搜档网
当前位置:搜档网 › 自动控制课程设计--双容水箱液位串级控制

自动控制课程设计--双容水箱液位串级控制

自动控制课程设计--双容水箱液位串级控制
自动控制课程设计--双容水箱液位串级控制

自动控制课程设计

课程名称:双容水箱液位串级控制

学院:机电与汽车工程学院

专业:电气工程与自动化

学号: 631224060430

姓名:颜馨

指导老师:李斌、张霞

2014/12/30

0摘要 (2)

1引言 (2)

2对象分析和液位控制系统的建立 (2)

2.1水箱模型分析 (2)

2.2阶跃响应曲线法建立模型 (3)

2.3控制系统选择 (3)

2.3.1控制系统性能指标【2】 (3)

2.3.2方案设计 (4)

2.4串级控制系统设计 (4)

2.4.1被控参数的选择 (4)

2.4.2控制参数的选择 (5)

2.4.3主副回路设计 (5)

2.4.4控制器的选择 (5)

3 PID控制算法 (6)

3.1 PID算法 (6)

3.2 PID控制器各校正环节的作用 (6)

4 系统仿真 (7)

4.1.1系统结构图及阶跃响应曲线 (7)

4.2.1 PID初步调整 (10)

4.2.2 PID不同参数响应曲线 (12)

4.3.1 系统阶跃响应输出曲线 (17)

5加有干扰信号的系统参数调整 (20)

6心得体会 (22)

7参考文献 (22)

液位控制是工业生产乃至日常生活中常见的控制,比如锅炉液位,水箱液位等。针对水箱液位控制系统,建立水箱模型并设计PID控制规律,利用Matlab 仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。

关键词:串级液位控制;PID算法;Matlab;Simulink

1引言

面液位控制可用于生产生活的各方面。如锅炉液位的控制,如果液位过低,可能造成干烧,容易发生事故;炼油过程中精馏塔液位的控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。本文针对双容水箱,以下水箱液位为主控制对象,上水箱为副控制对象。选择进水阀门为执行机构,基于Matlab建模仿真,采用PID控制算法,整定PID参数,得出合理控制参数。

2对象分析和液位控制系统的建立

2.1水箱模型分析

现以下水箱液位为主调节参数,上水箱液位为副调节参数,构成传统液位串级控制系统,其结构原理图如图1所示。

图1 双容水箱液位控制示意图

系统主要由调节器LC1、副调节器LC2、调节阀、上水箱、下水箱、压传感器LT1和LT2等组成。利用水泵将储水槽中的水输出,通过电动调节阀调节上水位进水流量,使下水箱液位保持恒定。 2.2阶跃响应曲线法建立模型

阶跃响应是指输入变量的变化引起的系统时间响应,可测定系统的阶跃响应,从而拟合系统传递函数。系统通过泵供水,首先手动调节阀开度,改变水箱液位给定量,相当于施加了输入量的阶跃变化,从而得到响应曲线。

即上水箱的传递函数为:【1】

s

e s s G 51

108519.0)(-+=

(2-1)

下水箱的传递函数为:

s

e s s G 101

100461.0)(-+=

(2-2)

图2水箱模型测定原理图

2.3控制系统选择

2.3.1控制系统性能指标

【2】

(1)静态偏差:系统过渡过程终了时的给定值与被测参数稳态值之差; (2)衰减率:闭环控制系统被施加输入信号后,输出响应中振荡过程的衰减指标,即振荡经过一个周期以后,波动幅度衰减的百分数。为了保证系统足够的稳定程度,一般衰减率在0.75-0.9;

(3)超调量:输出响应中过渡过程开始后,被控参数第一个波峰值与稳态值之

差,占稳态值的百分比,用于衡量控制系统动态过程的准确性;

(4)调节时间:从过渡过程开始到被控参数进入稳态值-5%-+5%范围所需的时间。

2.3.2方案设计

由于实验用水箱外部干扰较多,且波动也较明显,干扰变化剧烈,所以本设计采用串级控制方案。串级控制可获得中间变量,并且可组成副反馈回路,这样可以对影响中间变量的干扰进行提前调节,对从副回路进入的干扰有较强的调节能力,改善系统的动态特性,还能减小系统的时间常数,对操作情况有较强的适应能力,从而使整个系统的控制效果得到改善,采用液位-液位串级控制系统【3】设计建立的串级控制系统由主副两个控制回路组成,每个回路又有自己的调节器和控制对象。主回路中的调节器称主调节器,控制主对象。副回路中的调节器称副调节器,控制副对象。主调节器有自己独立的设定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数c2。

通过针对双容水箱液位被控过程设计串级控制系统,将使系统的输出响应在稳态时,系统的被控制量等于给定量,实现无差调节,并且使系统具有良好的动态性能,较快的响应速度。当有扰动f1(t)作用于副对象时,副调节器能在扰动影响主控参数之前动作,及时克服进入副回路的各种二次扰动,当扰动f2(t)作用于主对象时,由于副回路的存在也应使系统的响应加快,使主回路控制加强。

图3 串级控制系统框图

2.4串级控制系统设计

2.4.1被控参数的选择

应选择被控过程中能直接反映生产过程中产品产量和质量,又易于测量的参数。在双容水箱控制系统中选择下水箱的液位为系统被控参数,因为下水箱的液位是整个控制作用的关键,要求液位维持在某给定值上下。如果调节欠妥,会造成整个系统控制设计的失败,且现在对于液位的测量有成熟的技术和设备,包括值读式液位计、浮力式液位计、静压式液位计、电磁式液位计、超声波式液位计等。

2.4.2控制参数的选择

从双容水箱系统来看,影响液位有两个量,一是通过上水箱流入系统的流量,二是经下水箱流出系统的流量。调节这两个量都可以改变液位的高低。但当电动调节阀突然断电关断时,后一种控制方式会造成长流水,导致水箱中水过多溢出,造成浪费或事故。所以选择流入系统的流量作为控制参数更合理一些。

2.4.3主副回路设计

为了实现液位串级控制,使用双闭环结构。副回路应对于包含在其内的二次扰动以及非线性参数、较大负荷变化有很强的抑制能力与一定的自适应能力。主副回路时间常数之比应在3到10之间,以使副回路既能反映灵敏,又能显著改善过程特性。下水箱容量滞后与上水箱相比较大,而且控制下水箱液位是系统设计的核心问题,所以选择主对象为下水箱,副对象为上水箱。

2.4.4控制器的选择

根据双容水箱液位系统的过程特性和数学模型选择控制器的控制规律,为了实现液位串级控制,使用双闭环结构,主调节器选择比例积分微分控制规律(PID),对下水箱液位进行调节,副调节器选择比例控制率(PI),对上水箱液位进行调节,并辅助主调节器对系统进行控制,整个回路构成双环负反馈系统。

3 PID 控制算法

稳定性好、安全可靠、调整方便,是目前采用最多的控制方法之一。PID 控制就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制。其算法为:

【4】

PID 控制器是一种线性负反馈控制器,根据给定值)(t r 与实际值)(t y 构成控

制偏差:

)()()(t y t r t e -=

PID 控制规律为:

dt

t de K dt t e T K t e K t m P t

I P P )

()()()(0τ++=?

PID 控制器的传递函数为:

s K s

K K s s T K s E s M s G D I P I P c ++=++==

1

)11()()()(τ 式中,P K 为比例系数,I T 为积分常数,τ为微分时间常数,I

P

I T K K =

为积分系数,τP D K K =为微分系数。

3.2 PID 控制器各校正环节的作用

(1)比例控制(P ):比例控制是一种最简单的控制方式。其控制的输出与偏差信号成比例关系,能较快克服扰动,使系统稳定下来。当仅有比例控制时系统输出存在稳态误差。

(2)积分控制(I):在积分控制中,控制器的输出与偏差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称此控制系统是有差系统。为了消除稳态误差,在控制器中步序引入“积分项”。积分项对误差的累积取决于时间的积分。随着时间的增加,积分项会越大。这样,即使误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。但是过大的积分速度会降低系统的稳定程度,出现发散的振荡过程。比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。(3)微分控制(D):在微分控制中,控制器的输出与偏差信号的微分(即偏差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有抑制误差的作用,其变化总是落后于误差的变化。所以在控制器中仅引入“比例”项往往是不够的,比例+微分的控制器,就能提前抑制误差的控制作用等于零,甚至为负值,从而避免被控量严重超调。

只有三者协调作用,才能达到满意的控制效果。因此,参数整定至关重要。

4 系统仿真

通过MATLAB中的SIMULINK工具箱可以动态的模拟系统的响应曲线,以控制框图代替了程序的编写,只需要选择合适仿真设备,添加传递函数,设置仿真参数。下面根据前文的水箱模型传递函数对串级控制系统进行仿真,以模拟实际中的阶跃响应曲线,考察串级系统的设计方案是否合理。

4.1未校正系统的稳定性

4.1.1系统结构图及阶跃响应曲线

根据未校正系统的开环传递函数可以画出系统的结构图。系统结构图如图5所示。我们也用MATLAB中的工具SIMULINK画出系统的结构图,同时仿真得到响应的阶跃响应曲线。未校正系统的阶跃响应曲线如图6所示。

图5未校正系统结构图

图6未校正系统的阶跃响应曲线

从图 6未加校正双容水箱水位控制系统阶跃响应曲线可以看出系统不稳定。

4.1.2 绘制Bode、Nyquist图

编写程序:

n1=0.519;

d1=[108 1];

g1=tf(n1,d1,'inputdelay',5);%上水箱开环传递函数

g01=feedback(g1,1);%上水箱闭环传递函数

n2=0.461;

d2=[100 1];

g2=tf(n2,d2,'inputdelay',10);%下水箱传递函数

gc=g01*g2%串级控制系统开环传递函数

figure(1)

bode(gc)%bode图

figure(2)

nyquist(gc)

figure(3)

step(feedback(gc,1))%单位负反馈系统阶跃响应

-250-200-150-100-500M a g n i t u d e (d B

)

10

10

10

10

10

-2.9491

-1.4746

P h a s e (d e g )

Bode Diagram

Frequency (rad/s)

图7未校正的

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

系统的

Bode 图

图8 未校正系统的Nyquist 图

Step Response Time (seconds)

A m p l i t u d e

0.02

0.04

0.06

0.08

0.1

0.12

0.14

System: untitled1

Rise time (seconds): 234

System: untitled1Settling time (seconds): 405

System: untitled1P eak amplitude: 0.136Overshoot (%): 0.0359At time (seconds): 676

System: untitled1Final value: 0.136

图9 未校正系统的单位阶跃响应曲线

由图7、8、9也可以看出系统处于非稳定状态。 4.2加控制器后的稳定性

4.2.1 PID 初步调整

图10校正后的双容水箱液位串级控制系统结构图

图11副回路PID参数

图12主回路PID参数

图13副回路输出曲线

图14串级PID控制系统的阶跃响应曲线

从SIMULINK仿真的系统单位阶跃响应曲线可以看出我们所设计的串联PID 校正已使系统达到稳定。下面我们将求出阶跃系统响应的动态性能指标的具体值。

4.2.2 PID不同参数响应曲线

主回路控制器不同参数的调整响应曲线:

情况一:

情况二:

副回路控制器不同参数的调整响应曲线:情况一:

情况二:

4.3校正后系统输出动态性能

为了方便查看校正后系统输出动态性能,本文将采用初步设定的PID参数值,即

主回路5=P K ,07.0=I K ,0=D K ;副回路10=P K ,05.0=I K ,0=D K ,运用Matlab 编程,绘制加了PID 控制器后系统的阶跃响应输出曲线,Bode 图及Nyquist 图,并对未加校正和加校正的系统进行比较。

4.3.1 系统阶跃响应输出曲线

t=0:0.01:500; num=0.519; den=[108 1];

g01=tf(n1,d1,'inputdelay',5);%上水箱传递函数 kp1=10; ki=0.05;

kd=0;%副回路PID 控制器参数 s=tf('s'); Gc1=kp1+ki*1/s;

g1=feedback(g01*Gc1,1);%副回路加PID 控制器后的闭环传递函数 kp2=5; ki2=0.07;

kd2=0;%主回路PID 控制参数 num2=0.461; den2=[100 1];

g02=tf(n2,d2,'inputdelay',10); s=tf('s'); Gc2=kp2+ki*1/s;

GO=g1*Gc2*g02%PID 串级系统开环传递函数 g2=feedback(GO,1)%PID 串级系统闭环传递函数 figure(1)

step(g2,':',t)%加PID 控制器的串级控制系统阶跃响应 figure(2) bode(GO) figure(3) nyquist(GO)

Time (seconds)

A m p l i t u d e

050100150200250300350400450500

图15校正后的串级控制系统阶跃响应曲线

M a g n i t u d e (d B )

10

10

10

10

10

10

P h a s e (d e g )

Bode Diagram

Frequency (rad/s)

图16校正后系统的Bode 图

-1.2

-1-0.8-0.6-0.4-0.200.2

-20-15

-10

-5

5

10

15

20

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

图17校正后系统的Nyquist 图

4.4结论分析

比较图7和图16,图8和图17,图9和图15,不难发现加了PID 控制器系统的性能得到一定的提升,如果想得到更好的性能指标,需要进一步调整主副回路PID 控制器的参数。现本设计就针对以上仿真结果列出下表,以更加清楚对比加校正前后系统的指标变化。

表1 校正前后系统指标比较

由表格数据分析PID 控制前后系统动态性能和稳态性能,调节时间由405s

降到192s ,上升时间由234s 降到49.9s ,快速性比较好。加PID 控制器后终值稳定在1。但是系统超调量增加。PID 在生产生活中的应用十分广泛,因为PID 控制具有易于调节,工作稳定,相对简单等优点。

本文通过对双容水箱串级PID 控制展现了PID 控制器的优缺点及一些特性。

双容水箱毕业设计

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- (一)题目: 双容水箱自动控制系统和动画设计 题目完成形式: 开题报告、毕业论文、程序流程图、源程序 主要内容: 双容水箱自动控制系统设计:水箱形状选型,上下水电磁阀、水泵等标准件选型,压力 传感器、水位传感器的选型等;工艺流程和计算机动画设计;自动控制系统调试:利用共性 参数测控系统,调试双容水箱液体流速和水位的自动控制。 选题分析(科学性、可行性论证)和内容简要: 双容水箱自动控制是流程工业的典型代表,通过设计双容水箱并实现其自动控制,掌握 流程工业的自动控制方法。双容水箱系统原理为:设计两个串联水箱,水箱1利用流体压力 传感器检测液位高度,通过变速水泵调节流量,达到精确控制水箱水位的目的;水箱2利用 水位传感器检测液面高度,当液面达到控制液面上限,自动停止供水,低于控制液面下限, 开始供水。其计算机测控系统采用“共性参数测控系统”。 内容摘要(主要解决的问题、难点): 了解流程工业双容水箱的工作原理和实际应用,掌握双容水箱自 动控制原理,掌握水压、水位的测方法和水位的两种控制方法,掌握 计算机数据采集和自动控制原理; 主要任务: 1、查阅双容水箱工业控制原理与应用的相关文献,完成文献综述; 2、设计双容水箱工作原理图、总装配图和零部件图; 3、传感器和水泵等测控单元选型和信号调试; 4、设计双容水箱工艺流程计算机动画; 5、利用共性参数测控系统,配置计算机软件实现自动水位控制。提交文档: 开题报告、论文、系统原理图、总装配图和零部件图、工艺流程计算机动画、双容水箱 自动控制实验报告、英文文献翻译。 备注: 有较好的计算机绘图和工程测试基础,具备一定的的电子电路知识。

双容水箱实验报告(采用PID+模糊控制)

目录 摘要2 一.PID控制原理、优越性,对系统性能的改善3 二.被控对象的分析与建模6 三.PID参数整定方法概述8 3.1 PID控制器中比例、积分和微分项对系统性能影响分析8 3.1.1 比例作用8 3.1.2 积分作用8 3.1.3 微分作用9 3.2 PID参数的整定方法10 3.3 临界比例度法12 3.4 PID参数的确定15 四.控制结构16 4.1 利用根轨迹校正系统16 4.2 利用伯德图校正系统18 4.3 调整系统控制量的模糊PID控制方法20 4.3.1模糊控制部分20 4.3.2 PID控制部分23 五.控制器的设计24 六.仿真结果与分析25 七.结束语27 参考文献28

针对双容水箱大滞后系统,采用PID方法去控制。首先对PID控制中各参数的作用进行分析,采用根轨迹校正、伯德图校正的方法,对系统进行校正。最后采用调整系统控制量的模糊PID控制的方法,对该二阶系统进行控制。同时,在MATLAB下,利用Fuzzy工具箱和Simulink仿真工具,对系统的稳定性、反应速度等各指标进行分析。 关键字:双容水箱,大滞后系统,模糊控制,PID,二阶系统,MATLAB ,Simulink

For T wo-capacity water tankbig lag system,using PID to control this system. First, to analyze the effectofeach parameter of PID. And the root-locus technique and bode diagram is adopted to design the correcting Unit.Then, fuzzy PID control method was used to adjust this second-order system.And a simulation model of this system is built with MATLAB Fuzzy and SIMULINK,with it analyzing the system stability ,reaction velocity and other indexs. Keywords:two-capacity water tank,big lag system,fuzzy control,PID,second-order system 一.PID控制原理、优越性,对系统性能的改善

DCS课程设计 水箱液位串级控制解析

目录 1 题目背景与意义 (1) 1.1 题目背景 (1) 1.2 课题意义 (1) 2 设计题目介绍 (1) 2.1设计内容和要求 (1) 2.2 集散控制系统基本组成 (2) 2.3 设计原理及分析 (3) 3 系统设计方案 (6) 3.1双容水箱控制 (7) 3.2串级控制 (7) 4 系统硬件设计 (8) 4.1数据采集模块 (8) 4.1.1 模拟量输入模块 (8) 4.1.2 模拟量输出模块 (9) 4.2仪表和执行机构选型 (11) 4.3系统连线 (11) 4.3.1 模拟量输入模块FM148A接线 (11) 4.3.2模拟量输出模块FM151A接线 (12) 5 系统软件设计 (12) 5.1组态画面的设计 (13) 5.2通讯设置 (13) 6 系统仿真调试 (14) 7 结论 (16) 参考文献.......................................... 错误!未定义书签。7

1 题目背景与意义 1.1 题目背景 集散控制系统(Distributed control system),是以多个微处理机为基础利用现代网络技术、现代控制技术、图形显示技术和冗余技术等实现对分散控制对象的调节、监视管理的控制技术。其特点是以分散的控制适应分散的控制对象,以集中的监视和操作达到掌握全局的目的。系统具有较高的稳定性、可靠性和可扩展性。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 DCS系统在现代化生产过程控制中起着重要的作用。随着工业自动化水平的不断提高,计算机的广泛运用,人们对工业自动化的要求也越来越高。而DCS 又有延续性和可扩充性,易学易用性和通用性,使得DCS得到长足的发展。DCS,分散控制系统,采用控制功能分散,显示操作集中,兼顾分散而自治的集散控制系统。并随着科学技术发展迅猛,在工控自动化领域发展中也得到很快的提高。 1.2 课题意义 集散控制系统是当前先进工业控制系统主要的结构形式,在高校,集散控制系统是最接近实际生产过程的一门专业课。通过此方向的课程设计,能够联系学生几年来学习的网络知识,计算机知识,仪表传感器知识,控制系统知识,培养学生的控制工程设计能力。主要要求锻炼学生以下两种能力: 1.通过工业数据通信与控制网络课程设计的学习,了解工业数据通信与控制网络的技术貌。 2.从介绍的基础知识入手,较深入的了解多种现场总线各自的技术特点、规范、通信控制芯片、接口电路以及控制网络的设计与应用,熟悉工控组态软件下的组态设计,并能进行较复杂的工业控制系统设计分析。 2 设计题目介绍 2.1设计内容和要求 根据所提供的双容水箱工艺对象,通过分析其对象动态特性,设计和实施完整的控制方案,具体完成: ①根据提供的工艺对象,实验室的和利时公司集散控制系统,完成系统的网络

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

双容水箱液位自动控制系统的整定-任务书

课程设计任务书 2012—2013学年第一学期 专业:测控技术与仪器学号:姓名: 课程设计名称:过程控制系统课程设计 设计题目:双容水箱液位自动控制系统的整定 完成期限:自2012 年11 月12 日至2012 年11 月23 日共2 周一、设计依据 在我国随着社会的发展,很早就实行了自动化控制。而在我国液位控制系统也得到了广泛应用,特别是水箱液位控制还在黄河治水中得到了利用,通过液位控制系统检测黄河的水位高低,以免黄河水位过高而在不了解的情况下,给我们人民带来生命危险和财产损失。本设计目的是使学生通过该实践环节,能对经典控制理论有较全面的了解和掌握,同时能熟悉和掌握自动控制的基本理论在过程控制中的应用,掌握过程控制系统的组成原理及分析方法,加深理解调节器参数对控制系统质量的影响,掌握过程控制系统的工程整定方法,从而增加解决实际问题的能力,并为今后的学习和工作打下良好的基础。 二、要求及主要内容 1、说明双容水箱液位自动控制系统的工作原理,并详细画出控制系统结构图,根据被控对象的工作原理进行动态特性的测取。 2、分别对双容水箱单回路和串级控制系统进行整定。 3、根据参数整定情况,检查系统性能是否满足给定指标要求。如若不满足要求,应根据测试结果,进行适当调整,如果因系统原因不能满足的指标和要求要给出分析的结果,并最后记录相关的性能指标。 4、撰写课程设计的技术报告,应将全部分析、设计、调试的结果,进行系统的总结,分章节撰写成文。报告中应书写工整,图表齐全,对调试结果要有分析说明。 三、途径和方法 1、熟悉双容水箱自动调节装置 2、通过动态特性试验,对双容水箱对象的模型参数进行测取。 3、对单回路控制系统调节器参数进行整定并实现要求 4、对串级控制系统参数调节器参数进行整定并实现要求;

三容水箱液位控制

三容水箱液位过程控制设计 专业:自动化 班级:2011级4班 组员:孙健 组员:姜悦2 组员:黄潇20115041 指导老师:陈刚 重庆大学自动化学院 2015年1月

目录 一、现代工业背景 (1) 二、问题的提出 (2) 三、模型的建立 (3) 3.1 单容水箱的数学模型 (3) 3.2 双容水箱的数学模型 (5) 3.3 三容水箱模型 (6) 四、算法的描述 (8) 4.1对原始模型的仿真 (8) 4.2添加P控制并对其仿真 (9) 4.3添加单回路控制并对其仿真 (10) 4.4添加PID控制和单回路控制并对其仿真 (11) 五、结果及分析 (14) 六、总结与体会 (15) 6.1 组长孙健的总结 (15) 6.2 组员姜悦的总结 (15) 6.3 组员黄潇的总结 (15) 七、参考文献 (17) 八、附录 (18)

一、现代工业背景 世界上任何国家的经济发展,都伴随着人民生活水平的改善和城市化进程的不断加快。但是相应的淡水资源的需求和消耗也在不断增多。水,作为一种必不可少的资源,长期以来一直被认为是取之不尽、用之不竭的。在这种观点的驱使下,水环境的质量越来越恶劣、水资源短缺也越来越严重,这一切都加重了城市的负荷,带来一系列危及城市生存与发展的生态环境问题。污水也是造成环境污染的来源之一。这个污染源的出现引起了世界各国政府的关注,治理水污染环境的课题被列入世界环保组织的工作日程。 建设污水处理厂,消除水污染也是为人民造福的一项事业,政府一时又拿不出巨大的资金投入到治理项目的建设中去。为了使污染快速得到控制,向公民投放建设专项债券,给公民一定的高于银行存款利息的待遇,使公民的资金投入到基础设施建设,发挥这部分资金的作用,也能为政府解除一些资金筹措的忧虑,又体现了全民的环保意识。 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经济发展与水环境污染是成正比的,也就是说经济发展的速度越快,相应带来的水环境污染就越严重。人民生活离不开水,工农业生产发展更离不开水,排出来的无论是生活污水还是工业废水都会带来不同程度的污染。经济的发展是需要资金投入的,保护环境不受污染,同样也需要钱,当资金有限的时候,就需要将经济发展和保护环境这两项硬指标进行有机的协调,不能造成顾此失彼或厚此薄彼的局面。若顾经济发展失环境保护,就会产生环境严重受到污染,再投入相当的资金也不会治理到原来的清洁环境。国外的反面教训警示了我们,日本的伊势湾受到沿海石化生产废水的污染,使伊势湾的水产品受到严重的损失,产生了不能食用的后果,虽经多年的治理也难以恢复污染前的环境状况。这也充分证明了经济发展与环境保护的密切关系。

自动控制课程设计--双容水箱液位串级控制

自动控制课程设计 课程名称:双容水箱液位串级控制 学院:机电与汽车工程学院 专业:电气工程与自动化 学号: 631224060430 姓名:颜馨 指导老师:李斌、张霞 2014/12/30

0摘要 (2) 1引言 (2) 2对象分析和液位控制系统的建立 (2) 2.1水箱模型分析 (2) 2.2阶跃响应曲线法建立模型 (3) 2.3控制系统选择 (3) 2.3.1控制系统性能指标【2】 (3) 2.3.2方案设计 (4) 2.4串级控制系统设计 (4) 2.4.1被控参数的选择 (4) 2.4.2控制参数的选择 (5) 2.4.3主副回路设计 (5) 2.4.4控制器的选择 (5) 3 PID控制算法 (6) 3.1 PID算法 (6) 3.2 PID控制器各校正环节的作用 (6) 4 系统仿真 (7) 4.1.1系统结构图及阶跃响应曲线 (7) 4.2.1 PID初步调整 (10) 4.2.2 PID不同参数响应曲线 (12) 4.3.1 系统阶跃响应输出曲线 (17) 5加有干扰信号的系统参数调整 (20) 6心得体会 (22) 7参考文献 (22)

液位控制是工业生产乃至日常生活中常见的控制,比如锅炉液位,水箱液位等。针对水箱液位控制系统,建立水箱模型并设计PID控制规律,利用Matlab 仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。 关键词:串级液位控制;PID算法;Matlab;Simulink 1引言 面液位控制可用于生产生活的各方面。如锅炉液位的控制,如果液位过低,可能造成干烧,容易发生事故;炼油过程中精馏塔液位的控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。本文针对双容水箱,以下水箱液位为主控制对象,上水箱为副控制对象。选择进水阀门为执行机构,基于Matlab建模仿真,采用PID控制算法,整定PID参数,得出合理控制参数。 2对象分析和液位控制系统的建立 2.1水箱模型分析 现以下水箱液位为主调节参数,上水箱液位为副调节参数,构成传统液位串级控制系统,其结构原理图如图1所示。 图1 双容水箱液位控制示意图

双容水箱液位串级控制系统设计(精)教学总结

双容水箱液位流量串级控制系统设计 ◆设计题目 双容水箱液位流量串级控制系统设计 ◆设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱1 水箱2 图1 系统示意图◆设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1,针对该水箱工作过程设计单回路PID 调节器,要求画出控制系统方框图及实施方案图,并给出PID 参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1,针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID 控制与串级控制进行仿真试验结果比较,并说明原因。 ◆设计任务分析

一、系统建模 系统建模基本方法有机理法建模和测试法建模两种建模方法。 机理法建模就是根据生产过程中实际发生的变化机理,写出各种有关的平衡方程,从中获得所需的数学模型 测试法一般只用于建立输入—输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的特点是把研究的工业过程视为一个黑匣子,完全从外特性上测试和描述它的动态性质。 对于本设计而言,由于双容水箱的各个环节的数学模型已知,故采用机理法建模。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:水箱2液位; 主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 控制对象特性: Gm1(S )=1/(0.1S+1)(水箱1传递函数); Gm2(S )=1/(0.1S+1)(水箱2传递函数)。 控制器:PID ; 执行器:流量控制阀门;

双容水箱液位串级控制系统课程设计

双容水箱液位串级控制系统课程设计 1. 设计题目 双容水箱液位串级控制系统设计 2. 设计任务 图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。试设计串级控制系统以维持下水箱液位的恒定。 1 图1 双容水箱液位控制系统示意图 3. 设计要求 1) 已知上下水箱的传递函数分别为: 111()2()()51p H s G s U s s ?==?+,22221()()1()()()201 p H s H s G s Q s H s s ??===??+。 要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声); 2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述; 3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。 4.设计任务分析

系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:下水箱液位; 控制对象特性: 111()2()()51 p H s G s U s s ?==?+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ??= ==??+(下水箱传递函数)。 控制器:PID ; 执行器:控制阀; 干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 设计中,首先进行单回路闭环系统的建模,系统框图如下: 可发现,在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

过程控制―上水箱液位与进水流量串级控制系统.

目录 1 过程控制系统简介 (2) 1.1 系统组成 (2) 1.2 电源控制台 (3) 1.3 总线控制柜 (3) 2 实验原理 (4) 2.1 单容水箱设备工作原理 (4) 2.2 双容水箱设备工作原理 (7) 2.3 系统工作原理 (9) 2.4 控制系统流程图 (9) 3实验结果分析 (11) 3.1 实验过程 (11) 3.2实验分析 (12) 3.2.1单容水箱实验结果分析 . (12) 3.2.2双容水箱实验结果分析 . (14) 3.2.3单容双容水箱比较 . (16) 3.3实验结论 (17) 总结 . (18) 参考文献 (19)

1 过程控制系统简介 1.1 系统组成 本实验装置由被控对象和上位控制系统两部分组成。系统动力支路分两路:一路由三相(380V 交流)磁力驱动泵、电动调节阀、直流电磁阀、PA 电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V 变频)、涡轮流量计及手动调节阀组成。 1、被控对象 水箱:包括上水箱、中水箱、下水箱和储水箱。储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。 管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。 2、检测装置 压力传感器、变送器:采用SIEMENS 带PROFIBUS-PA 通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS 带PROFIBUS-PA 通讯接口的检测和变送一体的电磁式流量计。 3、执行机构 调节阀:采用SIEMENS 带PROFIBUS-PA 通讯协议的电动调节阀,用来进行控制回路流量的调节。它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

毕业设计:双容水箱系统的建模、仿真与控制

自动控制毕业设计双容水箱系统的建模、仿真与控制 2015年 7月23日

摘要 自动控制课程设计是自动化专业基础课程《自动控制原理》和《现代控制理论》的配套实践环节,对于深入理解经典控制理论和现代控制理论中的概念、原理和方法具有重要意义。本次课程设计以过程控制实验室双容水箱系统作为研究对象,开展了机理建模、实验建模、系统模拟、控制系统分析与综合、控制系统仿真等多方面的工作。 课程设计过程中,首先进行了任务I即经典控制部分的工作,主要从系统模型辨识、采集卡采集、PID算法的控制、串联校正进行性能指标的优化、滞后控制等方面进行了设计。然后,又进行了任务II即现代控制部分的工作,主要从系统模型的串并联实现、能控能观标准型实现、状态反馈设计、状态观测器设计、降维观测器设计等方面进行了深入的研究。最后选做部分单级倒立摆的内容,并对整个课程设计做了总结。 关键词:自动控制;课程设计;PID控制;根轨迹;极点配置;MATLAB;数据采集;经典控制;现代控制。

目录 第1章引言 (1) 1.1 课程设计的意义与目的 (1) 1.2 课程设计的主要内容 (1) 1.3 课程设计的团队分工说明 (2) 第2章双容水箱系统的建模与模拟 (3) 2.1 二阶水箱介绍 (3) 2.2 二阶水箱液位对象机理模型的建立 (3) 2.3 通过实验方法辨识系统的数学模型的建立 (7) 2.3.1 用试验建模(黑箱)方法辨识被控对象数学模型 (7) 2.3.2 通过仿真分析模型辨识的效果 (8) 2.4 物理系统模拟 (9) 第3章双容水箱控制系统的构建与测试 (11) 3.1 数据采集卡与数据通讯 (11) 3.2 构建系统并进行开环对象测试 (12) 第4章双容水箱的控制与仿真分析——经典控制部分 (14) 4.1采用纯比例控制 (14) 4.2采用比例积分控制 (17) 4.3采用PID控制 (21) 4.4串联校正环节 (24) 4.5采样周期影响及滞后系统控制性能分析 (28) 第5章双容水箱的控制与仿真分析——现代控制部分 (31) 5.1状态空间模型的建立 (31) 5.2状态空间模型的分析 (33) 5.3状态反馈控制器的设计 (34) 5.4状态观测器的设计 (37) 5.5基于状态观测的反馈控制器设计 (43) 第6章基于状态空间模型单级倒立摆控制系统设计 (48) 6.1 单级倒立摆系统介绍 (48)

双容水箱液位流量串级控制系统设计

题目:双容水箱液位流量串级控制系统设计1.设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱2 图1 系统示意图 2.设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1), 副被控对象(流量)传递函数W2=1/(10s+1)。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1),针对该水箱工作过程设计单回路PID调节器,要求画出控制系统方框图及实施方案图,并给出PID参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1),针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID控制与串级控制进行仿真试验结果比较,并说明原因。 3. 设计任务分析 (1)液位控制系统是以改变进水大小作为控制手段,目的是控制下水箱液位处于一个稳定值。 (2)单回路控制系统:对于此系统,若采用单回路控制系统控制液位,以液 位主控制信号反馈到控制器PID,直接去控制进水阀门开度,在无扰动情况下可以采用,但对于有扰动情况,由于控制过程的延迟,会导致控制不及时,造成超调量变大,稳定性下降,控制系统很难获得满意效果

(3)串级控制系统采用两套回路,其中内回路起粗调作用,外回路用来完成细调作用。对液位控制系统,内回路以流量作为前导信号控制进水阀开度,在有扰动情况下可以提早反应消除扰动引起的波动,从而使主控对象不受干扰,另外内回路的给定值受外回路控制器的影响,根据改变更改给定值,从而保证负荷扰动时,仍能使系统满足要求 1 ()T s G 2()T s G --主副控制器的传递函数 ()u s G --控制阀的传递函数 ()z s G --执行器的传递函数 1 2()()m m s s G G --主副变送器传递函数 01 ()s G 02()s G --主副对象的传递函数 4.单回路PID 控制的设计 (1)无干扰下的单回路PID 仿真方框图

双容水箱实验报告(采用PID+模糊控制)

目录 摘要--------------------------------------------------------------- 2 一.PID控制原理、优越性,对系统性能的改善-------------------------- 4二.被控对象的分析与建模-------------------------------------------- 6 三.PID参数整定方法概述-------------------------------------------- 8 3.1 PID控制器中比例、积分和微分项对系统性能影响分析------------ 8 3.1.1 比例作用----------------------------------------------- 8 3.1.2 积分作用----------------------------------------------- 9 3.1.3 微分作用----------------------------------------------- 9 3.2 PID参数的整定方法------------------------------------------ 10 3.3 临界比例度法---------------------------------------------- 12 3.4 PID参数的确定--------------------------------------------- 15 四.控制结构------------------------------------------------------- 16 4.1 利用根轨迹校正系统----------------------------------------- 16 4.2 利用伯德图校正系统----------------------------------------- 18 4.3 调整系统控制量的模糊PID控制方法--------------------------- 20 4.3.1模糊控制部分------------------------------------------ 20 4.3.2 PID控制部分------------------------------------------ 23五.控制器的设计--------------------------------------------------- 24 六.仿真结果与分析-------------------------------------------------- 25 七.结束语---------------------------------------------------------- 27参考文献----------------------------------------------------------- 28

水箱液位串级控制系统

水箱液位串级控制系统 一、实验目的 1.通过实验了解水箱液位串级控制系统组成原理。 2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。 3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。 4.掌握液位串级控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、实验原理 本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图5-2所示。 图5-2 水箱液位串级控制系统 (a)结构图(b)方框图 四、实验内容与步骤 本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。 具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。 (一)、智能仪表控制 1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

双容水箱液位定值控制系统实验报告

精品文档 XXXX大学 电子信息工程学院 专业硕士学位研究生综合实验报告 实验名称:双容水箱液位定值控制系统_ 专业: 控制工程 姓名: XXX 学号: XXXXXX 指导教师:XXX 完成时间:XXXXX

实验名称:双容水箱液位定值控制系统 实验目的: 1 ?通过实验进一步了解双容水箱液位的特性。 2 ?掌握双容水箱液位控制系统调节器参数的整定与投运方法。 3 ?研究调节器相关参数的改变对系统动态性能的影响。 4 .研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。 5 .掌握双容液位定值控制系统采用不同控制方案的实现过程。 实验仪器设备: 1. 实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个; 2. SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3. SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4. SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5. SA-41挂件一个、CP5611专用网卡及网线; 6. SA-42挂件一个、PC/PPI通讯电缆一根。 实验原理: 本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位 信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。调节器的参数整定可采用本 章第一节所述任意一种整定方法。本实验系统结构图和方框图如图所示。 屯动阀下水前

上水箱液位与进水流量串级控制系统

上水箱液位与进水流量串级控制系统 摘要 随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。 本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。流量控制是内环,液位控制是外环。 系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。 关键词:PLC控制;变频器;PID控制;Wincc组件;上位机

目录 上水箱液位与进水流量串级控制系统 (1) 摘要 (1) 1.过程控制系统简介 (4) 1.1过程控制介绍 (4) 1.2 串级控制系统的组成 (4) 1.2.1 硬件介绍 (4) 1.2 电源控制台 (6) 1.3 总线控制柜 (6) 1.4 软件介绍 (7) 1.6系统总貌图 (7) 2.串级控制系统简介 (8) 2.1液位串级控制系统介绍 (8) 2.2 串级控制系统的概述 (8) 2.3串级控制系统的工作过程 (8) 2.4 系统特点及分析 (9) 2.5 串级控制系统的整定方法 (9) 2.6主、副回路中包含的扰动数量、时间常数的匹配 (10) 2.7 PID控制工作原理 (10) 3 上水箱液位与进水流量串级控制系统 (11) 3.1 实验设备: (11) 3.2 液位-流量串级控制系统的结构框图 (11) 3.3 系统工作原理 (11) 3.4 控制系统流程图 (12) 3.5 实验过程 (13) 3.6 实验结果分析 (15) 3.6.1 整定过程分析 (15) 3.6.2 扰动下的响应分析 (16) 3.6.3 主、副调节器采用不同调节器时对系统动态性能的影响 (16) 3.6.4 主、副调节器采用不同PID参数时对系统动态性能的影响 (19)

双容水箱液位控制系统36371

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

相关主题