搜档网
当前位置:搜档网 › 分子诊断技术在肿瘤诊断中的应用

分子诊断技术在肿瘤诊断中的应用

分子诊断技术在肿瘤诊断中的应用
分子诊断技术在肿瘤诊断中的应用

分子诊断技术在肿瘤诊断中的应用

1、肿瘤易感基因检测

单独遗传因素造成肿瘤的概率低于5%。肿瘤的发生主要是遗传基因和环境因素共同作用的结果,其中遗传基因是内因,与人体是否具有肿瘤易感基因有关。肿瘤易感基因检测就是针对人体内与肿瘤发生发展密切相关的易感基因而进行的,它可以检测出人体内是否存在肿瘤易感基因或家族聚集性的致癌因素,根据个人情况给出个性化的指导方案。肿瘤易感基因检测特别适合家族中有癌症病例的人群,可以帮助这类人群提前了解自身是否存在肿瘤易感基因。已知的肿瘤易感性基因有Rb1、WT1、p53、APC、hMSH2、hMLH1和BRCA1等,与其相对应的癌症综合征(附表)。

遗传性癌症综合征与易感基因

癌症综合征易感基因

视网膜母细胞瘤Rb1

Wilms瘤WT1

LI-Fraumeni综合征p53

家族性腺瘤性息肉瘤(FAP)APC

遗传性非息肉性结肠癌(HNPCC) hMSH2,hMSH1

乳腺癌BRCA1

卵巢癌BRCA1

2、肿瘤相关病毒检测

业已证明一部分肿瘤的发生和病毒感染有关,因而检测这些相关病毒不仅可探计肿瘤和病毒的关系,而且可以找出肿瘤的易患人群。由于病毒太小,且难以培养,一般方法检测病毒效果极差。而核酸杂交技术与PCR技术用于病毒检测具有特异性强、敏感性高等特点。

人类某些肿瘤可能与病毒有关

病毒相关肿瘤

HPV6、11亚型 宫颈尖锐湿疣(乳头状瘤)

HPV16、18亚型 宫颈上皮内新生物和癌

HSV及CMV宫颈恶性病变

HBV原发性肝癌

EB病毒伯基特淋巴瘤、鼻咽癌

HSV6型 霍奇金病和鼻咽癌

微小病毒葡萄胎

ATL病毒成人T细胞白血病/淋巴瘤

3、肿瘤的早期分子诊断

研究发现,肿瘤相关基因的突变出现在肿瘤发生的最早期,远早于肿瘤临床症状的出现,是肿瘤早期诊断的重要依据。通过基因突变检测进行早期诊断能够从最根本的基因上寻找肿瘤发生的微小趋势,第一时间作出肿瘤预警,通过针对性的环境或生活方式调整,能有效预防肿瘤的形成;在肿瘤发生初期实施针对性治疗,能极大程度增加治愈的概率。

K-ras基因突变是一种胰腺癌、结肠癌和肺癌等肿瘤中发生率较高的分子事件,突变集中在第12、13和61编码子。应用细针穿刺活检材料检测胰腺癌的第12编码子变突,检出

率可达100%,应用PCR-RFLP方法检测结肠癌患者粪便中的Ras基因突变,其检出率与瘤组织中相似,可用于高危人群的筛选。

目前临床诊断技术包括影像学检查及生化指标的检测,近年来这些技术手段已经有了很大的发展,但仍存在准确度低、灵敏度不足的缺陷,对疾病的早期诊断易出现假阴性。基因检测灵敏度高特异性强,多靶标可排除假阳性,早期发现病变,并可用于疾病的早期筛查,提高疾病治愈率。

4、肿瘤的诊断与鉴别诊断

肿瘤标记物由肿瘤组织和细胞产生的与肿瘤的形成、发生相关的物质,这些物质存在于肿瘤细胞的胞核、胞质、胞膜上或体液中;不存在于正常成人组织而见于胚胎组织,或在肿瘤组织中含量超过正常含量。

由于肿瘤细胞具有侵袭能力、转移、无限增殖、逃逸凋亡及血管生成等独特的生物学特征,且均由复杂的分子通路介导,因此这些分子通路中任何组成成分均可能作为肿瘤分子标记物。通过肿瘤分子标记物的存在或量的改变可了解肿瘤的组织发生来源、细胞分化及功能,以进行肿瘤筛查(仅AFP与PSA用于高危人群)、肿瘤分子诊断、分类、判断预后及指导治疗。

(1)肿瘤标记物的分类:肿瘤标志分为基因型标志和基因表型标志:基因型标志是指基因本身突变和表达异常,能反映癌前启动阶段的变化;基因表型标志是指基因表达产物异常,表现为其所编码的表达产物合成紊乱,产生胚胎性抗原、异位蛋白等,一般出现较晚。因此,寻找特异性肿瘤基因型标志进行肿瘤基因诊断,对于肿瘤的早期发现和诊断,以及肿瘤的预防和治疗具有至关重要的意义。

(2)常见肿瘤与其相关的血清学标志物

部分常见肿瘤与其相关的血清学标志物

肿瘤名称血清中的肿瘤标志物

肝癌AFP、CEA、TPS、TPA、γ-GT等

肠道肿瘤CEA、CA199、CA242、CA72-4、TPS等

胃癌MG7-Ag、CEA、CA199、TPS等

卵巢癌CA125、CA153、CEA、AFP、TPS等

乳腺癌CA153、CA125、CEA、TPS等

鼻咽癌EBV-IgA、 EBV-IgM、TPA、TPS、SCCA、CEA等

胰腺癌CA199、CA242、CEA、TPS等

肺癌SCCA、NSE、CA125、CA153、CEA、TPS等

恶黑S100、TPS、TPA、CEA等

淋巴瘤LDH、TPS、CEA、β2-MG等

甲状腺癌TSH 、T3、T4、CEA、TPS、β2-MG等

垂体瘤性激素6项(泌乳素等)、HCH、TPS等

绒癌HCG、CEA、CA125、TPS等

防癌普查C12蛋白芯片、TPS等

(3)常见肿瘤与相关的免疫组化标志物

鳞 癌CK10&13、CK5&6、CK34bE12、CK(AE3)

腺 癌CK8、CK18、CK35bH11

乳腺癌GCDFP-15、Mammaglobin、 ER、PR、HER2、EGFR、VEGR、E-cadherin、34bE12、P63

卵巢癌ER、PR、PCNA、Ki-67、c-erbB-2、HCG、AFP、CK7+、CK20-、CA125

卵巢粘液癌CK7+、CK20-

甲状腺癌ER、PR、PCNA、c-erbB-2、P53、nm23、TG、Calcitonin、PH(甲状腺素)

消化系统CDX-2、CEA、CA199、CK7、CK20

胰腺癌PCNA、P53、nm23、CA199、CK7+、CK20-

前列腺癌PSA、PSAP、PSMA、P504S、 ER、PR、AR、P53、P21、CK7+、CK20-、CK34bE12 子宫内膜癌ER、PR、C-erbB-2、P53、CK7+、CK20-

肝细胞癌HepPar-1、Glypican-3、AFP、CK8、CK18、CEA、CK7+、CK20-

胆管癌CD10、CEA、CK7、CK18、CK19

肾细胞癌RCC、PAX2、ER、PR、P53、CK7+、CK20-

移行细胞癌P53、P21、CK7+、CK20+

肺癌P53、nm23、TTF-1

间皮瘤Keratin、Vimentin、HBME-1、Calretinin

睾丸肿瘤Oct-4、D2-40、CD117、HCG、AFP、ALAP 、AE1/AE3、CK8

GIST CD117、CD34

(4)肿瘤染色体与基因重排:下表列举了部分近年来诊断发现的具有特征性染色体易位及相应融合基因的肿瘤,这些分子表达谱(expression profiling)已经被用作重要的诊断和鉴别诊断的依据。

(5)人类肿瘤的代表性癌基因及其分类

原癌基因作用

癌基因

活化机制亚细胞定位人类的肿瘤

生长因子: PDGF-β链 FGF

sis hst-1 int-2

过度表达 过度表达

细胞外 细胞外

星形细胞,骨肉瘤,乳腺癌等 胃癌,胶质母细胞癌 膀胱癌,乳腺癌,黑色素瘤 生长因子受体: EGFR 家族

csf-1受体 erb-B1 erb-B2 erbB-3 fms 过度表达 扩增 过度表达 点突变 透膜 透膜 透膜 透膜

肺鳞癌,脑膜瘤,卵巢癌等 乳腺癌,卵巢癌,肺癌,胃癌等 乳腺癌 白血病 GTP 结合蛋白

H-ras K-ras N-ras

点突变 点突变 点突变 胞膜内 胞膜内 胞膜内

甲状腺癌,膀胱癌等 结肠癌、肺癌、胰腺癌等 白血病,甲状腺癌

非受体酪氨酸激酶 abl 易 位 胞膜内 慢性髓性及急性淋巴细胞性白血病 转录因子

c-myc N-nyc L-myc

易位 扩增

扩增

核内 核内 核内

Burkitt 淋巴瘤

神经母细胞瘤,肺小细胞癌 肺小细胞癌

(6)抑癌基因与人类肿瘤

基因 染色体定位 相关肿瘤 基因产物及功能 Rb

13q14

RB、成骨肉瘤、软组织肉瘤、胃癌、SCLC、乳癌、结肠癌、卵巢癌等

p105,控制生长

p53 17p13

星状细胞瘤、胶质母细胞瘤、结肠癌、乳癌、成骨肉瘤、SCLC、胃癌、磷状细胞肺癌

P53 控制生长,对细胞周期和凋亡起关键性作用

BRCA 17q21 乳腺癌、卵巢癌、胃癌、肺癌、淋巴瘤 DNA损伤修复及转录调控 PTEN 10q23.3 脑肿瘤、乳腺癌、子宫内膜癌、非小细胞肺癌 通过去磷酸化参与细胞调控

FHIT 3p14.2 多种癌如胃癌、肺癌、宫颈癌、肝癌、乳腺癌、结

肠癌

具有二腺苷三磷酸水解酶活性,

与MSI有关。

ATM 11q22-q23 乳腺癌、卵巢癌、宫颈癌、肺癌、淋巴造血系 多功能蛋白激酶,修复DNA损伤

APC 5q21 家族性腺瘤性息肉病,大肠癌, 在细胞周期进程和细胞生长调控中起作用

WT 11p13 WT、横纹肌肉瘤、肺癌、膀胱癌、乳癌、肝母细胞

WT-ZFP,负调控转录因子

NF-1 17p12 神经纤维瘤、嗜铬细胞瘤、雪旺氏细胞瘤、神经纤

维肉瘤

GAP,拮抗p21rasB

P16 9p21 多种肿瘤:胶质瘤、肺癌、乳腺癌、骨肿瘤、

膀胱癌、肾癌、卵巢癌、淋巴瘤等

细胞周期依赖性激酶4抑制

因子(CKD4I)

(7)细胞凋亡与肿瘤

与细胞凋亡过多或不足相关的肿瘤

细胞凋亡过多 细胞凋亡不足

肿瘤(肿瘤抗原相关的淋巴细胞)、黑色素瘤、肺癌、结肠癌 滤泡性淋巴瘤、P53突变相关的癌、激素依赖性癌(乳腺癌、卵巢癌、前列腺癌)

(8)其它标记物:

①在肿瘤患者外周血循环DNA中可检测到与原发肿瘤细胞相一致的分子细胞遗传学改变。如

Ras基因突变、p53基因突变,P14 ARF、P16INK4、APC基因的异常甲基化,等位基因失衡,

微卫星改变以及DNA免疫球蛋白重链重排等等。

某些肿瘤血清/血浆DNA已检测到的基因变化

肿瘤基因突变/扩增微卫星改变(LOH)启动子异常甲基化

乳腺癌 P53++ p16INK4A+ 肺癌 K-ras、P53+ + P16、APC、MGMT、

GSTP1+

头颈部癌P53+ + P16+

结直肠癌 K-ras、N-ras、APC、P53

P16、hMLH1+

食道癌erB-2+ APC+

前列腺癌erB-2+ GSTP1+

胰腺癌K-ras+

骨骼增生异常综合征N-ras+

膀胱癌 + P14ARF+ 肾癌 +

黑色素瘤 +

肝癌P53+ P15、P16+

②增殖标记物:细胞周期相关抗原、增殖细胞核抗原、生长因子及其受体,周期素,周期素

依赖性蛋白激酶( cyclin dependent Kinase,CDK)及CDK的抑制蛋白等;

③转移潜在性标记物:蛋白酶一尿激酶一血纤维蛋白溶酶原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等;原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等。

④mRNA作为肿瘤分子标记物:PCR检测特异性mRNA对对肿瘤早期诊断和预测微小转移有一定价值。

5、肿瘤的预后监测

分子诊断在肿瘤的监测方面也具有重要的作用,如临床治疗缓解期内白血病的白血病细胞仍达1011,用细胞遗传学方法检出率约为1%~5%,应用核酸杂交技术灵敏度可达0.15%~0.05%,而PCR技术则可使检出率达到10-6左右。提高了对肿瘤转移、复发监测的准确性,有助于及时采取适当的治疗措施。

另外在肿瘤治疗过程中,肿瘤细胞接触抗肿瘤药物后会产生多药耐药性(multidrug resistance,MDR),MDR细胞中有种特异mRNA,转录这种mRNA的基因为mdr基因,细胞中这种mdr基因转录的mRNA越多,细胞的耐药性就越强。mdr的mRNA含量低的白血病患者容达到缓解,并且可以较长时间维持完全缓解,若化疗过程中mdr mRNA逐渐升高,化疗反应会逐渐不敏感,因此用RP-PCR法检测mdr基因对疗效判断有帮助。分子生物学技术在肿瘤基因治疗也起重要作用,如用PCR技术监测导入的外源基因在体内的分布、存活及表达状况。

6、肿瘤的个体化和预见性治疗

分子靶向治疗的实施首先需通过免疫组化(IHC)和荧光原位杂交(FISH)等肿瘤发生、发展的不同时期,可能涉及不同基因的不同变化形式,而基因的变化及基因间的信号传递与肿瘤临床治疗的敏感性密切相关,如能在分子水平对肿瘤基因变化提供指标,对肿瘤的个体化和预见性治疗具有指导意义。

肿瘤个性化用药的基因检测就好比是一把钥匙开一把锁,基因检测等于是在患者身上找到疾病这把“锁”,然后再配药物这把“钥匙”,而不是用一片一片钥匙去套开这把锁。做到有的放矢,为肿瘤病人用药“量体裁衣”,少走弯路。提高治疗水平,减轻治疗过程中的副作用,避免和削减不适当的治疗方案产生的浪费。

7、肿瘤的预后判断:肿瘤基因的突变、扩增及过表达等改变常与肿瘤的预后密切相关。

部分基因突变与肿瘤预后的关系

Her-2/neu扩增 乳腺癌、胃癌、卵巢癌

N-myc扩增 神经母细胞瘤

抑癌基因p53突变 乳腺癌、肝癌、大肠癌、卵巢癌等

Rb视网膜母细胞瘤、骨肉瘤、小细胞肺癌、乳腺癌及膀胱癌等

ras、c-myc、p53等 大肠肿瘤、卵巢癌等

EGFR 胶质细胞、肾癌、肺癌、前列腺癌、胰腺癌、乳腺癌等

微卫星不稳定性(MSI)胃癌、大肠癌、肺癌、肾癌、乳腺癌、白血病、子宫内膜癌等多种肿瘤。

7、肿瘤转移的检测

当前确定肿瘤转移主要是依据常规病理切片的结果,但有些患者虽进行了根治手术,且常规病理切片淋巴结无转移,但随后仍出现肿瘤转移。所以单纯根据常规病理切片来进行预后的判断往往欠科学,因此急需发展新的手段来检测肿瘤的转移。近年来随着免疫学与分子生物学的发展,为更敏感地检测到淋巴道、血道中转移的肿瘤细胞提供可能。东南大学王之

梓的检测肿瘤微转移的基因芯片;上海康成生物的肿瘤转移基因芯片。

转移潜在性标记物检测:蛋白酶一尿激酶一血纤维蛋白溶酶原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等;原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等。

肿瘤转移检测方法及评价

常规病理学肿瘤标本常规检测,直接查找肿瘤细胞,但敏感性较低,有较高的假阴性免疫组织化学检测粘附分子 E-cadherin和CD44,蛋白水平检测

PCR检测特异性mRNA、P53 对肿瘤早期诊断和预测微小转移有一定价值,比蛋白测定具有更高敏感性基因芯片高能量、灵敏度高、特异性强,多靶标可排除假阳性

8、提示基因路径和发生机制:肿瘤是一种基因病,如在肺癌发展的早期,一个或多个染色体的3p区和9P21区发生LOH,这种改变起始于组织学上正常的上皮。随后的变化包括8p21-23,13q14(RB)和17p13( TP53 ),也常在组织学正常的上皮中检测到。相比之下,在原位癌阶段可检测到5q21(APC-MCC区)突变点的等位基因缺失,且出现不定次数的TP53突变。

图:在肺鳞癌多阶段发病机制中相继发生的分子变化

全球分子诊断市场发展方向和趋势

全球分子诊断市场发展方向和趋势--何蕴韶 标签: 何蕴韶分子趋势全球诊断2009-11-27 15:32 全球分子诊断市场发展方向和趋势--何蕴韶 一、概论 从上个世纪70年代开始,随人类基因组计划的发展而出现各种新的生物技术,这些生物技术在临床的广泛应用,推动并在发达国家催熟了一个新兴的临床诊断市场——分子诊断市场。广义的分子诊断包括临床生化和核酸检测,目前主要指应用各种生物技术检测组织个体内DNA或者RNA,用来诊断疾病,监测治疗或者判断预后。人类基因大约有3万个基因,理论上以单个基因为基础的治疗将需要一个匹配的诊断测试,按照大约5%有诊断意义,则有1500个基因为基础的检测可以商业化。 在实际临床应用中,分子诊断产业主要由传染病检测和血液筛查推动并逐步发展起来的,但药物基因组学,预后诊断和分子肿瘤诊断将在近几年并在未来十年显示强劲的市场发展趋势。在欧美等西方发达国家,经过近20年的发展,分子诊断市场是体外诊断市场发展速度最快的市场,从各大生物新闻网站不断对生物公司推出新产品的报道中,我们也可以看出这是一个蓬勃兴盛的市场,也是一个以技术为原动力的市场,是一个具有巨大市场研发潜力的领域。按照分子诊断技术目前实际的应用程度和市场的接受程度,可以主要分为四个主要部分:感染性疾病(包括血液筛查)、遗传病检测(包括染色体病检测)、肿瘤学、药物基因组学。

相对于成熟的临床实验室检测如血液学和微生物学检测领域的低增长或者不增长,分子诊断市场的特征在于空前的增长速度。分子诊断技术将驱动诊断产业的市场容量和应用范围的急剧增长,平均每年增加的收入将超过30%,某些分子诊断领域的增长将超过80%。在某些领域如药物基因组检测,疾病风险诊断和肿瘤分子诊断应用市场,在未来几年中将会更迅猛增长,但目前而言,至少在未来3-5年内,特别是在某些新兴的市场发展大国如中国,其真实的市场机会,主要存在于核酸检测市场的两个主要方面:临床诊断和血库筛查。分子诊断的消费者是独立的个体终端用户,研究机构或者医院实验室,临床独立检测实验室和内科实验室,包括血筛在内的感染性疾病,迄今为止是终端用户的最大部分,占整个市场的90%。今天几乎所有的分子诊断测试都是基于PCR技术, RNA聚合(NASBA,TMA),连接反应(ABI,Abbott),和DNA修复(invader)等技术,而基因芯片等其他技术正在不断成熟并在大型诊断公司的强力推动下不断占据市场份额。定量PCR是应用最广泛的分子诊断技术,据估计其市场份额高达15亿美金。 2005国外商业咨询公司预测有12种检测项目,在体外诊断市场将保持高速增长,分别为肝炎检测;心脏标记物;细胞遗传学检测;不孕检测;基因组检测;糖化血红蛋白检测;肿瘤检测;HPV;生物芯片的临床应用;细胞成像;艾滋病;传染性疾病。大部分为分子诊断领域或者同分子诊断相关,包括大型的独立商业参考实验室如Quest和LabCorp在内的各种老牌和新兴的分子诊断产品开发和应用公司,正在为立足于分子诊断市场并保持步伐而投入巨大的资金用于研发各种技术平台和相关产品。 总体而言,目前全球的分子诊断市场大背景可以概括如下:

肿瘤基因检测的解读流程

从临床进入基因检测流程是入口,检测结果结合临床信息进行合理解读是出口,这一入一出之间需经历检测前临床咨询部分、实验室部分、信息分析部分、临床解读部分共四个环节。其中的第四部分临床解读部分即是根据检测结果、患者信息、医生共识综合判断,临床和遗传咨询有效衔接、充分沟通,最终出具临床解读报告。 在做成临床解读报告之前,首先需要将解读的各个环节进行明确,包括解读的步骤流程,解读的技术细节。这样才有可能真正的做到解读的规范化,使解读过程有据可依,有章可循,才能出具一份好的临床解读报告,基因检测才能更好的服务患者和临床医生。从大的框架讲,基因检测数据解读可分为三个步骤:原始数据→分析数据、基于数据库的解读→与患者个体表征/临床病例结合的解读。 1、读懂原始数据 将测序的原始序列数据(FASTQ)去除接头及低质量序列,经BWA软件比对至GRCh37/38(NCBI版本)或hg19/hg38(UCSC版本)人类基因组参考序列上,Picard 去除重复序列,使用GATK检测SNV与Indel变异,使用ANNOVAR进行变异注释。最后获得一份.vcf文件(图1)。 图1 从测序的原始序列数据到vcf文件的流程 一份vcf文件包含如下基本信息。 Chr:变异所在的染色体

Start:变异在染色体上的起始位置 End:变异在染色体上的结束位置 Ref:参考基因组的序列 Alt:检测样本基因组的序列 :变异所处参考基因的功能区(exonic,intronic,UTR3,UTR5,splicing,upstream,downstream,intergenic)(此处的exonic特指外显子编码氨基酸区,不包括外显子的UTR区) :变异所处参考基因名称(如果是基因间,则是两侧的基因) :非外显子区处于特定转录本中的具体位置(如果是基因间,则是距离两侧的基因的距离) :外显子区的变异类型(frameshift insertion,frameshiftdeletion,stopgain,stoploss,nonframeshift insertion,nonframeshiftdeletion,synonymous SNV,nonsynonymous SNV),如果这一栏是一个“.”的话,就说明该变异不在外显子区 :氨基酸水平的改变(同一个基因可能具有多个转录本,氨基酸改变的位置在不同的转录本中有可能不一样) 经注释后的vcf文件还会包含如下信息: CLINSIG:该变异在ClinVar数据库中的临床意义(Benign,Likely benign,Uncertain significance,Likelypathogenic,Pathogenic,Drug-response)

常见肿瘤相关病毒基因诊断

常见肿瘤相关病毒基因诊断简介 病毒一直是恶性肿瘤科研中的一个重要课题。人类对许多病毒都容易受到感染。病毒与细菌(bacteria)不属同一类,但是它们都会导致人类疾病。治愈细菌性感染的药物对病毒性疾病是无用的。病毒的例子有:导致流行性感冒的“流感病毒”、导致获得性免疫缺陷综合征/艾滋病(AIDS)的人类免疫缺陷病毒/艾滋病病毒(HIV )。 病毒大致分为两类:以DNA为遗传物质的DNA 病毒与以RNA为遗传物质的RNA 病毒。这两类病毒都与许多种恶性肿瘤有关。这些与DNA病毒有关的恶性肿瘤有:宫颈癌(乳头状瘤病毒)、肝癌(B 型肝炎病毒)、非洲伯基特氏淋巴瘤(lymphoma)(爱- 巴

二氏病毒,Epstein-Barr 病毒)等。与RNA病毒有关的至少有一种白血病(leukemia )。 常见的主要病毒有: EB病毒(EBV) -伯基特氏淋巴瘤 乙型肝炎病毒(HBV) - 肝癌 丙型肝炎病毒(HCV) - 肝癌 人疱疹病毒8型(HH8) -卡波西肉瘤 人乳头瘤病毒(HPV) -宫颈癌及其他癌症,包括头颈,肛门,口腔,咽部和阴茎癌 人类T淋巴细胞病毒(HTLV) - 成人T细胞白血病 默克尔细胞多瘤病毒- 皮肤癌(默克尔细胞癌) 宫颈癌/口腔癌:HPV-DNA 目的:13种高危型HPV(HPV16、18、31、33、35、39、45、51、52、56、58、59、68)和2种中等风险型HPV(HPV66、82)相关肿瘤的病因诊断、高危患者筛查和治疗疗效监测 检验方法:荧光定量PCR,基因芯片分型 适应人群:宫颈癌、口腔癌及其高危人群

标本:组织细胞刮片,肿瘤组织 鼻咽癌/淋巴瘤:EBV-DNA 目的:EBV相关肿瘤的病因诊断、高危患者筛查和治疗疗效监测 检验方法:荧光定量PCR 适应人群:鼻咽癌及其高危人群,恶性淋巴瘤患者 标本:咽拭子,抗凝血3 mL(实验室提供柠檬酸钠抗凝管) 肝癌/肝炎病毒感染者:HBV-DNA、HCV-RNA 目的:HBV/HCV相关肝癌的病因诊断,HBV/HCV相关肝癌的治疗疗效监测;对HBV-DNA或HCV-RNA复制活跃的肿瘤患者实施抗病毒治疗,改善肿瘤治疗疗效和患者预后 检验方法:荧光定量PCR 适应人群:肝癌患者,乙肝病毒表面抗原阳性患者 标本:非抗凝血2 mL

分子诊断技术在肿瘤诊断中的应用

分子诊断技术在肿瘤诊断中的应用 1、肿瘤易感基因检测 单独遗传因素造成肿瘤的概率低于5%。肿瘤的发生主要是遗传基因和环境因素共同作用的结果,其中遗传基因是内因,与人体是否具有肿瘤易感基因有关。肿瘤易感基因检测就是针对人体内与肿瘤发生发展密切相关的易感基因而进行的,它可以检测出人体内是否存在肿瘤易感基因或家族聚集性的致癌因素,根据个人情况给出个性化的指导方案。肿瘤易感基因检测特别适合家族中有癌症病例的人群,可以帮助这类人群提前了解自身是否存在肿瘤易感基因。已知的肿瘤易感性基因有Rb1、WT1、p53、APC、hMSH2、hMLH1和BRCA1等,与其相对应的癌症综合征(附表)。 遗传性癌症综合征与易感基因 癌症综合征易感基因 视网膜母细胞瘤Rb1 Wilms瘤WT1 LI-Fraumeni综合征p53 家族性腺瘤性息肉瘤(FAP)APC 遗传性非息肉性结肠癌(HNPCC) hMSH2,hMSH1 乳腺癌BRCA1 卵巢癌BRCA1 2、肿瘤相关病毒检测 业已证明一部分肿瘤的发生和病毒感染有关,因而检测这些相关病毒不仅可探计肿瘤和病毒的关系,而且可以找出肿瘤的易患人群。由于病毒太小,且难以培养,一般方法检测病毒效果极差。而核酸杂交技术与PCR技术用于病毒检测具有特异性强、敏感性高等特点。 人类某些肿瘤可能与病毒有关 病毒相关肿瘤 HPV6、11亚型 宫颈尖锐湿疣(乳头状瘤) HPV16、18亚型 宫颈上皮内新生物和癌 HSV及CMV宫颈恶性病变 HBV原发性肝癌 EB病毒伯基特淋巴瘤、鼻咽癌 HSV6型 霍奇金病和鼻咽癌 微小病毒葡萄胎 ATL病毒成人T细胞白血病/淋巴瘤 3、肿瘤的早期分子诊断 研究发现,肿瘤相关基因的突变出现在肿瘤发生的最早期,远早于肿瘤临床症状的出现,是肿瘤早期诊断的重要依据。通过基因突变检测进行早期诊断能够从最根本的基因上寻找肿瘤发生的微小趋势,第一时间作出肿瘤预警,通过针对性的环境或生活方式调整,能有效预防肿瘤的形成;在肿瘤发生初期实施针对性治疗,能极大程度增加治愈的概率。 K-ras基因突变是一种胰腺癌、结肠癌和肺癌等肿瘤中发生率较高的分子事件,突变集中在第12、13和61编码子。应用细针穿刺活检材料检测胰腺癌的第12编码子变突,检出

基因诊断和治疗的医学应用

基因诊断和治疗的医学应用 郭龙飞 (保山学院资源环境学院云南保山678000) 摘要:各种癌症和恶性肿瘤是目前危害人类健康最为严重的疾病之一,且死亡率很高,现在还没有一种有效的治疗方法。传统的手术、放疗和化疗等方法对中晚期的患者治疗疗效已经明显不足。因此。找到一种新的治疗癌症和恶性肿瘤的治疗方法对人类健康发展是意义重大的。而基因治疗则是用各种手段从基因水平上来治疗各种疾病。于是,基因治疗为众多患者提供了希望,成为了现在医学界的热门话题。本文就是依据前人的研究成果,以基因治疗癌症和恶性肿瘤为主来论述基因治疗在医学上的应用。 关键词:基因诊断基因治疗癌症恶性肿瘤 1基因治疗概述 基因治疗的基本含义是通过遗传或分子生物学技术在基因水平上治疗各种疾病[1]。它是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞,以纠正基因缺陷或者发挥治疗作用,从而达到治疗疾病的目的。广义的基因治疗是指利用基因药物的治疗,而通常所称狭义的基因治疗是指用完整的基因进行基因替代治疗,一般用DNA序列[2]。它是运用基因工程技术直接纠正肿肿瘤细胞基因的结构及(或)功能缺陷,或者间接通过增强宿主对肿瘤的杀伤力和机体的防御功能来治疗肿瘤。通过外源基因的导入,激活机体抗瘤免疫,增强对肿瘤细胞的识别能力、抑制或阻断肿瘤相关基因的异常表达或增加肿瘤细胞对药物的敏感性,这些基因主要包括细胞因子基因、抗肿瘤基因、肿瘤药物相关基因和病毒基因等[3]。 目前基因治疗的方式(type of gene therapy)主要有3种:①基因矫正或置换:即对缺陷基因的异常序列进行矫正,对缺陷基因精确地原位修复,或以正常基因原位置换异常基因,因此不涉及基因组的任何改变。②基因增补:不去除异常基因,而是通过外源基因的导人,使其表达正常产物,从而补偿缺陷基因的功能。③基因封闭:有些基因异常过度表达,如癌基因或病毒基因可导致疾病,可用反义核酸技术、核酶或诱饵转录因子来封闭或消除这些有害基因的表达[4]。 2基因诊断应用 2.1基因诊断新生儿脊髓性肌萎缩 目前报道有一些较严重的SMA I型患儿会出现关节挛缩、骨折、呼吸困难和感觉神经元受损的表现,但机制还不清楚,可能与5ql3缺失大小有关。SMA尚无特异的治疗方法,临床主要是对症治疗,如早期发现SMA患儿呼吸系统受累并干预性通气治疗可以延长疾病的病程、改善患儿生活质量、减少肺部继发性感染及呼吸衰竭发生。本例患儿经抗炎、吸氧、吸痰、补充维生素、给予丙种球蛋白等对症治疗和支持治疗,呼吸困难逐渐缓解,双肺痰鸣音减少,但最终家长考虑远期预后不良而放弃治疗[5]。 最近,在体外实验研究中发现丁酸纳、丙戊酸和Htra—ISl的调节因子可以增加SMN2基蛋白的作用,而且对细胞几乎没有毒性作用,但研究工作还处于动物实验阶段,没有正式应用于临床,该类药物可能为SMA的治疗开辟了新的途径[5]。 2.2早期胰腺藩的基因诊断 近年来,胰腺癌的发病率和死亡率呈逐渐上升趋势,每年有新发病例约20万人,占全部恶性肿瘤发病的2%。其发病匿,早期缺乏特异表现,恶性程度高,极易出现转移,80%-90%的胰腺癌病人就诊时,已经到了晚期,手术切除率只有15%,年生存率为1%-5%。而早期胰腺癌的手术切除率为90-100%,5年生存率可达70%- 100%。另有研究表明,肿瘤的大小是重要的生存率预测因子,如果直径

肿瘤基因检测的解读流程

. 从临床进入基因检测流程是入口,检测结果结合临床信息进行合理解读是出口,临床这一入一出之间需经历检测前临床咨询部分、实验室部分、信息分析部分、患者信其中的第四部分临床解读部分即是根据检测结果、解读部分共四个环节。息、医生共识综合判断,临床和遗传咨询有效衔接、充分沟通,最终出具临床解读报告。包括解读的步在做成临床解读报告之前,首先需要将解读的各个环节进行明确,使解读过程解读的技术细节。这样才有可能真正的做到解读的规范化,骤流程,基因检测才能更好的服有章可循,才能出具一份好的临床解读报告,有据可依,原始数基因检测数据解读可分为三个步骤:务患者和临床医生。从大的框架讲,临床病例结合的解读。据→分析数据、基于数据库的解读→与患者个体表征/ 、读懂原始数据1软件比对至经BWA)将测序的原始序列数据(FASTQ 去除接头及低质量序列,版本)人类基因组参考序列UCSC版本)或NCBIhg19/hg38(GRCh37/38(ANNOVAR使用与SNVIndel变异,检测使用Picard上,去除重复序列,GATK 1.vcf进行变异注释。最后获得一份文件(图)。. . 图1 从测序的原始序列数据到vcf文件的流程 一份vcf文件包含如下基本信息。

Chr:变异所在的染色体 Start:变异在染色体上的起始位置 End:变异在染色体上的结束位置 Ref:参考基因组的序列 Alt:检测样本基因组的序列 . . Func.refGene:变异所处参考基因的功能区(exonic,intronic,UTR3,UTR5,splicing,upstream,downstream,intergenic)(此处的exonic特指外显子编码氨基酸区,不包括外显子的UTR区) Gene.refGene:变异所处参考基因名称(如果是基因间,则是两侧的基因)GeneDetail.refGene:非外显子区处于特定转录本中的具体位置(如果是基因间,则是距离两侧的基因的距离) ExonicFunc.refGene:外显子区的变异类型(frameshift insertion,frameshiftdeletion,stopgain,stoploss,nonframeshift insertion,nonframeshiftdeletion,synonymous SNV,nonsynonymous SNV),如果这一栏是一个“.”的话,就说明该变异不在外显子区 AAChange.refGene:氨基酸水平的改变(同一个基因可能具有多个转录本,氨基酸改变的位置在不同的转录本中有可能不一样) 经注释后的vcf文件还会包含如下信息:

血液肿瘤的分子诊断

血液肿瘤的分子诊断 艾迪康医学检验中心有限公司——中国首家全国连锁经营的第三方医学检验机构https://www.sodocs.net/doc/2d12762612.html,.cn随着分子生物学及其相关技术的迅速发展,血液系统肿瘤的诊断已进入“精确诊断”时代。目前血液学实验室中主要的分子生物学平台包括聚合酶链反应(PCR)技术、测序技术和基因芯片等;这些技术具有灵敏度高、特异性强、重复性好等优点,在血液肿瘤的诊断、分型、预后判断、疗效评估、微小残留病的监测及个体化治疗等多个方面发挥了重要作用。我们简要概述分子生物学在血液肿瘤诊断中的应用和进展。一、急性白血病急性白血病是一类造血干细胞在分子水平发生异常而导致的分化障碍和凋亡阻滞的异质性疾病。具有相同分子遗传学异常的白血病在致病机制、细胞形态、免疫表型和预后等方面基本相似。融合基因主要通过染色体的易位形成,是急性白血病的一种重要致病机制,融合基因的检测已成为急性白血病诊断和分型的重要依据。AML1-ETO、PML-RARα、CBFβ-MYH11等是急性髓系白血病(AML)最常见的融合基因,可据此进行诊断和分型,当患者出现以上3种重现性遗传学异常时,即使原始细胞<20%,也诊断为AML;B系的急性淋巴细胞白血病(ALL)中较常见的融合基因包括BCR-ABL、T

EL-AML1、E2A-PBX1、MLL-AF4和MYC-IgH等;T-ALL较常见的融合基因有SIL-TAL1和RHOM2-TCRδ等。此外,许多较罕见的融合基因也被陆续报道,如DEK-CAN、NUP98-HOXA9、NUP98-HOXD13和GTF2I-RARA等。预后危险度分层是制定治疗策略的主要依据,FLT3-ITD、c-kit、NPM1和CEBPα的突变已被常规用于对AML进行危险度分层。FLT3-ITD和c-kit为不良预后因素,而NPM1和双突变的CEBPα患者大多预后良好。除此之外,近年来发现了更多的基因如DNMT3A、IDH1、IDH2、TET2、WT1、ASXL1、KRAS、NRAS、RUNX1和CBL等突变,大多为AML预后不良的指标。涉及ALL预后的基因有IKZF1、PAX-5、NOTCH1、FBXW7、CDKN2A/B、CRLF2、TP53、JAK1/2、CREBBP、PHF6和CDKN1A等;其中IKZF1突变主要见于B-ALL,与高复发率、不良事件的发生相关;NOTCH1和FBXW7则是T-ALL常见的突变,二者突变常同时存在,提示预后良好。微小残留病(MRD)检测已被常规用于评价白血病的预后和疗效。目前已有多种分子标志物被用于MRD水平检测,包括RUNX1、WT1、NPM1等。二、骨髓增殖性肿瘤(MPN)作为人类发现的

分子诊断发展简史

分子诊断发展简史:一场由“螺旋双杰”引发的发明 分子诊断发展四阶段 早期预知某些疾病发生、发展和预后。1978年著名没计划以科学家简悦威等应用液相DNA 发明PCR技术后迅速发展,标志着传统基因诊断发展到更全面的分子诊断技术。 :1992年美国Affymetrix制作出第一章基因芯片,标志着分子诊断进入生物芯片技术阶段。生物芯片技术解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目的分子数量少、低通量的问题。 Ronaghi分别于1996年与1998年提出了在固相与液相载体中通过边合成边测序的方法-焦磷酸测序。目前常见的高通量第二代测序平台主要有Roche454、IlluminaSolexa、ABISOLiD和LifeIon Torrent等,其均为通过DNA 片段化构建DNA文库、文库与载体交联进行扩增、在载体面上进行边合成边测序反应,使得第1代测序中最高基于96孔板的平行通量扩大至载体上百万级的平行反应,完成对海量数据的高通量检测。1代、2代测序区别 分子诊断三座丰碑 1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明。DNA双螺旋结构的出现时分子生物学行程的重要标志,对人们认识蛋白质合成、DNA复制和突变具有重要意义,为分子诊断的蓬勃发展奠定基础。 “DNA之父”Watson、Crick

50年前,科学界的“八大恶棍”之一凯利?穆利斯还只是美国某制药公司的小职员,整天做着把先天致病基因给剔除掉的白日梦,然而先要复制DNA,才有足够的时间慢慢修复。1966年,穆利斯尝试磕了一次药,并从此不可自拔。后来,迷幻剂被列为违禁药品,于是穆利斯自己调配迷幻剂的替代品。在制作迷幻剂时,他居然想到了复制DNA的办法——聚合酶链式反应(PCR),并最终凭他跟迷幻剂的结晶PCR获得了诺贝尔奖。从此开启了分子诊断的PCR时代,标志着传统的基因诊断发展到更全面的分子诊断。 “PCR之父”Kary Mullis “只是个在实验室里乱搞的家伙”弗雷德里克·桑格开拓人类基因研究,被尊为“基因学之父”,他与同事合作研发的快速为DNA定序,成为绘制人类基因组图谱的先驱。桑格完整定序了胰岛素的氨基酸序列,证明蛋白质具有明确构造;他上世纪70年代提出快速测定脱氧核糖核酸(DNA)序列的技术“双去氧终止法”,即双脱氧核苷酸链中止法,又称“桑格法”。“双去氧终止法”测序法拉开了DNA测序的序幕,解开了人体4万个基因30亿个碱基对的秘密。 “基因学之父”Frederick Sanger 分子诊断临床应用

肿瘤基因检测的解读流程

从临床进入基因检测流程是入口,检测结果结合临床信息进行合理解读是出口,这一入一出之间需经历检测前临床咨询部分、实验室部分、信息分析部分、临床解读部分共四个环节。其中的策四部分临床解读部分即是根据检测结果、患者信息、医生共识综合判断,临床和遗传咨询有效衔接、充分沟通,最终出具临床解读报告。 在做成临床解读报告之前,首先需要将解读的各个环节进行明确,包括解读的步骤流程,解读的技术细节。这样才有可能真正的做到解读的规范化,使解读过程有据可依,有章可循,才能出具一份好的临床解读报告,基因检测才能更好的服务患者和临床医生。从大的框架讲,基因检测数据解读可分为三个步骤:原始数据T分析数据、基于数据库的解读-与患者个体表征/临床病例结合的解读。 1、读懂原始数据 将测序的原始序列数据(FASTQ )去除接头及低质量序列,经BWA软件比对至GRCh37/38 (NCBI 版本)或hgl9/hg38 (UCSC版本)人类基因组参考序列上;Picard去除重复序列使用GATK 检测SNV与Indel变异使用ANNOVAR 进行变异注释。最后获得一份.vcf文件(图1)。

Ph?*e 1 : primary processing R*w (FQW) 图1从测序的原始序列数据到vcf文件的流程—份vcf文件包含如下基本信息。 CI LT Start End Ref Alt Func. re fGenc Gene, re fGcno GeneDotail. refGone ExonicFunc. / efGeno ofGone Chr:变异所在的染色体 Start :变异在染色体上的起始位置 End :变异在染色体上的结束位置 Ref :参考基因组的序列 Alt:检测样本基因组的序列 Func.refGene :变异所处参考基因的功能区(exonic Jntronic ,UTR3 ,UTR5 , splicing , upstream , downstream , intergenic )(此处的exonic 特扌旨夕卜显子编码氨基酸区,不包括外显子的UTR区) Phas? 2: variant detection Phase 3: variant annotation

肿瘤基因突变检测

肿瘤基因突变检测 癌症是一类难以预防的疾病,中晚期癌症治愈的可能性又很小,而早期癌症的治愈率可达65%以上,有些肿瘤可达90%以上,因此,战胜癌症的关键是早期发现癌症。由于癌症早期常无特殊症状,甚至毫无症状,故癌症的早期发现、早期诊断主要是通过定期健康体检和人群筛查完成。目前筛查癌症的方法主要是通过化验血肿瘤指标及B超、CT、MRI、PET-CT 等检查,但这些方法的敏感性和特异性均不高,发现有异常时往往已是中晚期。 17种常见高发肿瘤,包括乳腺癌(breast cancer)、结肠癌(colorectalcancer)、子宫癌(endometrial cancer)、脑胶质瘤(glioma)、白血病(leukemia)、肺癌(lungcancer)、淋巴癌(lymphoma)、成神经管细胞瘤(medulloblastoma)、黑色素癌(melanoma)、间皮瘤(mesothelioma) 、多性骨髓瘤(multiple myeloma) 、卵巢癌(ovarian cancer)、胰腺癌(pancreatic cancer) 、真性红细胞增多(polycythemia vera) 、前列腺癌(prostatecancer) 、肾细胞癌(renal cell cancer)和恶性内瘤(sarcoma),其发病机制涉及与多种肿瘤发生共同相关的肿瘤易感基因群介导的分子改变,参与了肿瘤发生的早期分子事件。系统寻找和探讨它们在肿瘤发生发展过程中的遗传学变异,对阐明肿瘤早期发生机制及寻找肿瘤早期预警、早期诊断和早期治疗的分子靶标都具有重要的现实意义。利用高通量分子测序技术平台,可同时开展多个肿瘤基因突变检测项目,如EGFR、K-RAS 、N-RAS、B-RAF、PI3K 、p53、p16、BRCA1、

分子诊断与肿瘤的个体化治疗

万方数据

万方数据

万方数据

万方数据

分子诊断与肿瘤的个体化治疗 作者:周红桃, ZHOU Hong-tao 作者单位:海南省人民医院医学检验部,海南,海口,570311 刊名: 海南医学 英文刊名:HAINAN MEDICAL JOURNAL 年,卷(期):2010,21(22) 参考文献(17条) 1.Stratton MR.Campbell PJ.Futreal PA The cancer genome[外文期刊] 2009(7239) 2.Pleasance ED.Stephens PJ.O' Meara S A small-cell lung cancer genome with complex signatures of tobacco exposure 2009(7278) 3.Pleasance ED.Cheetham RK.Stephens PJ A comprehensive catalogue of somatic mutations from a human cancer genome 2010(7278) 4.Shah SP.Morin RD.Khattra J Mutational evolution in a lobular breast turnout profiled at single nucleotide resolution[外文期刊] 2009(7265) 5.Stephens PJ.McBride DJ.Lin ML Complex landscapes of somatic rearrangement in human breast cancer genomes[外文期刊] 2009(7276) 6.Kurian AW.Sigal BM.Plevritis SK Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers[外文期刊] 2010(02) 7.Kaas R.Verhoef S.Wesseling J Prophylactic mastectomy in BRCA1 and BRCA2 mutation carriers:very low risk for subsequent breast cancer[外文期刊] 2010(03) 8.Hampel H.Frankel WL.Martin E Feasibility of Screening for Lynch Syndrome Among Patients With Colorectal Cancer[外文期刊] 2008(35) 9.Schofield L.Watson N.Grieu F Population-based detection of Lynch syndrome in young colorectal cancer patients using microsatellite instability as the initial test[外文期刊] 2009(05) 10.Lindor NM.Petersen GM.Hadley DW Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome:A systematic review[外文期刊] 2006(12) 11.陈小松.陈舒婕.沈坤伟乳腺癌的分子分型[期刊论文]-中华肿瘤杂志 2008(09) 12.徐方平.刘艳辉.庄恒国肺腺癌分子分型的研究进展[期刊论文]-中华病理学杂志 2008(03) 13.Alizadeh AA.Eison MB.Davis RE Distinct types of diffuse large B-cell lymphoma identified by gone expression profiling[外文期刊] 2000(6769) 14.Rosenwald A.W filght G.Chart WC The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell Lymphoma[外文期刊] 2002(25) 15.Innocenti F.Iyer L.Ratain MJ Pharmacogenetics:a tool for individualizing antineoplastic therapy [外文期刊] 2000(05) 16.Fogarty GB.Muddle R.Sprung CN Unexpectedly severe acute radiotherapy side effects are associated with single nucleotide polymorphisms of the melanocortin-1 receptor 2010(05) 17.Cheng JC.Weisenberger DJ.Gonzales FA Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells[外文期刊] 2004(03)

肿瘤基因检测的解读流程

从临床进入基因检测流程就是入口,检测结果结合临床信息进行合理解读就是出口,这一入一出之间需经历检测前临床咨询部分、实验室部分、信息分析部分、临床解读部分共四个环节。其中的第四部分临床解读部分即就是根据检测结果、患者信息、医生共识综合判断,临床与遗传咨询有效衔接、充分沟通,最终出具临床解读报告。 在做成临床解读报告之前,首先需要将解读的各个环节进行明确,包括解读的步骤流程,解读的技术细节。这样才有可能真正的做到解读的规范化,使解读过程有据可依,有章可循,才能出具一份好的临床解读报告,基因检测才能更好的服务患者与临床医生。从大的框架讲,基因检测数据解读可分为三个步骤:原始数据→分析数据、基于数据库的解读→与患者个体表征/临床病例结合的解读。 1、读懂原始数据 将测序的原始序列数据(FASTQ)去除接头及低质量序列,经BWA软件比对至GRCh37/38(NCBI版本)或hg19/hg38(UCSC版本)人类基因组参考序列 上,Picard去除重复序列,使用GATK检测SNV与Indel变异,使用ANNOVAR 进行变异注释。最后获得一份、vcf文件(图1)。

图1 从测序的原始序列数据到vcf文件的流程一份vcf文件包含如下基本信息。 Chr:变异所在的染色体 Start:变异在染色体上的起始位置 End:变异在染色体上的结束位置 Ref:参考基因组的序列 Alt:检测样本基因组的序列

Func、refGene:变异所处参考基因的功能区 (exonic,intronic,UTR3,UTR5,splicing,upstream,downstream,intergenic)(此处的exonic特指外显子编码氨基酸区,不包括外显子的UTR区) Gene、refGene:变异所处参考基因名称(如果就是基因间,则就是两侧的基因) GeneDetail、refGene:非外显子区处于特定转录本中的具体位置(如果就是基因间,则就是距离两侧的基因的距离) ExonicFunc、refGene:外显子区的变异类型(frameshift insertion,frameshiftdeletion,stopgain,stoploss,nonframeshift insertion,nonframeshiftdeletion,synonymous SNV,nonsynonymous SNV),如果这一栏就是一个“、”的话,就说明该变异不在外显子区 AAChange、refGene:氨基酸水平的改变(同一个基因可能具有多个转录本,氨基酸改变的位置在不同的转录本中有可能不一样) 经注释后的vcf文件还会包含如下信息: CLINSIG:该变异在ClinVar数据库中的临床意义(Benign,Likely benign,Uncertain significance,Likelypathogenic,Pathogenic,Drug-response) CLINDBN:该变异所引起的疾病名称

分子诊断行业竞争现状分析报告

分子诊断行业竞争现状分析 虽然经过多年的发展,我国分子诊断市场上已经涌现了一批较有特色的企业,但由于我国在分子诊断技术领域的积淀不够,即便不断引进国外先进的分子诊断技术,但不同公司推出的产品仍然存在单一化的问题。这有多方面的原因,无论是政府的投入支持还是企业自身的原始积累都较少,导致市场上基于荧光PCR 技术的企业多于牛毛,但创新性技术的企业则较少。 海力特SUPBIO?微量精准超敏PCR检测技术产品具有全球创新性和领先性,将开拓一个新型的巨大蓝海市场! 2015年6月9日,中国医药工业信息中心发布《中国医药健康蓝皮书》,对体外诊断产品市场进行分析并给予乐观预期:2014年,我国体外诊断产品市场规模达到306亿元;预测2019年市场规模将达723亿元,年均复合增长率高达18.7%。其中分子诊断细分市场增速年均超过20%,占比从5年前的5%左右增加到2014年的15%,未来还将维持一段长时间的高速成长周期。 随着人类健康意识和需求的提高,对现有诊断技术提出了新的要求,同时正催生出巨大的新型检测诊断蓝海市场,这个市场容量将远大于现有诊断市场。但是目前的诊断技术无法满足这个新型市场的需求。这种迅速增长的人类健康需求与相对滞后的检测技术之间的矛盾在分子诊断市场尤为突出。目前分子诊断市场的主导技术是PCR检测技术,这项诺贝尔获奖技术为生物诊断技术领域做出了革命性的贡献。但是PCR技术发展到今天,遇到了新的市场需求技术瓶颈。即在检测低于100copies(拷贝)的标本时,检出效率低,出现假阴性,更重要的是无法精准定量。造成这个瓶颈的原因是现有PCR试剂产品灵敏度还不够高,无法微量精准定量。而微量精准定量检测是进行疾病早期筛查、诊断和治疗效果评估的关键,市场潜力巨大。海力特开发的产品就是针对这个新型市场。 国内企业数量多,规模小体外诊断试剂行业在我国属于新兴产业,与欧美国家相比起步晚,产业化发展相对滞后。根据IVD 专委会提供的数据显示,目前我国体外诊断试剂生产企业约400 余家,其中规模以上企业近200 家,但年销售收入过亿元的企业仅约20 家,企业普遍规模小、品种少。 一、分子诊断行业各生产企业医院市场占有率分析 分子诊断市场目前以国内企业为主,主要企业包括达安基因、深圳匹基(被凯杰收购,荧光PCR 检测试剂盒)、科华生物、复星医药等,由于专利原因国外也只有少数几家企业生产该类产品,如罗氏、雅培等公司有部分产品进入中国市场。

分子诊断市场发展方向和趋势

分子诊断市场发展方向和趋势 生物淘 随人类基因组计划的发展而出现各种新的生物技术,这些生物技术在临床的广泛应用,推动并在发达国家催熟了一个新兴的临床诊断市场——分子诊断市场。广义的分子诊断包括临床生化和核酸检测,目前主要指应用各种生物技术检测组织个体内DNA或者RNA,用来诊断疾病,监测治疗或者判断预后。人类基因大约有3万个基因,理论上以单个基因为基础的治疗将需要一个匹配的诊断测试,按照大约5%有诊断意义,则有1500个基因为基础的检测可以商业化。 在实际临床应用中,分子诊断产业主要由传染病检测和血液筛查推动并逐步发展起来的,但药物基因组学,预后诊断和分子肿瘤诊断将在近几年并在未来十年显示强劲的市场发展趋势。在欧美等西方发达国家,经过近20年的发展,分子诊断市场是体外诊断市场发展速度最快的市场,从各大生物新闻网站不断对生物公司推出新产品的报道中,我们也可以看出这是一个蓬勃兴盛的市场,也是一个以技术为原动力的市场,是一个具有巨大市场研发潜力的领域。按照分子诊断技术目前实际的应用程度和市场的接受程度,可以主要分为四个主要部分:感染性疾病(包括血液筛查)、遗传病检测(包括染色体病检测)、肿瘤学、药物基因组学。 相对于成熟的临床实验室检测如血液学和微生物学检测领域的低增长或者不增长,分子诊断市场的特征在于空前的增长速度。分子诊断技术将驱动诊断产业的市场容量和应用范围的急剧增长,平均每年增加的收入将超过30%,某些分子诊断领域的增长将超过80%。在某些领域如药物基因组检测,疾病风险诊断和肿瘤分子诊断应用市场,在未来几年中将会更迅猛增长,但目前而言,至少在未来3-5年内,特别是在某些新兴的市场发展大国如中国,其真实的市场机会,主要存在于核酸检测市场的两个主要方面:临床诊断和血库筛查。分子诊断的消费者是独立的个体终端用户,研究机构或者医院实验室,临床独立检测实验室和内科实验室,包括血筛在内的感染性疾病,迄今为止是终端用户的最大部分,占整个市场的90%。今天几乎所有的分子诊断测试都是基于PCR技术,RNA聚合(NASBA,TMA),连接反应(ABI,Abbott),和DNA修复(invader)等技术,而基因芯片等其他技术正在不断成熟并在大型诊断公司的强力推动下不断占据市场份额。定量PCR是应用最广泛的分子诊断技术,据估计其市场份额高达15亿美金。 2005国外商业咨询公司预测有12种检测项目,在体外诊断市场将保持高速增长,分别为肝炎检测;心脏标记物;细胞遗传学检测;不孕检测;基因组检测;糖化血红蛋白检测;肿瘤检测;HPV;生物芯片的临床应用;细胞成像;艾滋病;传染性疾病。大部分为分子诊断领域或者同分子诊断相关,包括大型的独立商业参考实验室如Quest和LabCorp在内的各种老牌和新兴的分子诊断产品开发和应用公司,正在为立足于分子诊断市场并保持步伐而投入巨大的资金用于研发各种技术平台和相关产品。 总体而言,目前全球的分子诊断市场大背景可以概括如下:①分子诊断技术的发展不仅导致了已有不方便或不精确的检测项目被取代,并产生了新的诊断检测项目。尽管个体化医疗的发展当前促使分子诊断获得巨大的发展,但目前世界范围内分子诊断最大的市场份额,大约80%,仍然是感染性疾病领域。最常见的分子诊断项目是检测病毒和细菌感染性疾病或者监测HIV和HCV患者的病毒载量,最特别的情形是出现在中国,由于中国庞大的HBV患病和携带者人群,在中国市场上最常见的分子诊断项目是检测HBV感染。②全球分子诊断市场目前价值65亿美金,到2008年可望增长3倍。Roche diagnostics是最顶级的分子诊断公司,占据了这个市场60%的份额,2004年高达8.7亿美金来自分子诊断,超过60%的销售收入来自于该公司的Amplicor HIV和肝炎病毒检测。③尽管感染性疾病领域,特别是病毒载量检测继续占据市场最大份额,大约以每年8%-10%的速度增长,其他分子诊断领域,特别是肿瘤学领域,未来将也更高的速度增长。当前欧美市场增长最快的分子诊断检测是HPV分析,每年以30%-40%速度增长,占据分子诊断市场约3-5%,未来几年将占据10-15%。④分子诊断技术出现了新的应用:耐药病毒株基因分型、肿瘤诊断和预后、疾病易感性和预测、遗传性疾病的诊断、药物反应的预测和法医/个体识别检测。⑤人们已经有了更大的兴趣发展基于基因表达、蛋白表达和SNP的检测。但是,这些检测仍然停留在发展的早期阶段,技术仍然没有发展到应用于临床的理想程度。⑥当前,许多先进的生物技术应用于分子诊断市场,特别有助于肿瘤和心血管领域生物标记物的研究。但目前最大的挑战在于,哪些生物标记物

肿瘤分子诊断与个体化治疗

肿瘤分子诊断与个体化治疗 《2012中国肿瘤登记年报》披露,全国每年新发肿瘤病例估计约为312万例,平均每天8550人,全国每分钟有6人被诊断为恶性肿瘤。我国居民一生罹患癌症的概率为22%。据统计,全国肿瘤发病率为285.91/10万,发病率无论男女,城市均高于农村。从年龄段上看,40岁以上年龄组发病率快速升高,80岁年龄组达到最高,城市和农村变化趋势基本相同。目前,全国恶性肿瘤死亡第1位仍是肺癌,其次为肝癌、胃癌、食管癌和结直肠癌,前10位恶性肿瘤占全部恶性肿瘤84.27%。男性中发生的主要癌症包括肺癌、肝癌、胃癌、食管癌和结直肠癌;女性中发生的主要癌症包括肺癌、胃癌、肝癌、结直肠癌和乳腺癌。死亡率最高者男女均为肺癌。 恶性肿瘤的主要治疗方法有外科手术、放疗、化疗和分子靶向药物治疗。手术治疗是以刀、剪、针等器械在人体局部进行操作,来去除病变组织、修复损伤、移植器官、改善机体的功能和形态等。放疗是通过承载特殊能量的放射线直接或间接地损伤细胞DNA。化疗是利用化学药物杀死肿瘤细胞、抑制肿瘤细胞

生长繁殖或促进肿瘤细胞分化的一种治疗。目前,化疗在肿瘤临床治疗中约占70%,特别是对于失去手术指征的晚期癌症病人,化疗更是主要甚至唯一的治疗手段。随着人类基因组学、药物基因组学及肿瘤分子生物学研究的不断深入和发展,发现了一些关键的蛋白分子,从而以它们为靶点研制出一些分子靶向抗肿瘤药物。与传统的细胞毒抗肿瘤药不同,它们是特异地作用于与肿瘤发生、扩散、转移相关的蛋白小分子,可以抑制肿瘤细胞增殖。并且,以其毒副小,选择性高,安全性大、可口服等优点正逐渐成为癌症治疗的主流趋势。 尽管各种治疗手段对于癌症都有一定的抑制效果,但越来越多的临床数据显示,对于同一分期、同一病理类型的患者,即使采用相同的治疗方案,其疗效(如生存期)也存在明显差异,我们将这种差异称为个体化差异。随着人类基因组计划的完成,人们逐渐意识到:同一类型肿瘤的细胞分子生物学差异可能是导致疾病个体化差异的原因所在。近年来,不少大型的临床研究数据(IPASS、INFORM等)表明某些基因(生物标志物,biomarker)的突变和表达变化可以帮助医生诊断病情和预测疗效。如果我们能在治疗前对患者的生物标志物情况进行诊断,就可以根据诊断结果给予患者最佳的治疗方案,减少无意义治疗时间,提高生存质量、延长生存周期。这种治疗方式即肿瘤的个体化治疗。

相关主题