搜档网
当前位置:搜档网 › 液晶的电光特性实验报告含思考题

液晶的电光特性实验报告含思考题

液晶的电光特性实验报告含思考题
液晶的电光特性实验报告含思考题

西安交通大学实验报告

第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日

专业班号______组别_______交报告日期:年月日

姓名__Bigger__学号__报告退发:(订正、重做)

同组者__________教师审批签字:

实验名称:液晶的电光特性

一、实验目的

1)了解液晶的特性和基本工作原理;

2)掌握一些特性的常用测试方法;

3)了解液晶的应用和局限。

二、实验仪器

激光器,偏振片,液晶屏,光电转换器,光具座等。

三、实验原理

液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃,

液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向

列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆

甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会

有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取

向夹角。

对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋

于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于

液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶

分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出

各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。

从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。

为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。

图1液晶分子的扭曲排列变化

若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min 为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。

图2 液晶电光效应关系图

液晶对变化的外界电场的响应速度是液晶产品的一个十分重要的参数。一般来说液晶的响应速度是比较低的。可以用上升沿时间和下降沿时间来衡液晶对外界驱动信号的响应速度情况,定义如图3所示。

图3液晶屏响应时间

液晶光开关的视角特性表示对比度与视角的关系。对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。

图4表示了某种液晶视角特性的理论计算结果。图4中,用与原点的距离表示垂直视角(入射光线方向与液晶屏法线方向的夹角)的大小。

图中3个同心圆分别表示垂直视角为30,60和90度。90度同心圆外面标注的数字表示水平视角(入射光线在液晶屏上的投影与0度方向之间的夹角)的大小。图3中的闭合曲线为不同对比度时的等对比度曲线。

由图4可以看出,液晶的对比度与垂直与水平视角都有关,而且具有非对称性。若我们把具有图4所示视角特性的液晶开关逆时针旋转,以220度方向向下,并由多个显示开关组成液晶显示屏。则该液晶显示屏的左右视角特性对称,在左,

右和俯视3个方向,垂直视角接近60度时对比度为5,观看效果较好。在仰视方向对比度随着垂直视角的加大迅速降低,观看效果差。

图4 液晶的视角特性

实验光路图:

图5液晶电光效应实验示意图

四、实验内容与要求

1、液晶电光特性测量

1)将激光器、液晶屏及光电池插入机箱对应插孔内,打开机箱电源。

2)取掉液晶屏,调节激光器高度使激光器光斑入射到光电池入射孔内。

3)调节激光通过起偏器后进入光电转换器后的光电流尽可能大;再插入检偏器,旋转检偏器使激光光斑变到最暗状态,此时两偏振片振动方向角度差应为90°,将液晶屏重新放入对应插孔,可以发现此时光电流增加。

4)调节频率旋钮,逆时针旋转到最小,此时频率为最大值,入射到激光器的光斑无闪烁现象,幅值电压表头及光电流表头数字稳定。

5)顺时针旋转幅值旋钮,缓缓增大输出方波信号的幅值,观察光电流表的数据,记录下幅值对应光电流值,填入表格1,并绘制幅值与光电流关系图及透过率与幅值关系图(透过率在幅值为0时为100%),求出关断电压及阈值电压。(注意调节幅值过程中,0~2V每次调节0.2V,2V~5V每次调节0.1V)

表1

根据幅值和光电流值作图,从图形找到90%透过率时驱动电压幅值(阈值电压)和10%透过率时驱动电压幅值(关断电压)。

2、液晶屏视角特性测量

1)重复实验一1、2、3、4实验部分。

2)调节幅值电压0V,旋转液晶屏±80°,每隔20°测量一次

3)调节幅值电压为2V,重复上面测量过程。

五、实验数据记录与处理

1、液晶电光特性测量

1)数据记录表格:

2)液晶电光效应关系图:

通过图像可知,90%透过率时驱动电压幅值(阈值电压)为:2.19V;10%透过率时驱动电压幅值(关断电压)为:3.04V。

2、液晶屏视角特性测量

1)数据记录表格:

2)图像表示:

六、思考题

1)详细叙述饱和电压与阈值电压的物理意义及作用:

阈值电压(Threshold voltage):通常将传输特性曲线中输出电压随输入电压改变而急剧变化转折区的中点对应的输入电压称为阈值电压.在描述不同的器件时具有不同的参数。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了3获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。液晶的电光特性曲线越陡,即阈值电压与饱和电压的差值越小,由液晶开关单元构成的显示器件允许的驱动路数就越多。2)液晶屏视角特性测量有何意义:

液晶屏视角特性测量意义在于探索假定液晶分子没有固定的电极。但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个

方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。

3)查找相关资料,了解液晶的特性及分类,以及其他材料在作为显示器件中的应用情况和各自的优缺点:

液晶平面显示器的技术发展趋于成熟阶段,而且其应用面也随着信息、通讯和网络技术的进步而被大量地运用,例如笔记本电脑、移动电话、个人助理机和携带式消费性产品等。较难实现之广视野角、高画质化和高速化等问题,均因新的材料、新的组合设计和新的驱动方式之发展,而实现了轻薄短小和替代性映像管监视器和电视的功能。

液晶材料 (Liquid Crystal)在液晶平面显示器的组成结构上所担任的角色是相当地重要,虽然其种类有数万种,但真正使用的也仅有数十多种。液晶状态被喻为是自然界中物质的第四状态,而有别于固态、液态和气态的物质三大状态,液晶分子是一种具有光学异方向性和流动性之结晶性液体,是一种机能性材料。液晶依其分子排列方式,分为向列型(Nematic)、距列型(Smectic)、胆固醇型(Cholesteric)、圆盘型(Disotic)*若依对外在因素的影响,有溶致型的(Lyotropic)、热致型(Thermotropic);若依分子量来分,有低分子型和高分子型;若依温度的因素,有互变转换型(Enantiotropic)、单变转换型(Monotropic);在高分子的液晶有主链型和侧链型。液晶的发现最早是在19世纪,经由多年的研究才成功的开发出液晶平面显示器的应用。

向列型液晶显示法的机制有利用动态散射模式的显示法、分子轴旋转模式的显示法、扭曲构造模式的显示法、主体和客体效应模式的显示法和热汪学效应的显示法等。其中以动态散射模式的显示法为主流,应用的领域有输入表示装置、非破坏检查和超音波等。当加大电压时,则程现安定循环流的条纹模样,此一条纹模样,此一条纹模样在数伏特的电压范围内程现静止安定状态,在更高电压时,安定循环流变成乱流而使区块开始激烈的摇动,其静止状态称为韦廉斯区块(Williams Domain),而摇动状态称之为动态散射效应。

近年来液晶材料的新用途,也发展到摩擦、摩耗和润滑材料等方面应用,液晶材料的一项有趣的物理性质-电粘性效应(Electrorheological effect,ER),

乃是在外加电场的作用下,而其粘度值产生变化,具有此一特性的物质称之为电粘性流体。液晶的分子结构是多样化的棒状或碟盘状之构造体,而且也不断有新的功能性液晶材料分子被合成。例如复数的非液晶性的分子因氢结合之聚合效应,而产生有液晶特性的所谓氢结合型液晶,同时不同性质的金属错合物液晶分子结构的新物值质也被期待开发出来。

七、实验误差

液晶受环境影响较大,温度湿度以及外界光照条件均有可能对液晶光电效应测量产生影响;

在旋转液晶屏的时候,是靠人眼进行读数的,这一过程中可能因为视角问题以及人为因素产生误差;

实验中发现旋转液晶屏,在对称的位置上其光电流并不相等,可能存在光具座不够水平,高度不严格统一等问题引起的误差。

八、总结

本次“液晶电光效应”实验中我们真正接触到了生活中常见的液晶屏,以及进一步研究了液晶屏的一些性质,研究了液晶光开关的电光特性,了解了阀值电压和关断电压的概念,对液晶品质的优劣有了一定的认识。

同时还通过对液晶光开关水平视角特性和垂直视角特性进行了测量,让我们通过对不同角度液晶屏对比度的分析,从原理上了解了液晶屏的最佳观看角度所蕴含的科学道理。

液晶电光效应实验报告

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理,这样,液晶分子在透明电极表面就会

躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度定变化。 2.液晶光开关的电光特性 对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。 3.液晶光开关的时间响应特性 加上驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果

液晶的电光特性

液晶的电光特性 液晶是一种即具有液体的流动性又具有类似于晶体的各向异性的特殊物质(材料),它是在1888年内奥地利植物学家首先发现的。在我们的日常生活中,适当浓度的肥皂水溶液就是一种液晶。目前人们发现、合成的液晶材料已近十万种之多,有使用价值的也有4-5千种。随着液晶在平板显示器等领域的应用和不断发展,以及市场的巨大需求。人们对它的研究也进入了一个空前的状态。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。 大多数液晶材料都是由有机化合物构成的。这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为量级,并按一定规律排列。根据排列的方式不同,液晶一般被分为三大类1)近晶相液晶,结构大致如图1,图1 图2 图3 这种液晶的结构特点是:分子分层排列,每一层内的分子长轴相互平衡。且垂直或倾斜于层面。2、向列相液晶,结构如图2。这种液晶的结构特点是:分子的位置比较杂乱,不再分层排列。但各分子的长轴方向仍大致相同,光学性质上有点像单轴晶体。3、胆甾相液晶,结构大致如图3。分子也是分屏排列,每一层内的分子长轴方向基本相同。并平行于分层面,但相邻的两个层中分子长轴的方向逐渐转过一个角度,总体来看分子长轴方向呈现一

种螺旋结构。 以上的液晶特点大多是在自然条件下的状态特征,当我们对这些液晶施加外界影响时,他们的状态将会发生改变,从而表现出不同的物理光学特性。 下面我们以最常用的向列液晶为例,分析了解它在外界人为作用下的一些特性和特点。 我们在使用液晶的时候往往会将液晶材料夹在两个玻璃基片之间,并对四周进行密封。为了我们的使用目的,将会对基片的内表面进行适当的处理,以便影响液晶分子的排列。这里介绍相关的三个处理步骤。1、涂覆取向膜,在基片表面形成一种膜。2、摩擦取向,用棉花或绒布按一个方向摩擦取向膜。3、涂覆接触剂。经过这三个步骤后,就可以控制紧靠基片的液晶分子,使其平行于基片并按摩擦方向排列。如果我们使上下两个基片的取向成一定角度,则两个基片间的液晶分子就会形成许多层。如图4的情况(取向成90度)。 即每一层内的分子取向基本一致,且平行于层面。相邻层分子的取向逐渐转动一个角度。从而形成一种被称为扭曲向列的排列方式。这种排列方式和天然胆甾相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足1um,不能人为控制。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

液晶电光效应实验(中国石油大学实验数据)

【数据处理】 表1 水平方向电压-透射率数据表 由上表数据画出液晶开关的电光特征曲线如下图:

由上图截取90%和10%分别得到可知液晶的阈值电压为1.00V,关断电压为1.51V 由上表数据画出液晶开关的电光特征曲线如下图:

由上图可知截取90%和10%分别得到阈值电压为0.94V,关断电压为1.44V。 图像分析: 水平方向和垂直方向图像基本走向是相同的,在0.00v~0.90v之间基本保持不变,在0.90v~1.8v之间变化很快,最后达到2.0v后基本不变达到饱和状态,透射率变为0。 但是我们可以从图像中看出,两种方法放置时他们的阀值电压和关断电压都略有区别,我们可以看出水平放置时阀值电压和关断电压都大于垂直放置的,饱和电压也有一定的区别。 2.根据光开关电光响应曲线得出液晶上升时间Δt1和下降时间Δt2。 由数字示波器得出上升时间和下降时间分别为50.0ms和

31ms。 【思考与讨论】 1.试说明液晶光开关的工作原理。 答:如图所示,在未施加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时期偏振面旋转了90度。这时光偏振面与P2的透光轴平行,因而有光通过。 再施加足够的电压情况下(一般1~2V),在静电场的吸引下除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列,于是,原来的扭曲结构被破坏,成了均匀结构,如图右图所示。从P1透射出来的偏振光的偏振方向在液晶传播时不再旋转,保持原来的偏振方向传播下去,到达下一个电极,这时光的偏振方向与P2正交,因而光被关断。 2.如何调节激光接收装置,使得准直激光垂直入射到液晶屏上?答:检查在静态0v供电电压条件下,透过率显示是否为100%。和未放屏幕时

液晶电光效应综合实验说明书

ZKY-LCDEO-2 液晶电光效应综合实验仪 实验指导及操作说明书 液晶电光效应综合实验仪 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液

晶光学性质的改变称为液晶的电光效应。 1888年,奥地利植物学家Reinitzer 在做有机物溶解实验时,在一定的温度范围内观察到液晶。1961年美国RCA 公司的Heimeier 发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN (扭曲向列)型液晶为例,说明其工作原理。 TN 型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃 = 10-10米 ),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电 极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液 晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1左图所示。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 入射的自然光 偏振片P1 偏振片P2 出射光 扭曲排列的液晶分子具有光波导效应 光波导已被电场拉伸 图1. 液晶光开关的工作原理

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

液晶电光效应实验

液晶电光效应实验 一、实验目的 1、了解液晶的特性和基本工作原理; 2、掌握一些特性的常用测试方法; 3、了解液晶的应用和局限。 二、实验原理: 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。 由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。根据液晶分子的结构特点。我们假定液晶分子没有固定的电极。但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。 这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90o,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图5;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。 以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。而对于这两个状态之间的中间状态。我们还没有一个清晰的认识,其实在这个中间状态,有着极其丰富多彩的光学现象。在实验中我们将会一一观察和分析。

液晶电光效应及其应用资料

液晶光电效应及应用 摘要:文章介绍了液晶的基本原理,着重阐述了液晶光开关的工作原理及其性 质,并根据其性质开展了一系列的实验,如测量液晶光开光的电光特性曲线及响应时间等。 关键词:液晶光开关时间响应视角特性 一、引言 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 二、实验原理 1.液晶光开关的工作原理 液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1所示。

3晶体的电光效应与电光调制_实验报告

晶体的电光效应与光电调制 实验目的: 1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。 实验仪器: 1) 晶体电光调制电源 2) 调制器 3) 接收放大器 实验原理简述: 某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制 如图 入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为 wt A e x cos 0'=wt A e y cos 0'= 用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0('A E y =)0(' 所以入射光的强度为22 '2 '2)0()0(A E E E E I y x i =+=?∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差A l E x =)('δi y Ae l E -=)(' 通过检偏器出射的光,是这两个分量在y 轴上的投影之和

() 12 45cos )()('0-= ?=-δ δi i y y e A e l E E 其对应的输出光强I t 可写为()()[] 2 sin 2*2200δ A E E I y y t =?∝ 由以上可知光强透过率为2 sin 2δ==i t I I T 相位差的表达式()d l V r n l n n y x 223 0'' 22λ π λ π δ= -= 当相位差为π时?? ? ??= l d r n V n 223 02λ 由以上各式可将透过率改写为()wt V V V V V T m sin 2sin 2sin 02 2 +==π π π π可以看出改变V0或 Vm ,输出特性将相应变化。 1) 改变直流电压对输出特性的影响 把V0=Vπ/2带入上式可得 ()?? ???? ???? ??+=+==wt V V wt V V V V V T m m sin sin 121sin 2sin 2sin 02 2 πππππ π 做近似计算得?? ???????? ??+≈ wt V V T m sin 121ππ 即T ∝Vmsinwt 时,调制器的输出波形和调制信号的波形频率相同,即线性调制 如果Vm >Vπ,不满足小信号调制的要求,所以不能近似计算,此时展开为贝塞尔函数,即输出的光束中除了包含交流信号的基波外,还有含有奇次谐波。由于调制信号幅度比较大,奇次波不能忽略,这时,虽然工作点在线性区域,但输出波形依然会失真。

液晶的电光特性论文

液晶的电光特性 摘要:液晶分子每一层内的分子取向基本一致,相邻层分子的取向逐渐转动一个角度,本 实验通过测量透射激光功率取最大值和最小值时检偏器转过的角度来得出液晶的扭曲角; 测量液晶在通电和不通电情况下透过激光的功率得出对比度;改变驱动电压,使电压从低 到高,记下光功率与电压之间的关系,得出液晶的电光效应曲线;测量衍射激光的主条纹 与次级条纹的距离和液晶合和成像板之间的距离;。了解液晶光开关构成图像矩阵的方 法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般 液晶显示器件的工作原理。 Abstract: the molecular orientation of liquid crystal molecules within each layer, a rotary Angle of molecular orientation of the adjacent layer gradually, this experiment by measuring transmission when laser power is the maximum and minimum deviation detector turned to draw liquid crystal distortion Angle; Measurement of liquid crystal in electricity and without electricity through laser power draw contrast; Change the driving voltage, voltage from low to high, down light power and voltage, the relationship between the draw liquid crystal electro-optic effect curve; Measuring diffraction stripe of Lord of the laser stripe and secondary distance and the distance between the LCD and imaging plate; . Understanding of liquid crystal optical switch structure image matrix, the method of learning and mastering the matrix composed of liquid crystal display text and graphics display mode, so as to understand the general working principle of liquid crystal display device. 关键词:电光效应旋光作用扭曲角对比度偏振态 Keywords: electro-optic the role of optical twist angle contrast polarization state 液晶是介于液体与晶体之间的一种物质状态。液晶既具有液体的流动性,其分子又按一 定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折 射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外 电场引起的液晶光学性质的改变称为液晶的电光效应 实验目的 1、学习测量液晶扭曲角,对比度c=Tmin/Tmax,动态范围DR=10logc(dB),上升沿时间T1 与下降时间T2 2、通过测量衍射角推算出特定条件下,液晶的结构尺寸 3、观察测量衍射斑的偏振状态 实验原理

液晶电光效应实验实验报告

液晶电光效应实验实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1 透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。 2.液晶光开关的电光特性

液晶电光特性及其应用实验报告 老董

实验报告 题目: 液晶电光效应特性应用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9月

一.实验目的 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 二.实验原理 1.液晶 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子有取向序,但无位置序;晶体则既有取向序又有位置序。 就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。热致液晶又可分为近晶相、向列相和胆甾相。其中向列相液晶是液晶显示器件的主要材料。 2.液晶电光效应 液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场(电流),随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)、电控双折射(ECB)等。其中应用较广的有:TFT 型——主要用于液晶电视、笔记本电脑等高档产品;STN型——主要用于手机屏幕等中档产品; TN型——主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。 TN型液晶显示器件显示原理较简单,是STN、TFT等显示方式的基础。本仪器所使用的液晶样品即为TN型。 3.液晶显示 液晶显示的原理主要是基于光开关,若在加电压前两个偏振片刚好处于消光位置,当电压超过阈值电压时,整个装置将由消光变为通光,同样,也可以先使检偏器处于通光位置,高电压时变为通光。通过电压可以控制液晶是透光还是不透光,比如控制7段数码管上的电压,可以分别显示0~9十个数字,显示方式也有两种:白底黑字和黑底白字。

液晶电光效应实验

液晶电光效应综合实验 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转、双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。 1888年,奥地利科学家赖因策(F.Reinitzer)在布拉格植物生理研究所做实验时,发现他加热的化合物熔化后先变成了白浊液体,并且闪现某些颜色,继续加热后变成透明液体。于是他又对化合物进行降温后,重复实验,依然看到上述现象。赖因策没有像其他人那样将这种特有的现象简单看作是材料不纯造成的,而是更精心地制备材料,对颜色的起因进行探究。1888年3月14日,赖因策将样品寄给德国的年轻结晶学家雷曼(O.Lehmann),并附上一封长信。雷曼经过系统研究,发现有许多有机化合物都具有同样的性质,这些化合物在混浊状态,其力学性质与液体相似,具有流动性,而其光学性质与晶体相似,具有各向异性,故取名为液晶(liquid crystal) 1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.根据液晶的电光效应特性,可制成光开关器件。在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过

光伏效应实验报告

篇一:半导体光伏效应实验 实验4 半导体光伏效应实验 本实验以单晶硅太阳能电池为例,通过实验让学生了解太阳能光伏电池的机理,学习和掌握测量短路电流的方法和技巧,以及光电转换的基本参数测量。 一、实验目的 1、初步了解太阳能电池机理 2、测量太阳能电池开路电动势、短路电流、内阻和光强之间关系 3、在恒定光照下测量光电流、输出功率与负载之间关系 二、实验原理 在p型半导体上扩散一薄层施主杂质而形成的p-n结(如图1),由于光照,在a 、b电极之间出现一定的电动势。在有外电路时,只要光照不停止,就会源源不断地输出电流,这种现象称为光伏效应。利用它制成的元器件称之为太阳能电池。光伏效应最重大的应用是可以将阳光直接转换成电能,是当今世界众多国 家致力研究和开拓应用的课题。 从光伏效应的机理可知,太阳能电池输出的电流il是光生电流ip和在光生电压vp作用下产生的p-n结正向电流if之差,即il?ip?if 。根据p-n结的电流和电压关系 qvp if=is(e kt - 1) is为反向饱和电流,式中vp是光生电压, 所以输出电流 qvp il=ip–is(e kt - 1) (1) 此即光电流表达式。通常ip>>is,上式括号内的1可忽略。 对于太阳能电池有外加偏压时,(1)式应改为 qv 图1 光伏效应结构示意图 i l =il+i=il+is(e kt - 1)(2) qv 上式中is(e kt - 1),就是p-n结在外加偏压v 作用下的电流。图2中的(a)(b)两条曲线分别表示无光照和有光照时太阳能电池的i-v 特性,由此可知,太阳能电池的伏安特性曲线相当于把p-n结的伏安特性曲线向下平移,它在横轴与纵轴的截距分别给出了voc和isc 。 图2太阳能电池的伏安特性实验表明:在v=0情况下,当太阳能电池外接负载电阻rl,其

液晶的电光特性实验报告含思考题

西安交通大学实验报告 第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__________教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃, 液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向 列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆 甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会 有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取 向夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋 于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于 液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶 分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出 各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。

从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min 为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。

液晶电光效应实验

图4 液晶板方向 (1)将模式转换开关置于静态模式,液晶转盘的转角置于0度,保持当前转盘状态。在供电电压为0V,透过率显示大于250时,按住“透过率校准”按键3秒以上,将透过率校准为100%。 (2)调节“供电电压调节”按键,按照表4中的数据逐步增大供电电压,记录下每个电压值下对应的透过率值。 (3)将供电电压重新调回0V(此时若透过率不为100%,则需重新校准)。重复步骤2,完成3次测量。 实验所用到表格

仪器用具 (报告):液晶光开关电光特性综合实验仪(ZKY-LCDEO 型) DS-5000型数字式存储示波器 实验目的(预习):1、 在掌握液晶光开关的基本工作原理的 基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阀值电压和关断电压; 2、 观察测量驱动电压周期变化时,液晶光开关的 时间响应曲线,并求出液晶的上升时间和下降时间; 3、 测量液晶显示器的视角特性; 4、 了解液晶光开关构成矩阵式图像显示的原理 实验原理及数据图(预习): 1液晶光开关工作原理 两张偏振片贴于玻璃的两面,上下电极的定向方向相互垂直,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过(参照下图) 当施加足够电压时(一般为1~2伏),在静电场的作用下,液晶分子趋于平行于电场方向排列。原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常白模式。 液晶光开关电光特性曲线

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

相关主题