搜档网
当前位置:搜档网 › 高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法介绍
高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介

关键词:高阶线性微分方程 求解方法

在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅

因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍.

讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt

---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果

()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt

dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程.

1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如

111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n

阶常系数齐次线性微分方程。

111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt

a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式.

()F λ为特征方程,它的根为特征根.

1.1特征根是单根的情形

设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值

解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n

c c c 为任意常数.

如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

对应的,方程(3)有两个复值解

()(cos sin ),i t t t t e e i αβαββ+=+

()(cos sin ).i t t t t e e i αβαββ-=-

对应于特征方程的一对共轭复根,i λαβ=±我们可求得方程(3)的两个实值解cos ,sin .t t t t e e αβαβ

1.2特征根有重根的情形

设特征方程有k 重根1,λλ=则易知知

'(1)()1111()()()0,()0.k k F F F F λλλλ-====≠

1.2.1先设10,λ=即特征方程有因子k λ,于是110,n n n k a a a --+==

==也就是特征根方程的形状为110.n n k n k a a λλλ--++

+=而对应的方程(3)变为 1110,n n k n k n n k d x d x d x a a dt dt dt ---+++=易见它有k 个解211,,,k t t t -,且线性无关.

特征方程的k 重零根就对应于方程(3)的k 个线性无关解211,,,

k t t t -. 1.2.2当1k 重根10,λ≠对应于特征方程(4)的1k 重根1λ,方程(3)有1k 个解

1111112,,,,.t t t k t e t e t e t e λλλλ-同样假设特征方程(4)的其他根2λ3,,λm λ的

重数依次为2k 3k m k ;1i k ≥,且1k +2k +

+m k =n,j i λλ≠(当i ≠j),对应方程(3)的解有2222212,,,

,.t t t k t e te t e t e λλλλ-12,,,,m m m m m t t t k t e te t e t e λλλλ-。 上述解够成(3)的基本解组.

1.2.3特征方程有复根i λαβ=+,且为k 重特征根。则(3)有2k 个实解 2121cos ,cos ,cos ,

,cos ,sin ,sin ,sin ,,sin .t t t t t t k t t t t t t t t k t t e te t e t e e te t e t e αβαβαβαβαβαβαβαβ--

要点是把微分方程的求解问题化为代数方程的求根问题。下面介绍两

个例子.

例1. 求方程 ''''''39130y y y y -++= 的通解.

解:特征方程为

3239130λλλ-++= 或 2(1)(413)0λλλ+-+=

由此得 1λ=-1,2λ=2+3i, 3λ=2-3i

因此,基本解组为 22,cos3,sin 3x x x e e x e x -

通解为 2123(cos3sin 3)x x y C e e C x C x -=++.

例2. 求方程 (4)''''''45440y y y y y -+-+= 的通解.

解:特征方程为

43245440

λλλλ-+-+= 由于432224544(2)(1)λλλλλλ-+-+=-+

故特征根是 1,2342,,i i λλλ===-

它们对应的实解为:22,,cos ,sin x x e xe x x .

所求通解为

21234()cos sin x y e C C x C x C x =+++.

2.比较系数法

用于求常系数非齐次线性微分方程的特解.

2.1类型1

设t m m m m e b t b t b t b t f λ)()(1110++++=-- ,其中λ及)

,,1,0(m i b i =为实常数,那么常系数非齐次线性微分方程有形如

t m m m k e B t B t B t x λ)(~1110--+++= 的特解,其中k 为特征方程

0)(=λF 的根λ的重数(单根相当于k=1;不是特征根时,取k=0),

而m B B B ,,,10 是待定常数,可以通过比较系数来确定.

2.1.1如果0=λ,则此时m m m m b t b t b t b t f ++++=--1110)( 。

现在分为两种情况讨论.

(a )0=λ不是特征根的情形,以m m m B t B t B x +++=- 110~

代入方程,并比较t 的同次幂的系数,可以唯一的逐个确定m B B B ,,,10 .

(b )0=λ是k 重特征根的情形,以)(~

110m m m k t t t x γγγ+++=- 为特解 2.1.2如果0≠λ,同样分为两种情况讨论:

λ不是特征方程的根的情形,有t m m m e B t B t B x λ)(~

110+++=- 特解;

λ是特征方程的k 重根的情形,有t m m m k e B t B t B t x λ)(~

110+++=- 特解. 例1 求方程 x e y y 2

1=-'' 的通解. 解 易见,对应齐次方程的特征方程为

012=-λ

特征根是1±=λ,对应齐次方程的通解为

x x e C e C y -+=21

由于1=α是特征方程的根,故已知方程有形如

x A x e y =1

的特解.将它代入原方程,得

x x x x e A x e A x e Ae 212=

-+ 从而41=A ,故x xe y 4

11=,由此得通解 x x x xe e C e C y 4

121++=- 例2 求方程 x x y y 2552+-='-'' 的通解.

解 对应齐次方程的特征方程为

0)5(,052=-=-λλλλ

特征根为5,021==λλ,齐次方程的通解为

x e C C y 521+=

由于0=α是单特征根,故已知非齐次方程有形如

)(21C Bx Ax x y ++=

的特解.

将它代入已知方程,并比较x 的同次幂系数,得

0,0,3

1===C B A 故313

1x y =,最后可得所求通解 x e C C x y 52133

1++= 2.1类型2

设βαββ,其中at e t t B t t A t f ]sin )(cos )([)(+= 是常数A(t),B(t)是带实系

数的多项式,一个次数为m,另一个不超过m.则非齐次线性微分方程有形

如at k e t t Q t t P t x ]sin )(cos )([~

ββ+=的特解,这里k 为特征方程的根βαi +的重数。而P(t),Q(t)均为待定的带实系数的次数不高于m 的t 的多项式,可以通过比较系数的方法来确定.

例 求方程 )sin 7(cos 2x x e y y y x -=-'+'' 的通解.

解 先求解对应的齐次方程: 02=-'-''y y y

我们有 2,1,02212-===-+λλλλ

x x e C e C y 221-+=

因为数i i ±=±1βα不是特征根,故原方程具有形

)sin cos (1x B x A e y x +=的特解.

将上式代入原方程,由于

)sin cos (1x B x A e y x +=

]sin )(cos )[(1

x A B x B A e y x -++=' )sin 2cos 2(2

x A x B e y x -=' 故+++-=-'+''x B A e x A x B e y y y x x cos )[()sin 2cos 2(2

x x x A B sin 7cos sin )(-=-

=x e )sin 7(cos x x -

或x x x A B x A B sin 7cos sin )3(cos )3(-=+--

比较上述等式两端的x x sin ,cos 的系数,可得73,13-=--=+-B A B A 因此,1,2==B A .故)sin cos 2(1x x e y x +=.所求通解为

x x x e C e C x x e y 221)sin cos 2(-+++=.

3.常数变易法

只要知道对应的齐次线性微分方程的基本解组就可以利用常数变易法求

得非齐次线性微分方程的基本解组.

例:求非齐次方程''1cos y y x

+=的通解.已知12cos ,sin y x y x ==是对应齐次方程的线性无关解.

解:则它的通解为12cos sin y C x C x =+ 现在求已知方程形如

112()cos ()sin y C x x C x x =+的一个特解.由关系式,''12

(),()C x C x 满足方程组

'1'20cos sin ()1sin cos ()cos x x C x x x C x x ????????=??????-??????

或写成纯量方程组

''12''12()cos ()sin 01()sin ()cos cos C x x C x x C x x C x x x ?+=??-+=??

解上述方程组,得 ''12sin (),()1cos x C x C x x

=-=积分得 12()cos ,()C x ln x C x x ==故已知方程的通解为

12cos sin cos ln cos sin y C x C x x x x x =+++

除以上方法外,常用的还有拉普拉斯变换法,用拉普拉斯变换法则首先

将线性微分方程转换成复变数的代数方程,再由拉普拉斯变换表或反变换公式求出微分方程的解。 求一般二阶齐次线性微分方程的幂级数解法,它的思想和待定系数法(或比较系数法) 有类似之处,所不同的是幂级数解法待定的是级数的系数,所以计算量相对较大.

在应用时必须特别注意的是:不同的方法用于不同类型的方程.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法1

第四讲常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程 式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx (3.20)

其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1 T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2, ,),ij T t i j n == det 0T ≠,将方程组 (3.20)化为 1 dZ T ATZ dx -= (3.22) 我们知道,约当标准型 1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0 n n n n nn a a a a a a A E a a a λλλλ ---= =- 的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.

第三章 一线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n ==L det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-L L M M M L

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλL 这时 12100 n T AT λλλ-??????=?????? 方程组(3.20)变为 11122200n n n dz dx z dz z dx z dz dx λλλ??????????????????????=???????????????? ?????? M M (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=????????M 220010(),,()0001n x x n Z x e Z x e λλ????????????????==???????????????? L M M 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ???? ??==?????? M (1,2,,)i n =L

线性微分方程组

第五章 线性微分方程组 [教学目标] 1. 理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解的性质与结构, 2. 理解n 阶线性微分方程与一阶线性微分方程组的关系。 3. 掌握非齐次线性微分方程组的常数变易法, 4. 理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。 5. 掌握常系数线性微分方程组的Laplce 变换法。 [教学中难点]求解常系数非齐次线性微分方程组 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce 变换法。 [考核目标] 1.线性微分方程组解的性质与结构。 2.能够求解常系数线性微分方程组。 §5.1 存在唯一性定理 5.1.1记号和定义 考察形如 1 11112211221122222 1122()()()()()()()()()()()()n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++?? ??'=++++? (5.1) 的一阶线性微分方程组,其中已知函数()(,1,2,,)ij a t i j n = 和()(1,2,,)i f t i n = 在区间a t b ≤≤上 上是连续的。方程组(5.1)关于12,,,n x x x 及1 2,,,n x x x ''' 是线性的. 引进下面的记号: 1112121 22 212()() ()()() ()()()() ()n n n n nn a t a t a t a t a t a t A t a t a t a t ??????=?? ? ? ?? (5.2) 这里()A t 是n n ?矩阵,它的元素是2 n 个函数()(,1,2,,)ij a t i j n = . 12()()()()n f t f t f t f t ??????=?????? 12n x x x x ??????=?????? 1 2n x x x x '????'??'=???? '?? (5.3)

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

齐次微分方程

1 第二讲一阶微分方程 【教学内容】 齐次微分方程、一阶线性微分方程 【教学目的】 理解齐次微分方程的概念,掌握齐次微分方程、一阶线性微分方程的解法。 【教学重点与难点】 齐次微分方程、一阶线性微分方程的解法 【教学过程】 、齐次微分方程: 形如 凹f (-)的微分方程;叫做齐次微分方程 dx x u ■y 原方程便化为可分离变量的微分方程来求解。 x 此方程是可分离变量的微分方程。按可分离变量微分方程的解法,求出方程的通解,再将变量 为y ,所得函 数就是原方程的通解。 x 解:方程可化为 1 C)2 X 2(乂) x 分离变量,则有 u 1 u 2 两边积分,得 例1、 求微分方程(x )dx 2xydy ,满足初始条件y x 1 0的特解。 它是齐次方程。令u ,代入整理后,有 du dx 2xu 对它进行求解时,只要作变换 于是有 dy y ux,亠 u dx du dx du x 一 dx f(u) u x pl ,从而原方程可化为 u x —— f (u ), dx u 还原 dy dx 2 x_ 2xy du 2x dx

(2)ln(1 u 2) (2)ln x (1 )ln c cx(1 u 2) 1 将u y 代入上式,于是所求方程的通解为 x x 2 二、一阶线性微分方程 形如 的方程称为一阶线性微分方程,其中 P (x )、Qx )都是连续函数。 当Qx ) = 0时,方程 y P (x)y 0 称为一阶线性齐次微分方程; 当Qx )工0,方程称为一阶线性非齐次微分方程。 1. 一阶线性齐次微分方程的解法 将方程 P(x)y 0 分离变量得 两边积分得 方程的通解为 求微分方程 y 2xy 0的通解。 c(x 2 y 2 ) x 2 把初始条件y 0代入上式,求出c 1,故所求方程的特解为 y P (x)y Q(x) dy P(x)dx In y P(x)dx InC Ce P (x )dx (C 为任意常数) 解法1 (分离变量法)

线性微分方程的解法

§12.4 线性微分方程 一、 线性方程 线性方程: 方程)()(x Q y x P dx dy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dx dy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-) 2(?021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0?y '=3x 2+5x , 是非齐次线性方程. (3) y '+y cos x =e -sin x , 是非齐次线性方程. (4)y x dx dy +=10, 不是线性方程. (5)0)1(32=++x dx dy y ?0)1(23=+-y x dx dy 或3 2)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法: 齐次线性方程 0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P y dy )(-=, 两边积分, 得 1)(||ln C dx x P y +-=? , 或 )( 1)(C dx x P e C Ce y ±=?=-, 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程y dx dy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得 2 -=x dx y dy ,

两边积分得 ln|y |=ln|x -2|+lnC , 方程的通解为y =C (x -2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把 ?=-dx x P e x u y )()( 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 )()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =?+?-?'---, 化简得 ?='dx x P e x Q x u )()()(, C dx e x Q x u dx x P +?=?)()()(, 于是非齐次线性方程的通解为 ])([)()(C dx e x Q e y dx x P dx x P +??=? -, 或 dx e x Q e Ce y dx x P dx x P dx x P ? ??+?=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程25)1(1 2+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程 012=+-x y dx dy 的通解. 分离变量得 1 2+=x dx y dy , 两边积分得 ln y =2ln (x +1)+ln C , 齐次线性方程的通解为 y =C (x +1)2. 用常数变易法. 把C 换成u , 即令y =u ?(x +1)2, 代入所给非齐次线性方程, 得

高阶线性微分方程常用解法简介

高阶线性微分方程常用解法简介 摘要:本文主要介绍高阶线性微分方程求解方法,主要的内容有高阶线性微分方程求解的常 用方法如。 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3, ,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++= 其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++ 其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ 是特征方程111()0n n n n F a a a λλλλ--≡++++= 的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ (5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ= 均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++ 其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.

常系数线性微分方程的解法

常系数线性微分方程的解法 摘 要:本文主要介绍了常系数线性微分方程的解法.着重讨论利用代数运算和微分运算来求常系数齐次线性微分方程和非齐次线性微分方程的通解. 关键词:复值函数与复值解;欧拉方程;比较系数法;拉普拉斯变换法 The Solution of Linear Differential Equation with Constant Coefficients Abstract :The solutions of linear differential equation with constant coefficients are introduced in this article. And using the algebraic operation and differential operation to solv the general solution of homogeneous linear differential equation and nonhomogeneous linear differential equation are discussed emphatically. Key Words :complex flnction and complex answer; euler equation;the method of coefficients comparison; the method of laplace transformation. 前言 为了让我们更多的认识和计算常系数线性微分方程,本文通过对复值函数和复值解以及常系数线性微分方程和欧拉函数的简单介绍,进而简单讨论了常系数线性微分方程的解法,以此来帮助我们解决常系数线性微分方程的解. 1. 预备知识 1.1复值函数与复值解 如果对于区间a t b ≤≤中的每一个实数t ,有复数()()()z t t i t ?ψ=+与它对应,其中 ()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,i =是虚数单位,我们就说在区间 a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于0t 时有极限,我们 就称复值函数()z t 当t 趋于0t 时有极限,并且定义 lim ()lim ()lim ()t t t t t t z t t t ?ψ→→→=+. 如果0 0lim ()()t t z t z t →=,我们就称()z t 在0t 连续.显然,()z t 在0t 连续相当于()t ?,()t ψ在0 t 连续.当()z t 在区间a t b ≤≤上每点都连续时,就称()z t 在区间a t b ≤≤上连续.如果极

高阶齐次线性微分方程

第七章常微分方程7.8 高阶齐次线性微分方程 数学与统计学院 赵小艳

1 2 高阶线性微分方程的概念 1 主要内容 3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关 高阶齐次线性微分方程通解的结构

1 2 高阶线性微分方程的概念 1 主要内容 3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关 高阶齐次线性微分方程通解的结构

解 受力分析 1 高阶线性微分方程的概念 例1 (弹簧的机械振动) 如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力 作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律. pt H t f sin )(1= 以物体的平衡位置为坐标原点,x 轴的方向垂直 向下. x x o )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由x kx t f x m d d μ--=)(2可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位 置的位移为x (t ).

,ma F =由x kx t f x m d d μ--=)(2 可得t t 2d d 物体自由振动的微分方程 .0,000====t t t x x d d 还应满足初始条件:

一般地,称 )()()(2122t F x t P t x t P t x =++d d d d 为二阶线性微分方程, ,0)(时当≡t F 称为二阶齐次线性微分方程, ,0)(时当≠t F 称为二阶非齐次线性微分方程. )()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程 ,0)(时当≡t F n 阶齐次线性微分方程, t t 2d d .0,000====t t t x x d d 还应满足初始条件:物体自由振动的微分方程

(整理)二阶常系数线性微分方程的解法版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

二阶非齐次线性微分方程的解法

目 录 待定系数法 常数变异法 幂级数法 特征根法 升阶法 降阶法 关键词:微分方程,特解,通解, 二阶齐次线性微分方程 常系数微分方程 待定系数法 解决常系数齐次线性微分方程[]21220, (1) d x dx L x a a x dt dt ≡++= 12,. a a 这里是常数 特征方程212()0F a a λλλ=++= (1.1) (1)特征根是单根的情形 设 12,,,n λλλ是特征方程的 (1.1)的2个彼此不相等的根,则相应的方程 (1)有如 下2个解: 12,t t e e λλ (1.2) 如果(1,2)i i λ=均为实数,则 (1.2)是方程 (1)的2个线性无关的实值解,而方程 (1)的通解可表示为 1212t t x c e c e λλ=+ 如果方程有复根,则因方程的系数是实系数,复根将成对共轭出现。设 i λαβ=+是一特征根,则i λαβ=-也是特征根,因而与这对共轭复根对应,方程 (1)有两个复值解 (i)t (cos t sin ),t e e i t αβαββ+=+

(i)t (cos t sin ).t e e i t αβαββ-=- 它们的实部和虚部也是方程的解。这样一来,对应于特征方程的一对共轭复根 i λαβ=±,我们可求得方程 (1)的两个实值解 cos ,sin .t t e t e t ααββ (2)特征根有重跟的情形 若10λ=特征方程的 k 重零根,对应于方程 (1)的k 个线性无关的解21 1,t,t ,k t -。 若这个 k 重零根10, λ≠设特征根为12,,,,m λλλ其重数为 1212,,,k (k 2)m m k k k k ++ =。方程 (1)的解为 11112222111,t ,t ;,t , t ; ;,t , t ;m m m m t t k t t t k t t t k t e e e e e e e e e λλλλλλλλλ--- 对于特征方程有复重根的情况,譬如假设i λαβ=+是k 重特征根,则i λαβ=-也是k 重特征根,可以得到方程 (1)的2k 个实值解 2121cos ,cos ,cos ,,cos ,sin ,sin ,sin , ,sin .t t t k t t t t k t e t te t t e t t e t e t te t t e t t e t ααααααααββββββββ-- 例1 求方程 220d x x dt -=的通解。 解 特征方程 210λ-=的根为121,1λλ==-有两个实根,均是单根,故方程的通 解为 12,t t x c e c e -=+ 这里12,c c 是任意常数。 例2 求解方程 220d x x dt +=的通解。 解 特征方程 210λ+=的根为12,i i λλ==-有两个复根, 均是单根,故方程的通解 为 12sin cos ,x c t c t =+

二阶线性微分方程及其解法

n 阶微分方程的一般形式为: () (,,',",,)0n F x y y y y =L , 一般情况下,求n 阶微分方程的解是困难的. 作为基础知识,本节仅讨论二阶常系数线性微分方程的求解方法. 一、 二阶线性微分方程解的结构 如果二阶微分方程)',,(''y y x F y =的未知函数及其导数都是一次项的,称为二阶线性微分方程. 二阶线性微分方程的一般形式为 ).()(')(''x f y x q y x p y =++ () 如果0)(≡x f ,则方程()成为 .0)(')(''=++y x q y x p y () 方程()称为二阶齐次线性微分方程,相应地,方程()称为二阶非齐次线性微分方程. 定理 齐次线性微分方程解的叠加性定理. 设1y 和2y 是二阶齐次线性微分方程()的两个解,则 2211y c y c y += 也是微分方程()的解,其中21,c c 为任意常数. 证: 将2211y c y c y +=代入方程()的左端,可得 ))(()')((')'(221122112211y c y c x q y c y c x p y c y c +++++ ))(()'')(()''''(221122112211y c y c x q y c y c x p y c y c +++++= =+++))(')(''(1111y x q y x p y c ))(')(''(2222y x q y x p y c ++ =0, 所以,2211y c y c y +=也是微分方程()的解.□ 定理表明,二阶齐次线性微分方程的解可叠加. 如果我们已知二阶齐次线性微分方程的两个解1y 和2y ,很容易得到含有任意常数21,c c 的解,2211y c y c y +=. 如果解1y 和2y 有一定关系,那么,解2211y c y c y +=中的任意常数21,c c 可以合并成一个任意常数. 因此,依据本章第一节的论述,它并不是二阶齐次线性微分方程的通解. 那么,二阶齐次线性微分方程的两个解1y 和2y 要满足哪些条件才能使解2211y c y c y +=成为二阶齐次线性微分方程的

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02 =++q p λλ的特征根为12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? …(1) 1)当12λλ≠且为实数时,由(1)式得原方程的通解为

二阶常系数线性微分方程的解法word版

创作编号: BG7531400019813488897SX 创作者: 别如克* 第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理 1 如果函数1y 与2y 是式(2)的两个解, 则 2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y

将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 , ,,,21n k k k 使得当在该区间内有 02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关, 否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法

相关主题