过滤器的压降要进行严格控制。一般液压系统可以考虑安装低精度吸油过滤器来保护泵,并且在对污染物敏感的元件前安装过滤器加以保护,以控制颗粒污染对其影响。为了最有效的截获回路中因元件磨损或外界侵入的污染,建议安装回油过滤器加以控制,以提高整个系统的清洁度。同时在系统运转前应对管道、油箱进行彻底清洗,以保证其油液污染度。这样整个系统的油液污染度基本上都得到了控制,既保护了泵也保护了整个系统。

1.2误区二:过滤器的额定(公称)流量就是系统的实际流量 过滤器的额定流量是油液黏度在32cst的时候,油液在规定原始阻力下的清洁滤芯所通过的流量。但在实际应用中,由于使用介质不同和系统的温度不同,油液黏度也会随时变化。假如按额定流量与实际流量1:1选用过滤器,在系统油液黏度稍大时,油液通过过滤器的阻力将增大(如32号液压油0℃时其黏度约为420cst),甚至达到过滤器的污染堵塞发讯器发讯值,滤芯被认为堵塞。其次,过滤器的滤芯是属于易损件,工作中逐渐被污染,滤材实际有效过滤面积不断的减少,油液通过过滤器的阻力很快达到污染堵塞发讯器发讯值。这样,过滤器需频繁的清洗或更换滤芯,加大用户的使用成本。 目前,国内各过滤器生产商都规定了其生产的过滤器的额定流量,笔者根据以往经验和众多客户使用情况,系统使用油液为一般液压油时,建议过滤器在选型时按以下流量的倍数选用:①吸油、回油过滤器的额定流量是系统实际流量的3倍以上;②管路过滤器的额定流量是系统实际流量的2.5倍以上。若使用油液非一般液压油或高黏度液压油时,请咨询各生产厂家选型。 1.3误区三:过滤器选用的精度越高越好 液压系统中固体污染是造成液压系统故障的主要原因,所以就选用高精度过滤器来控制污染。其实不然,这样不但增加了系统的制造成本,还缩短了滤芯的使用寿命。那如何合理的选择过滤器的精度

ACF自清洗过滤器描述

ACF自清洗过滤器描述ACF-DSLA系列自清洗过滤器: 驱动方式:380V/50HZ电动PLC控制 过滤方式:316L楔形网网式拦截、单级过滤 安装方式:管道立式安装、下进侧出侧排污 清洗方式:刷式在线清洗,供水不接断 控制方式:全自动时间、压差、手动控制,可远程监控单台处理量:10—2350m3/h 工作压力:0.1MPa≥1.6MPa 压力损失:≤0.018MPa 水头损失:≤总过水量的1% 最高温度:≤95℃ 过滤精度:100—3000微米 清洗时间:10—60秒/周期清洗 ACF-DSLB系列自清洗过滤器: 驱动方式:380V/50HZ电动PLC控制 过滤方式:316L楔形网网式拦截、单级过滤 安装方式:管道立式安装、侧进侧出侧排污 清洗方式:刷式在线清洗,供水不接断 控制方式:全自动时间、压差、手动控制,可远程监控单台处理量:10—2350m3/h 工作压力:0.1MPa≥1.6MPa 压力损失:≤0.018MPa 水头损失:≤总过水量的1% 最高温度:≤95℃ 过滤精度:100—3000微米 清洗时间:10—60秒/周期清洗 ACF-DSLC系列自清洗过滤器: 驱动方式:380V/50HZ电动PLC控制 过滤方式:316L楔形网网式拦截、单级过滤 安装方式:管道立式安装、同侧进出下排污 清洗方式:刷式在线清洗,供水不接断 控制方式:全自动时间、压差、手动控制,可远程监控单台处理量:10—235m3/h 工作压力:0.1MPa≥1.6MPa 压力损失:≤0.018MPa 水头损失:≤总过水量的1% 最高温度:≤95℃ 过滤精度:100—3000微米 清洗时间:10—60秒/周期清洗

Catia使用过滤器选择对象

Catia使用过滤器选择对象 作者:daomi发布时间:2015-03-19 浏览: 3686 概述 本节介绍使用过滤器选择对象的相关知识。 目录 1.用户过滤器中的选项 2.特征元素过滤器 3.几何元素过滤器应用 4.使用过滤器注意事项 1.什么是用户选择过滤器? 用户选择过滤器是用来快速选择对象的,使用用户选择过滤器可以根据图形的某些特性来进行选择,比如可以选择曲线图形、曲面图形等。 2.用户选择过滤器界面如下: 3.用户选择过滤器中选项: ㈠点过滤器是过滤点的。 ㈡曲线过滤器是过滤曲线的 ㈢曲面过滤器是用来过滤曲面的 ㈣体积过滤器是过滤体积的

㈤特征元素过滤器可以选择整个特征,不管他是草图、产品、凸台、结合等。 ㈥几何元素过滤器允许选择特征的子元素,例如面、边线或者顶点。 ㈦工作支持面选择状态用于从网格中选择元素。 ㈧快速选择是用于快速的选择几何图形 ㈨相交边线激活可用于创建相交边线。 2.特征元素过滤器 1.鼠标左键单击特征元素过滤器,激活特征元素过滤器。 用法: ㈠激活此过滤器之后,将鼠标指向图形时,出现以下标志,选择之后出现沙漏来过滤元素。 ㈡如果是激活的其他过滤器,鼠标指向图形时,将会出现以下标志,选择之后出现沙漏进行过滤元素。 ㈢如果是禁止选择的话,无论是什么过滤器都会出现以下标志 3.几何元素过滤器应用 1.激活特征元素过滤器。 2.打开软件创建两个矩形,如下图所示:

3.在曲面工具栏中单击拉伸命令,出现拉伸定义对话框。 4.选择草图1作为轮廓,XY平面作为方向。 5.单击确定创建曲面。

6.在曲面工具栏中单击偏移命令。出现偏移曲面定义对话框: 7.在选择偏移曲面之前,先激活几何元素过滤器,激活几何元素过滤器之后,特征元素过滤器就会关闭。然后再选择要偏移的曲面。偏移距离是20,点击确定。 先选择过滤器按钮再选择偏移命令,最后选择面。

高效空气过滤器检测方法介绍

高效过滤器试验方法 1)钠焰法Sodium Flame 源于英国,中国通行,欧洲部分国家于20世纪70-90年代实行。 试验尘源为单分散相氯化钠盐雾。“量”为含盐雾时氢气火焰特征光的光强。主要测试仪器为光度计。 原理(GB/T6165-2008):用雾化干燥的方法人工发生氯化钠气溶胶,气溶胶颗粒的质量中值直径约为0.5μm。将过滤器上下游的氯化钠气溶胶采集到燃烧器中并在氯化钠火焰下燃烧,将燃烧产生的钠焰光转变为电流信号并由光电测量仪检测,电流值代表了氯化钠气溶胶的质量浓度,用测定的电流值即可求出过滤器的过滤效率。随着扫描法的普及,欧洲已经不再使用钠焰法。 相关标准:英国BS3928-1969,欧洲Eurovent 4/4,我国有GB/T6165-2008。 2) 油雾法Oil Mist 原西德,原苏联,和中国采用过该方法。 尘源为油雾。“量”为含油雾空气的浊度。仪器为浊度计。以气样的浊度差别来判定过滤器对油雾颗粒的过滤效率。 原理(GB/T6165-2008):在规定的试验条件下,用汽轮机油通过汽化—冷凝式油汽发生炉人工发生油雾气溶胶,气溶胶粒子的质量平均直径为0.28μm~0.34μm。使经过与空气充分混合的油雾气溶胶通过被测过滤器,分别采集过滤器上下游的气溶胶,通过油雾仪(或浊度计)测量其散躲光强度。散射光强度的大小与气溶胶浓度成正比,由此即可求出过滤器的过滤效率。 德国规定用石蜡油,油雾粒径为0.3~0.5mm。中国标准规定的油雾平均重量直径为0.28~0.34mm,对油的种类未做具体规定。 油雾法在德国本土已经成为历史,德国于1993年率先搞出了计数扫描法的国家标准,欧洲标准EN1882就是以德国计数扫描法标准为蓝本制定的。 原苏联帮中国搞过滤器时使用的是油雾法,虽然中国标准规定可以用油雾法,但国内厂家更愿意使用同一标准规定的另一种钠焰法,只有部分生产滤材的厂家及少量军工单位依在测量过滤材料时仍使用油雾法。 相关标准:我国有GB/T6165-2008。德国DIN24184-1990 3) DOP法 源于美国,曾在国际通行。 试验尘源为0.3μm单分散相DOP(邻苯二甲酸二辛脂,一种塑料工业常用增塑剂)液滴。“量”为含DOP空气的浑浊程度。测量粉尘的仪器为光度计(photometer)。以气样的浊度差别来判定过滤器对DOP颗粒的过滤效率。 对DOP液体加热成蒸汽,蒸汽在特定条件下冷凝成0.3μm左右的微小液滴,雾状DOP 进入风道。测量过滤器前后气样的浊度,并由此判断过滤器对0.3μm粉尘的过滤效率。 DOP法已经有50多年的历史,这种方法曾经是国际上测量高效过滤器最常用的方法。早期,人们认为过滤器对0.3μm的粉尘最难过滤,因此规定使用0.3μm粉尘测量高效过滤器。 DOP法也称为气胶光度计测试法,是最早期的测试方式,但是因为效果非常好,到今天仍旧沿用。气胶光度计(Aerosol Photometer)是微粒计数器的一种,也是使用雷射科技,但是它在扫描空气样本的投料之后,所给的是微粒的总体强度,不是微粒数目。DOP是一种油性化学物质,加压或加热雾化之后,可以产生次微米等级的微粒,可用来仿真无尘室的微粒,因此被当成验证微粒。泄漏的定义是泄漏出上游浓度万分之一,由于气胶光度计可以

相关主题