搜档网
当前位置:搜档网 › 基于启发式搜索算法A星解决八数码问题

基于启发式搜索算法A星解决八数码问题

基于启发式搜索算法A星解决八数码问题
基于启发式搜索算法A星解决八数码问题

用A算法解决八数码问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有 一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给 出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动 棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数 得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对于 几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的 方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 ) {把n设置为X的父亲; 更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值} } if(X not inboth) {把n设置为X的父亲; 求X的估价值; 并将X插入OPEN表中; //还没有排序}

启发式搜索 八数码问题

启发式搜索 1. 介绍 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 使用启发式搜索算法求解8数码问题。 1) A ,A 星算法采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2) 宽度搜索采用f(i)为i 的深度,深度搜索采用f(i)为i 的深度的倒数。 3. 算法流程 ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。

《人工智能基础》实验报告-实验名称:启发式搜索算法

实验名称:启发式搜索算法 1、实验环境 Visual C++ 6.0 2、实验目的和要求 (复述问题)使用启发式算法求解8数码问题 (1)编制程序实现求解8数码问题A*算法,采用估价函数 f(n)=d(n)+p(n) 其中:d(n)是搜索树中结点n的深度;w(n)为节点n的数据库中错放的旗子个数; p(n)为结点n的数据库中每个棋子与其目标位置之间的距离总和。 (2)分析上述(1)中两种估价函数求解8数码问题的效率差别,给出一个是p(n)的上界h(n)的定义,并测试该估价函数是否使算法失去可采纳性。 实验目的:熟练掌握启发式搜索A*算法及其可采纳性。 3、解题思路、代码 3.1解题思路 八数码问题的求解算法 (1)盲目搜索 宽度优先搜索算法、深度优先搜索算法 (2)启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。 利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法针对八数码问题启发函数设计如下: F(n)=d(n)+p(n) (4)

用A算法解决八数码问题演示教学

用A算法解决八数码 问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对 于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价 值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制 约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 )

实验一 启发式搜索算法

实验一启发式搜索算法 学号:2220103430 班级:计科二班 姓名:刘俊峰

一、实验内容: 使用启发式搜索算法求解8数码问题。 1、编制程序实现求解8数码问题A *算法,采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2、 分析上述⑴中两种估价函数求解8数码问题的效率差别,给出一个是()p n 的上界 的()h n 的定义,并测试使用该估价函数是否使算法失去可采纳性。 二、实验目的: 熟练掌握启发式搜索A * 算法及其可采纳性。 三、实验原理: (一)问题描述 在一个3*3的方棋盘上放置着1,2,3,4,5,6,7,8八个数码,每个数码占一格,且有一个空格。这些数码可以在棋盘上移动,其移动规则是:与空格相邻的数码方格可以移入空格。现在的问题是:对于指定的初始棋局和目标棋局,给出数码的移动序列。该问题称八数码难题或者重排九宫问题。 (二)问题分析 八数码问题是个典型的状态图搜索问题。搜索方式有两种基本的方式,即树式搜索和线式搜索。搜索策略大体有盲目搜索和启发式搜索两大类。盲目搜索就是无“向导”的搜索,启发式搜索就是有“向导”的搜索。 启发式搜索:由于时间和空间资源的限制,穷举法只能解决一些状态空间很小的简单问题,而对于那些大状态空间的问题,穷举法就不能胜任,往往会导致“组合爆炸”。所以引入启发式搜索策略。启发式搜索就是利用启发性信息进行制导的搜索。它有利于快速找到问题的解。 由八数码问题的部分状态图可以看出,从初始节点开始,在通向目标节点的路径上,各节点的数码格局同目标节点相比较,其数码不同的位置个数在逐渐减少,最后为零。所以,这个

八数码问题求解--实验报告讲解

实验报告 一、实验问题 八数码问题求解 二、实验软件 VC6.0 编程语言或其它编程语言 三、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 四、实验数据及步骤 (一、)实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 2 8 3 1 2 3 1 4 8 4 7 6 5 7 6 5 (a) 初始状态(b) 目标状态 图1 八数码问题示意图 (二、)基本数据结构分析和实现 1.结点状态 我采用了struct Node数据类型 typedef struct _Node{

int digit[ROW][COL]; int dist; // distance between one state and the destination一 个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置 } Node; 2.发生器函数 定义的发生器函数由以下的四种操作组成: (1)将当前状态的空格上移 Node node_up; Assign(node_up, index);//向上扩展的节点 int dist_up = MAXDISTANCE; (2)将当前状态的空格下移 Node node_down; Assign(node_down, index);//向下扩展的节点 int dist_down = MAXDISTANCE; (3)将当前状态的空格左移 Node node_left; Assign(node_left, index);//向左扩展的节点 int dist_left = MAXDISTANCE; (4)将当前状态的空格右移 Node node_right; Assign(node_right, index);//向右扩展的节点 int dist_right = MAXDISTANCE; 通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。接下来就是搜索了。 3.图的搜索策略 经过分析,8数码问题中可采用的搜速策略共有:1.广度优先搜索、2.深度优先搜索、2.有界深度优先搜索、4.最好优先搜索、5.局部择优搜索,一共五种。其中,广度优先搜索法是可采纳的,有界深度优先搜索法是不完备的,最好优先和局部择优搜索法是启发式搜索法。 实验时,采用了广度(宽度)优先搜索来实现。 (三、)广度(宽度)优先搜索原理 1. 状态空间盲目搜索——宽度优先搜索 其基本思想是,从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面。其搜索过程如图(1)所示。

启发式搜索算法解决八数码问题(C语言)

1、程序源代码 #include #include struct node{ int a[3][3];//用二维数组存放8数码 int hx;//函数h(x)的值,表示与目标状态的差距 struct node *parent;//指向父结点的指针 struct node *next;//指向链表中下一个结点的指针 }; //------------------hx函数-------------------// int hx(int s[3][3]) {//函数说明:计算s与目标状态的差距值 int i,j; int hx=0; int sg[3][3]={1,2,3,8,0,4,7,6,5}; for(i=0;i<3;i++) for(j=0;j<3;j++) if(s[i][j]!=sg[i][j]) hx++; return hx; } //-------------hx函数end----------------------// //-------------extend扩展函数----------------// struct node *extend(node *ex) { //函数说明:扩展ex指向的结点,并将扩展所得结点组成一条//单链表,head指向该链表首结点,并且作为返回值 int i,j,m,n; //循环变量 int t; //临时替换变量 int flag=0; int x[3][3];//临时存放二维数组 struct node *p,*q,*head; head=(node *)malloc(sizeof(node));//head p=head; q=head; head->next=NULL;//初始化 for(i=0;i<3;i++)//找到二维数组中0的位置 { for(j=0;j<3;j++)

启发式搜索算法在N数码问题中的应用

编号 南京航空航天大学毕业论文 题目启发式搜索算法在N数码问 题中的应用 学生姓名 学号 学院 专业 班级 指导教师 二〇一三年六月

南京航空航天大学 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:启发式搜索算法在N数码问题中的应用)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:年月日 (学号):

启发式搜索算法在N数码问题中的应用 摘要 N数码问题是人工智能领域中的经典问题,N数码可以有效的判断一个搜索算法的优劣。在低阶数码问题中,使用简单的宽搜或深搜就可以解决问题,但在高阶数码中,由于其巨大的搜索规模,我们必须采用更加智能的算法才能解决问题。与传统搜索相比,启发式搜索当前搜索过程中的信息,选择最为可行的状态进行拓展,从而大大提高了搜索的质量和效率。 本文通过建立N数码问题的存储机制和移动规则,使得N数码问题转化为了一个标准的搜索问题。并着重分析了A*算法和遗传算法在N数码中的应用,在A*算法中使用了两种不同的估价函数,目的是比较不同估价函数在N数码问题中的表现。在最后,本文进行了大量实验,综合分析了A*算法和遗传算法在不同规模数据下的优劣。 关键词:启发式搜索,数码问题,A*算法,遗传算法

The Application of Heuristic Search Algorithm on N-Puzzle Problem Abstract N-puzzle problem is a classic problem in artificial intelligence. N-puzzle problem can effectively judge the merits of a search algorithm. In the low order puzzle problem, using a Depth-First-Search or Breadth-First-Search can solve the problem, but in the higher order digital, because of the huge search space area,we must adopt a more intelligent https://www.sodocs.net/doc/249593295.html,pared with the traditional search method, heuristic search uses the information in the search process, and it will choose the most feasible state, thus greatly improves the search quality and efficiency. This paper designs the storage mechanism and movement rules of N-puzzle problem, making the N-puzzle problem transforms to a standard search problem. This paper focuses on the application of A* algorithm and genetic algorithm in N-puzzle problem, and two different evaluation function used in A* algorithm. The objective is to compare the performance of different valuation function in N digital problem. In the end, this paper carries out a large number of experiments, a comprehensive analysis of the A* algorithm and genetic algorithm in different scale of data. Key Words:Heuristic Search;N-puzzle Problem;A* algorithm; Genetic algorithm

实验三A星算法求解8数码问题实验讲解

实验三:A*算法求解8数码问题实验 一、实验目的 熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。 二、实验内容 1、八数码问题描述 所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态), 如图1所示 图1 八数码问题的某个初始状态和目标状态 对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的

初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题1 就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。 2、八数码问题的求解算法 2.1 盲目搜索 宽度优先搜索算法、深度优先搜索算法 2.2 启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。

A星算法求解八数码问题

A*算法求解八数码问题 1、八数码问题描述 所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、 6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个 指定的数码盘的排列(目标状态),如图1所示 图1 八数码问题的某个初始状态和目标状态 对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。 2、八数码问题的求解算法 2.1 盲目搜索 宽度优先搜索算法、深度优先搜索算法 2.2 启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义:

f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g 的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。 利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x, h(x)<=h*(x) (3) 成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。 针对八数码问题启发函数设计如下: f(n)=d(n)+p(n) (4) 其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为

采用A算法解决八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题 姓名: XXX 学号: 10S003028 专业:计算机科学与技术 提交日期: 2011-05-04

目录 1问题描述........................................................................................................................... - 2 - 1.1待解决问题的解释............................................................................................... - 2 - 1.2问题的搜索形式描述............................................................................................ - 2 - 1.3解决方案介绍(原理)........................................................................................ - 3 - 2算法介绍........................................................................................................................... - 4 - 2.1A*搜索算法一般介绍............................................................................................ - 4 - 2.2 算法伪代码........................................................................................................... - 4 - 3算法实现........................................................................................................................... - 5 - 3.1 实验环境与问题规模........................................................................................... - 5 - 3.2 数据结构............................................................................................................... - 5 - 3.3 实验结果............................................................................................................... - 6 - 3.4系统中间及最终输出结果.................................................................................... - 6 - 4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -

八数码C语言A算法详细代码

#include #include #include #include #include usingnamespace std; struct node{ int a[3][3]; //存放矩阵 int father; //父节点的位置 int gone; //是否遍历过,1为是,0为否 int fn; //评价函数的值 int x,y; //空格的坐标 int deep; //节点深度 }; vector store; //存放路径节点 int mx[4]={-1,0,1,0}; int my[4]={0,-1,0,1}; //上下左右移动数组 int top; //当前节点在store中的位置 bool check(int num) //判断store[num]节点与目标节点是否相同,目标节点储存在store[0]中 { for(int i=0;i<3;i++){ for(int j=0;j<3;j++){ if(store[num].a[i][j]!=store[0].a[i][j]) returnfalse; } } returntrue; } bool search(int num) //判断store[num]节点是否已经扩展过 ,没有扩展返回true { int pre=store[num].father; //pre指向store[num]的父节点位置 bool test=true; while(!pre){ //循环直到pre为0,既初始节点 for(int i=0;i<3;i++){ for (int j=0;j<3;j++){ if(store[pre].a[i][j]!=store[num].a[i][j]){ test=false;

启发式搜索A星算法

启发式搜索——初识A*算法

A*在游戏中有它很典型的用法,是人工智能在游戏中的代表。 A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,先说说何谓启发式算法。 一、何谓启发式搜索算法 在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法,就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是在解一个问题时,找到一个解题的过程,应用这个过程可以从求解的开始得到问题的结果。由于求解问题的过程中分支有很多,主要是求解过程中求解条件的不确定性、不完备性造成的,使得求解的路径很多,这样就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。这个寻找的过程就是状态空间搜索。常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序,先查找完一个分支,再查找另一个分支,直至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。 前面说的广度和深度优先搜索有一个很大的缺陷就是:他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不可预测的情况下就不可取了。他们的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。 启发式搜索就是在状态空间中搜索时,对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直至找到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。我们先看看估价是如何表示的。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n)是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n节点到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。

八数码问题实验报告讲解

《八数码问题》实验报告 一、实验目的: 熟练掌握启发式搜索A *算法。 二、实验内容: 使用启发式搜索算法求解8数码问题。编制程序实现求解8数码问题A *算法,采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 三、实验原理: 1. 问题描述: 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 原理描述: 启发式搜索 (1)原理 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 (2)估价函数

计算一个节点的估价函数,可以分成两个部分: 1、 已经付出的代价(起始节点到当前节点); 2、 将要付出的代价(当前节点到目标节点)。 节点n 的估价函数)(n f 定义为从初始节点、经过n 、到达目标节点的路径的最小代价 的估计值,即)(* n f = )(* n g + )(* n h 。 )(*n g 是从初始节点到达当前节点n 的实际代价; )(*n h 是从节点n 到目标节点的最佳路径的估计代价。 )(*n g 所占的比重越大,越趋向于宽度优先或等代价搜索;反之,)(*n h 的比重越大, 表示启发性能就越强。 (3)算法描述: ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。 (3)算法流程图:

人工智能启发式图搜索算法

启发式图搜索算法 摘要:启发式搜索策略概述和有序搜索。启发式搜索弥补盲目搜索的不足,提高搜索效率。一种方法用于排列待扩展节点的顺序,即选择最有希望的节点加以扩展,那么,搜索效率将会大为提高。进行搜索技术一般需要某些有关具体问题领域的特性的信息。 关键词:启发式搜索;估价函数;有序搜索;A*算法; 正文: 启发式图搜索的意义因为无信息图搜索算法的效率低,耗费过多的计算空间与时间,这是组合爆炸的一种表现形式。所以引入了启发式图搜索算法。 启发式图搜索算法就是进行搜索技术一般需要某些有关具体问题领域的特性的信息,把此种信息叫做启发信息。利用启发信息的搜索方法叫做启发式搜索方法。关于图搜索的启发式搜索算法就叫做启发式图搜索算法。 启发式图搜索策略:假设初始状态、算符和目标状态的定义都是完全确定的,然后决定一个搜索空间。因此,问题就在于如何有效地搜索这个给定空间。 启发信息按其用途可分为下列3种: (1) 用于决定要扩展的下一个节点,以免像在宽度优先或深度优先搜索中那样盲目地扩展。 (2) 在扩展一个节点的过程中,用于决定要生成哪一个或哪几个后继节点,以免盲目地同时生成所有可能的节点。 (3) 用于决定某些应该从搜索树中抛弃或修剪的节点。 启发信息的状态空间搜索算法,即决定哪个是下一步要扩展的节点。这种搜索总是选择“最有希望”的节点作为下一个被扩展的节点。这种搜索叫做有序搜索(ordered search)。有关具体问题领域的信息常常可以用来简化搜索。一个比较灵活(但代价也较大)的利用启发信息的方法是应用某些准则来重新排列每一步OPEN表中所有节点的顺序。然后,搜索就可能沿着某个被认为是最有希望的边缘区段向外扩展。应用这种排序过程,需要某些估算节点“希望”的量度,这种量度叫做估价函数(evalution function)。所谓的估价函数就是为获得某些节点“希望”的启发信息,提供一个评定侯选扩展节点的方法,以便确定哪个节点最有可能在通向目标的最佳路径上。f(n)——表示节点n的估价函数值建立估价函数的一般方法:试图确定一个处在最佳路径上的节点的概率;提出任意节点与目标集之间的距离量度或差别量度;或者在棋盘式的博弈和难题中根据棋局的某些特点来决定棋局的得分数。这些特点被认为与向目标节点前进一步的希望程度有关。 有序搜索应用某个算法(例如等代价算法)选择OPEN表上具有最小f值的节点作为下一个要扩展的节点。这种搜索方法叫做有序搜索(ordered search)或最佳优先搜索 (best-first search),而其算法就叫做有序搜索算法或最佳优先算法。尼尔逊曾提出一个有序搜索的基本算法。估价函数f是这样确定的:一个节点的希望程序越大,其f值就越小。被选为扩展的节点,是估价函数最小的节点。选择OPEN表上具有最小f值的节点作为下一个要扩展的节点,即总是选择最有希望的节点作为下一个要扩展的节点。 有序状态空间搜索算法 (1) 把起始节点S放到OPEN表中,计算f(S)并把其值与节点S联系起来。 (2) 如果OPEN是个空表,则失败退出,无解。 (3) 从OPEN表中选择一个f值最小的节点i。结果有几个节点合格,当其中有一个为目标节点时,则选择此目标节点,否则就选择其中任一个节点作为节点i。

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,

以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。 二、启发式算法类型

(完整版)启发式搜索算法

人工智能基础实验报告 实验名称:八数码问题 姓名:张俊 学号:2220092333 指导老师:邓安生

启发式搜索算法 1. 实验内容: 使用启发式搜索算法求解8数码问题。 ⑴ 编制程序实现求解8数码问题A *算法,采用估价函数 ()()()() w n f n d n p n ??=+???, 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 ⑵ 分析上述⑴中两种估价函数求解8数码问题的效率差别,给出一个是()p n 的上界的()h n 的定义,并测试使用该估价函数是否使算法失去可采纳性。 2. 实验目的 熟练掌握启发式搜索A *算法及其可采纳性。 3. 实验原理 八数码问题是在3行和3列构成的九宫棋盘上放置数码为1到8的8个棋盘,剩下一个空格的移动来不断改变棋盘的布局,求解这类问题的方法是:给定初始布局(即初始状态)和目标布局(即目标状态),定义操作算子的直观方法是为每个棋牌制定一套可能的走步》上,下,左,右四种移动,再根据所定义的启发式搜索函数在搜索过程中选择最合适的操作算子,得到最优的路径。 4.源代码 #include #include #include #include #include #include #include //以上为C++源文件 using namespace std; static int space=0; int target[9]; class EightNum//定义一个EightNum 类 { public:

相关主题