搜档网
当前位置:搜档网 › 数理统计的基础知识

数理统计的基础知识

数理统计的基础知识
数理统计的基础知识

第4章数理统计的基础知识

数理统计与概率论是两个有密切联系的学科, 它们都以随机现象的统计规律为研究对象.但在研究问题的方法上有很大区别:概率论——已知随机变量服从某分布,寻求分布的性质、数字特征、及其应用;

数理统计——通过对实验数据的统计分析, 寻找所服从的分布和数字特征, 从而推断整体的规律性. 数理统计的核心问题——由样本推断总体

从本章开始,我们将讨论另一主题:数理统计。

数理统计是研究统计工作的一般原理和方法的科学,它主要阐述搜集、整理、分析统计数据,并据以对研究对象进行统计推断的理论和方法,是统计学的核心和基础。

本章将介绍数理统计的基本概念:总体、样本、统计量与抽样分布。

由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来。但客观上只允许我们对随机现象进行次数不多的观察试验,也就是说, 我们获得的只是局部观察资料。

数理统计就是在概率论的基础上研究怎样以有效的方式收集、整理和分析可获的有限的, 带有随机性的数据资料,对所考察问题的统计性规律尽可能地作出精确而可靠的推断或预测,为采取一定的决策和行动提供依据和建议.

§4.1 总体与样本

一、 总体与总体分布

1.总体:具有一定的共同属性的研究对象全体。总体中每个对象或成员称为个体。

研究某批灯泡的质量,该批灯泡寿命的全体就是总体;考察国产 轿车的质量,所有国产轿车每公里耗油量的全体就是总体;某高校学习“高等数学”的全体一年级学生。

个体与总体的关系,即集合中元素与集合之间的关系。统计学中关心的不是每个个体的所有具体特性,而是它的某一项或某几项数量指标。某高校一年级学生“高等数学”的期末考试成绩。

对于选定的数量指标 X (可以是向量)而言,每个个体所取的值是不同的,这一数量指标X 就是一个随机变量(或向量);X 的概率分布就完全描述了总体中我们所关心的这一数量指标的分布情况。数量指标X 的分布就称为总体的分布。

说明

例如 服装厂生产的各式服装,玩具厂生产的儿童玩具,检验部门通常将产品分成若干等级。

3X 总体分布就是设定的表示总体的随机变量.的分布.

4.1 X X 定义统计学中称随机变量(或向量)为,并把随机

变量(或向量)的分布称为总体总体分布.1X 表示总体的既可以是随机变量,也可以.是随机向量.2 有时个体的特性本身不是直接由数量指.标来描述的.

总体的分布一般来说是未知的,统计学的主要任务正是要对总体的未知分布进行推断。

二 样本与样本分布

以下假定所考虑的样本均为简单随机样本,并简称为样本。 样本的双重理解

全体样本值组成的集合称为样本空间

12122.4.n n X X X X X X X X n 称(,,,)为总体的,若,,, 是独立同分布的随机变量,且与总体同分布,样本中所含分量简单随机的个数称为该样本定义本的样容量1212n n X X X x x x 在未观察具体的抽样结果时,样本(,,,)视为随机向量.观察具体的抽样结果后,样本便可理解为所得的一组具体的观察值(,,,),称为样本值.

1212i 1(),(,

,)(n n

n i X F x X X X F x x x F x ==∏ 设总体的分布函数为则样本(,,,)的分布函数为,).称之为样本分布.

121122i 1(){},(,

,){,,

,}(n

n n n i X p x P X x x X p x x x P X x X x X x p x ========∏ 若总体为随机变量,概率分布为取遍所有

可能值,则样本的概率分布为离散型 ,).

2(41,X X N μσ 称总体为正态总体,如它服从正态分布.正态总体是统计应用

中最 例常见的总体.现设总体服从正态分布),则气样本密度.由下式

给出:

2

12i 12211(,

,)()}(21exp{()}2n

i n i n n

i i x f x x x f x x μσμσ==-=-=--∑ ,)

.

(01){1}.

4,{0}1X p p P X p P X p <<====- 称总体为伯努利总体,如它服从以为参数的伯努利分布.即

例.2

比如我们从某班大学生中抽取10 人测量身高, 得到10 个数.我们只能观察到随机变量取的值而见不到随机变量.

它们是样本取到的值而不是样本. 总体、样本、样本值的关系

总体(理论分布)?

样本

样本值

统计是从手中已有的资料—样本值, 去推断总体的情况—总体分布F (x )的性质.

总体分布决定了样本取值的概率规律,也就是样本取到样本值的规律,事实上, 我们抽样后得到的资料都是具体的、确定的值. 因而可以由样本值去推断总体. ? ? ? 是总体的代表, 含有总体的信息

分散、复杂

样本是联系二者的桥梁

121122

,,

,{,,,}n n

n s n s n n X X X P X i X i X i p -==== 其样本()的概率分布为: (1-p)12101k n n i k n s i i i ≤≤= 其中(1)取或,而++

+,它恰等于样本中取值为

的分量之总数.

1211221

112(,,

,){,,

,}{}

.

!

!!!

43k

n

n n

n n k k i

s

n

n k k n X X X X P X i X i X i P X i e

e i i i i λ

λλλλ=--========

∏∏

设总体服从参数为的泊松分布,为其样本,

则样本的概率分布为: 例 .12k n n i k n s i i i ≤≤= 其中(1)取非负整数,而++

+.

三 统计推断问题简述

12(,,

,).n X X X X X 借助于总体的一个样本,对总体的未知分布进行

推断,我们把这统计推类问题统称断问题为 为利用样本对未知的总体分布进行推断,我们需要借助样本构造

样本的适当的函数,正是利用这些函数所反映的总体分布的信息来对

总体分布所属的类型,或总体分布中所含的未知参数作出统计推断.

§4.2 统计量

一、统计量的定义

二、常用的统计量

以后简称修正样本方差为样本方差.

12(,,)4,3n X X X X 不含

设为总体的一个样本,称此样本的任一总体分布未知参数的函数为该样 本的 定义.

统计量.

221212125,,.(,,

,)(,,4,)4n n n n n n X EX DX X X X X S

S X X X X n

S X X X X σσ===+++= 设总体服从正态分布,未知为

总体的一个样本,令 ,. 例则与均为样本.的统计量.

(5),.n X U U U σ

σ-= 但若令 则不是该样本的统计量,因的表示式中含有总体分布中的位置参数12(,,,)n X X X X 设为总体的一个样本.1211

()n X X X X X n =+++称样本的算术平均值为样本均值,记为. 样本均值,即 .2201

20 ()21.n i i S X X n S ==-∑

样本方差是用来描述样本中诸分量与样本均值的均方差异的,它有两种定义方式。直观的: .并称为样本的. 样本方差未修正样本方差2

2201

21()11.n i i n S S X X n n S ==

=---∑

统计学中更常用另一种定义,即 .并称修正样样本的本方差为

一阶原点矩即为样本均值.

二阶中心矩即为未修正样本方差 上述五种统计量可统称为样本的矩统计量,简称为样本矩.他们皆可表为样本的显式函数。

三、枢轴量

仅含一个未知参数,但其分布却已知的样本函数成为枢轴量。

S S =样本标准差定义为样本方差的算术平3.样本标准即差

方根,1

1,.41

n

k k i i k A k A k X n ==≥∑. 样本记 并称为样原点距

阶的原点距本1

1()1

.

5,n

k i i k B X X k n B k ==-≥∑记 并称为样本. 样本中心距

阶中心距的12(1)

(2)

()

(1)(2)()()(,,,),

,,, 6)n n n i X X X X X X X X X X X i ≤≤≤ 设为总体的一个样本.将样本中的诸分量按由小到大的.顺序统计量

顺序统计次序排列成 则称(为样本的一组,称为样本的第个

顺序量统计量.(1)12(1)12()(1)min(,,,)max(,,,).

n n n X X X X X X X X X X ==-样本极 特别地,称小值样本极与分别为与,并称为值样本的大极差121

2

(,,,)(,,,;),.

n n

X X X X U X X X θθ 设为总体的一个样本,需推断总体分布中某一未知参数,构造一个样本函数

服从一个已知分布22

00120

(,),(,5,

,)4n X N X X X X U μσσμ=

设总体其中已知,未知,为

总体的一个样本,令

例.

§4.3 常用的统计分布

统计的目的就是借助从总体X 中随机抽取的样本1(,,)n X X ,构造相应的统计量(枢轴量),通过研究它们的分布来对未知的总体分布进行推断. 因此,本节将要补充统计学中经常用到的分布: 分布、F分布与 t 分布。

一、分位数

在统计推断中,经常用到统计分布的一类数字特征-分位数,在讲常用的统计分布之前,我们先给出分位数的一般概念和性质,这对于以后查阅常用统计分布表和解决第五章的有关参数的区间估计和假设检验的问题都是非常有用的.

1、上侧分位数定义

2、上侧分位数的性质

2

χ{}(),(4.6)-()()(4.)

().X F x F P X F F F F F F X F x αααααα

αααααα=== 设随机变量的分布函数为,对给定的实数(0<<1),如果实数满足 > 即 1上侧 或 1- 7则称为随机变量的分布的水平的.或 定义4直接称为分布函数的水平的分位数上侧4分位数.100112

2

(1) (), (1);(4.8)(2)()();

(3)(0,1),1(),()1;(4.9)(4){},(4.10){}1.

(4.11)

F F x F F X f x f x dx X N u u u P X F P F

X F α

αααααα

αααααααα-+∞

--

=-~=~-Φ=Φ=-≤=<≤=-?

若是严格单调递增的则 若, 则若,记水平的上侧分位数为则即

对于像标准正态分布那样的对称分布(密度函数为偶函数),统计学中还用到双侧分位数。

3、双侧分位数定义

4、双侧分位数的性质

5、上侧分位数和双侧分位数的例题

二、 分布 1、 分布的定义

()(01),{},(4.12)()()1.(4.13)(5)4..X F x T P X T F T F T T X F x ααααααααααα<<>=--=- 设是对称分布的连续型随机变量,分布函数为,对于给定的实数如果正实数满足 即则称为随机变量的分布的水平的,也简称位,双侧分位数分位数或直接称为分布函数的分平义水的位数定

2

1()1-

,

2

{}1()(4.14)(2)(4.15)(3)

(4.16)

X F T P X T F T T F F F ααααα

αα

α

α

-=>=-===-由分布的对称性容易知道以下关系式成立:(1)或

2

0.0500.050.050.025

0.025

0.0254.6(0,1),0.05{}0.05()10.050.95,1.645.

0.05()10.0250.975,

1.96.

X

N P X u u u u u u α=>=Φ=-==Φ=-== 例设求水平的上侧分位数和双侧分位数.

解:由于 , 所以 查表可得 而水平的双侧分位数为,它满足查表得 2

χ2χ

对定义4.6的几点说明

22χ、分布的典型模式

11222120

1

()(4.18)2()

2()(0).6()4.n x n a x X f x x e n a x e dx X n X n a χχ--+∞

--=ΓΓ=>Γ~?2如果随机变量的密度函数为

其中是函数,称服从

个自由度的分布 定义

,记作1

(1)()()(1)!()

2

2121231()()(1,2,)

2222

1

(2).

2

(3)()(3)22.(4)(1)=a a a n n n n n n x n x x n x χλχχΓ=Γ=-+--Γ=Γ==≥=-=-222当是正整数时当时(2)是的指数分布的密度函数为单峰曲线,从原点开始递增,在

处取得最大值,然后递减, 渐进于轴,关于不对称的密度函数在0处取无穷大,以y 轴为 垂直渐进线

1222

2

212,,,,(0,1), 1,2,

,4.1,() .

n i n X X X n X N i n X X X X n χ~==++

设是个相互独立的随机变量且

则题 服从 分布命

2

χ分布关于自由度3、的可加性22221(),4.2(),().

(2)(),,2.

X m Y n X Y X Y m n X n EX n DX n χχχχ~~+~+~==()若且与相互独立,则

若则 命题122222

1222222

2

1

2122,,,()()m n m m m m n m n

X X X X m X X X X Y X X X X Y X Y X X X X Y m n χχ+++++~++

+++++

+~+设 独立、服从标准正态分布. (1)由于,根据定义4.6与命题4.1,与同分布,与

同分步,再由与独立知,与同分 布 以证,明所.

2χ4、分布的计算

22

21(),(4.6)(4.10){()}{()}X n P X n P X n ααχχχα

-~>=<=时由与两式可以得到

12222

2122

2

1

1

1

4

242212221

1

(2)(),.

,[]3(),[][]([])31 2.

2.

n n n

n

n

i

i

i i i i i i i i n n n

i

i i i X X X X n X X X X EX E X EX DX n E X D X E X E X X X X DX D X DX n χ=====~++======-=-====∑∑∑∑∑设,,,相互独立且均服从标准正态分布,

由知与同分布于是

此外由于见习题四(B)的第四题便知再因,,,相互独立,即得

上述命题2.

χ中第一个结论实际上说明分布同正态分布一样具有可加性2222

(,)

45

()x n n n αχχχαχ≤由于分布是常用的统计分布,但又难于利用其密度函数进行直接计算,通常也为其制定了统计用表.附表3中对自由度的分布给出了水平的上侧分位数之值.22

2212222122(;),,({()}{()}){()}()}1-x n P X n X n P n X n ααααχχχχαχχα-

-=<<= 因为不是对称函数,故对分布而言不存在双侧分位数但在以后统计推断中,将用到等式 ,或.

2

22(10),0.05,{ 3.940}{18.307}0.05,{3.24720.483}0.95.

45,P X P X P n n X X χαχχ=<=>=≤≤=>取水平查表可知 当自由度充分大(如)时,分布可近似地看作正态分布,于是由正态分布的分位数可近似地求得分布例如设的分位数.

三、F 分布

对定义4.7的说明

1F 、分布的定义

11()22

1

110

1(;,)()()(1)(4.20)

(,)22

( 4.,)(1)(0,0).

(,)7m m n p q X m m m f x m n x x m n n n

n B B p q x x dx p q X m X n F F m n --+--=+=~->>? 如果随机变量的密度函数为

其中是B(贝塔)函数,称服从第一自由度为,第二自由度为的分布, 记作定义***32.12

1F m m n x x m n m n x F ≥-=<+分布的密度函数曲线也为单峰曲线,当第一自由度时,曲线在处达最大值显见,即图形的峰值恒在

小于1处取到.此外,不难看出,当两个自由度与都变得越来越

大时,接近,从而函数曲线就在非常接近1的地方达到最高点.

图4.5给出了若干分布的密度函数曲线.2F 、分布的典型模式221(),(),4.20),(,).4.3(,)4.(,).

3X

m Y

n X Y X

nX m Z Y mY

n

Z Z F m n X F m n X F n m χχ-=

=~~~设且与相互独立,

则的密度函数为(因此由命题不难看出,若,则命题

四、t 分布 1、t 分布的定义

对定义4.8的说明

F 3、分布的计算

1-2

2

1-2

2

({(,)}{(,)}){(,)(,)}1-P X F m n X F m n P F m n X F m n ααααα

α=<<= 或

1(1)4(5,10)4{ 3.33}0.05,{ 4.24}0.025.

(10,5)4{ 4.74}0.05,{ 6.62}0.025.

11

(,)(,F X F P X P X Y F P Y P Y F m n F n m αααα-~>=>=~>=>== 例子:对于较小的,可以直接由附表查出

分布的上侧分位数.设,查表知 又设,查表知 (2)当接近于时,可以利用下式求出所需的上侧分位数 .(4.21)

)0.950.9750.050.02511

(,),(,).

(,)(,)(5,10)11{}0.05,{ 4.24}0.95.4.74 6.62

F m n F m n F n m F n m X F P X P X ==~<

=≤≤=这样,当

时,查表可知1

22

(;)(1),(4.23)

4.

.8()n X x t x n x n X n t X t n +-=+-∞<<∞

~如果 随机变量的密度函数为

称服从自由度为的分布, 记义作 定

2、t 分布的典型模式

3、t 分布的计算

211

22

2(1)0. 1,5,10,lim(1).

n x x t y x x n t n t x e n

n t +--→∞==∞+==∞分布的密度函数曲线也为单峰曲线,但关于轴对称,在

处取到最大值轴为其水平渐近线.图4.6给出了自由度时分布的密度函数曲线. (2) 当自由度很大时,分布也接近于标准正态分布,这是

因为 时的分布的密度函数曲线,即为标准正态分布的密度函数曲线,但比标准正态分布的尾部有更大的概率

.

201,(),4.23),().

4.4(1,)().

4.4X N Y n X Y T T T t n X F n t n χ=

~~~设(,)且与相互独立,记

则的密度函数为(因此由命题不难看出,若命题5()t t n t αααα附表对于一些充分小的值给出了分布的水平的上侧分位数之值.由于分布具有对称的密度函数,当接近1时,可按下式求出相应的上侧分位数:122

()().

(4.24)

(),{()}{-()}.{()}.

(8)0.05,(8) 1.860,(8) 2.306,{t n t n X t n P X t n P X t n t P X t n X t t t P αααααααααα-=->=<=>==== 因此,如由(4.6),(4.10)与上式得: 再由于分布具有对称的密度函数,具有双侧分位数,由(4.12)与(4.15)知 例如,设,取水平查表可知故有

1.860}{ 1.860}{

2.306}0.05.

(),X P X P X n t t n u u ααα>=<=>=≈ 此外,由于自由度充分大时,分布近似于标准正态分布,故有其中为标准正态分布的上侧分位数.

§4.4 抽样分布

总体的分布是未知的,或是部分未知的.对总体的分布进行的统计推断称为非参数统计推断;对总体未知的重要数字特征(如总体数学期望、总体方差)或总体分布中所含的未知参数进行统计推断.这类问题称为参数统计推断.在参数统计推断问题中,经常需要利用总体的样本构造出合适的统计量(或枢轴量),并使其服从或渐近服从已知的确定分布。

统计学中泛称统计量(或枢轴量)的分布为抽样分布.讨论抽样分布的途径有两个:一是精确地求出抽样分布,并称相应地统计推断为小样本统计推断;另一种方式是让样本容量趋于无穷,并求出抽样分布地极限分布;然后,在样本容量充分大时,可利用该极限分布作为抽样分布地近似分布,再对未知参数进行统计推断,因此称相应的统计推断为大样本统计推断.本节重点讲述正态总体的抽样分布。

一、正态总体的抽样分布

2F t χ 上节讲述的三种常用的统计分布()为讨论正态总体的抽样分布作了必要的准备.不过,在一般地讨论正态分布的抽样分布以前,我们还需要正态总体抽样分布的一个基础性定理,那就是涉

及正态总体样本均值与样本方差的抽分布、分布和样分布分布的定理.2112(,),4.1(,,

,)n X N X X X n X S μσ~设总体是其容量为的一个

样本,与分别为此样本的样本均值与样本方定,则有理差 2

2

222

(1)(,);

1

((1);

(3)

2).

X N n

n S n X S χσμσ--与相互独立

有了上述关于正态总体的样本均值与样本方差的抽样分布的基础性定理,再结合上一节中的常用统计分布,就可以容易地构造单正态总体与双正态总体中样本的一些统计量(枢轴量)并使之服从确定的已知分布。

1、 单正态总体的抽样分布

1.(2)3 4.

2.

证明结论()可以由一个重要性质(一组相互独立服从正

态分布的随机变量的非零线性组合仍然服从正态分布)得到讨论与()的严格证明需要用到关于多重积分的变量替换公式,此外还要利用正交矩阵的一些性质,数学推导的技巧性很强,故

此处省略,有兴趣的同学可以参考附录2122222(,,

,)(,)(1)(0,1);1

(2)(1);(3)(1).n X X X X N X S X U N n S n X T t n μσχσ

~=--=

-设为正态总体的样本,

与分别为该样本的样本均值与样本方 定理4.则

2

差,2

2,-14.1(1)24.4(-1)T n U S T t n σ=~证明结论(1)是定理4.1(1)的直接推论.结论(2)已经由定理4.1的(2)给出,再因为 且由定理知与相互独立,故由本定理的结论、()

与命题知.

2、 双正态总体的抽样分布

在统计学的应用中,有时要比较两个正态总体的参数,下述定理为比较两个正态总体的参数提供了合适的统计量(或枢轴量)。

二、一般总体抽样分布的极限分布

本小结将取消定理4.2中总体服从正态分布的条件,这时将不能精确地导出样本函数U 与T 的分布函数的显式。于是,考虑当样本容量n 趋于无穷时,相应的分布函数是否存在极限分布?为此,首先需引入概率论中有别于依概率收敛的另一种收敛性概念,即依分布收敛的概念.

1222

11222121112222

2

22

12(,)(,)(,,,)(,,,)n n X N Y N X X X X n X S Y Y Y Y n Y S S S S μσμσ~~设与是两个相互独立的正态总体.又设为总体的容量为的样本,与分别为该样本的样本均值与样本方差.再设为总体的容量为的样本,与分别为此样本的样本均值与样本方差.记 定理4.3 是

的加权平均:

222

121212122

221122

12

22

2121211,

22

(1)(0,1);

(2)()(1,1);

(3)(2).

n n S S S n n n n X Y U N S F F n n S X Y T t n n σσσσσ--=

++-+-=

=--===

+-则有当时,

对定理4.4的说明

000,

(1),

()(),(2)()().

()()(),n n n n n n d d

U T U T n n n X X U T t n X S F x x F x x F x F x x U T X U =

=

-??→Φ??→ΦΦ=

=

其中与分别表示上述样本的样本均值与样本方差,

则(1) 以上,与分别表示及标准正态分布的分布函数. 证明(1)由于 122(,,,),n X X X X EX DX μσ==设为总体X 的样本,

并设总体的数学期望与方差均存在,分别 定理4.4 记为

.再记

()lim ()(),()()()()().

n n n n

n n d

d

n n F x X x X x F x F x x C F X X F x F x X X F x F x →∞

=?∈??→??→设为随机变量的分布函数,F()为随机变量的分布函数,记C(F)为F()的全体连续点组成的集合,

若 ,则称随机变量,或称分布函数依分布收敛至,简记为

依分布收敛至10lim ()lim ()(),.(2)n

U n n n X F x P U x x x R →∞→∞

=≤=Φ?∈ 在总体的方差存在的前提下,由(林德伯格-勒维)中心极限定理,有

证明略,有兴趣的同学可以参看附录4.3中的相关内容.

4.4n n n U T 定理的适用范围很宽泛,唯一的条件是总体的方差存在.

这样,当样本容量充分大时,与都近似地服从标准正态分布..n n U T σμσμ22 因此,如果总体的方差已知,便可以利用枢轴量近似地对总体未知的数学期望进行统计推断如果未知,便可以选用枢轴

量近似地对进行统计推断.

数理统计期末复习题1

2009期末复习题 注:这份答案是在2009年最后一晚做出来的,时间比较紧,所以可能有些地方不严谨,有什么错误还请各位多包涵。 处理一个问题有很多合理的办法,这份答案所列出的只不过代表个人的想法,仅供参考。 这份答案算是送大家的新年礼物吧,预祝大家期末考试顺利,一年都有好运 孟帅 1. 设随机变量X 和Y 相互独立,且都服从正态分布N(0,32),而 921,,,X X X 和921,,,Y Y Y 分别是来自总体X 和Y 的样本,则统计量U = 29 22 21 921Y Y Y X X X ++++++ 服从什么分布?为什么? 解:分子分母同除以9得到 服从N (0,1), 服从X 2(9)分布,因此U 服从 t (9)分布(课本92页) 2.某大学来自A,B 两市的新生中分别抽取10名和11名男生调查身 高,测得他们的身高分别为cm x 176=,cm y 172=,样本方差分别为3.1121=S , 1.92 2=S 。不妨设两个城市的男生的身高分别服从正态分布),(2 1σμN 和 ),(22σμN ,求21μμ-的 95%的置信区间,并请在0.05水平下判断两个城 市的男生身高是否相等? 解: 但是 未知,构造111页) 9 1i X ∑9119i i X =∑ 92 1 3 i i Y =()∑ 22 212σ=σ=σ2σ1 2 X Y --μ-μ

。 =10, =11, =11.3, =9.1, =176, =172。代入T 表达式得到 T= 。 T 服从t ( + -2)查附表7得到 =2.093 得到 的置信区间为: (1.088,6.912) 这个区间不包含0,可以直接判定在0.05水平下两城市男生身 高不相等。如果想严谨一点就在进行假设检验: 原假设:两城市男生身高相等;备择:两城市男生身高不等。 检验统计量 ,和 比较。 如果T 大于 ,拒绝原假设,否则接受。 3.随机调查了某校200名沙眼患者,经用某种疗法治疗一定时期后治愈168人,试求总体治愈率的95%置信区间。 解:样本率p=0.84,用大样本正态近似法求解,置信区间为: ( , )(课本115页) S ω1n 2n 21 S 22 S X Y 1n 2 n ()1241.3915 -μ-μ() 12μ-μ()2 19t 0.05X Y -()219t 0.05() 2 19t 0.052 p u α-2 p u α+

数理统计的基本概念知识点

10 06 数理统计的基本概念 知识网络图 正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→???? ?????????????? 主要内容 一、样本 我们把从总体中抽取的部分样品n x x x ,,,21Λ称为样本。样本中所含的样品数称为样本容量,一般用n 表示。在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,n x x x ,,,21Λ表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21Λ表示n 个具体的数值(样本值)。我们称之为样本的两重性。 二、.统计量 1.定义:称不含未知参数的样本的函数),,,(21n X X X f Λ为统计量 2.常用统计量 样本均值 .11 ∑==n i i x n x 样本方差 ∑=--=n i i x x n S 122.)(11 样本标准差 .)(111 2∑=--=n i i x x n S 样本k 阶原点矩 ∑===n i k i k k x n A 1 .,2,1,1Λ 样本k 阶中心矩

∑==-=n i k i k k x x n B 1 .,3,2,)(1Λ μ=)(X E ,n X D 2 )(σ=, 22)(σ=S E ,221)(σn n B E -=, 其中∑=-=n i i X X n B 1 22)(1,为二阶中心矩。 三、抽样分布 1.常用统计量分布 (1)设n X X X ,,,21Λ是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212n n X X X X Λ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ. (2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n Y X T =服从自由度为n 的-t 分 布,记为()n t T ~. (3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1 22 1n n Y X n Y n X F ?==。服从自由度为()21,n n 的-F 分布,记为()21,~n n F F 2.正态总体场合 设n X X X ,,,21Λ是从正态总体()2,σμN 中抽取的一个样本,记 ()2 1211,1∑∑==-==n i i n n i i X X n S X n X ,则 (1);,~2??? ? ??n N X σμ (2)X 与2 n S 相互独立. (3)()()1~1222 --n S n χσ;或()1~)(2212 --∑=n X X n i i χσ

应用数理统计课后习题参考答案

习题五 1 试检验不同日期生产的钢锭的平均重量有无显著差异?(=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5. 假设样本观测值(1,2,3,4)ij y j =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= . 检验的问题:01251:,:i H H μμμμ===不全相等 . 计算结果: 表5.1 单因素方差分析表 ‘*’ . 查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异. 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(=0.05) 解 根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 . 假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= .其中

样本容量不等,i n 分别取值为6,5,3,4 . 检验的问题:012341:,:i H H μμμμμ===不全相等 . 计算结果: 表5.2 单因素方差分析表 查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05, 所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 . 3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A , 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用. 设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ij y i j ==来源于正态总体2 ~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j = .记i α?为对应于i A 的主效应;记j β?为对应于j B 的主效应; 检验的问题:(1)10:i H α?全部等于零,11 :i H α?不全等于零; (2)20:j H β?全部等于零,21:j H β?不全等于零; 计算结果: 表5.3 双因素无重复试验的方差分析表 查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值, 或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用. 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量:

数理统计的基础知识

第五章数理统计的基础知识 在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。 但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。 例如:1、某种电子元件的寿命服从什么分布是完全不知道的。 2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0-1) 分布,但其中的参数p未知。 对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数。数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数。 数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。 数理统计研究的内容非常广泛,可分为两大类: 一是:怎样有效地收集、整理有限的数据资料。 二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。 第一节数理统计的基本概念 一、总体与总体的分布 在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。总体中所包含的个体的个数称为总体的容量.容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系. 在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X。 例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体。 但在实际问题中,我们仅仅关心灯泡的使用寿命(记X表示该批灯泡的寿命)。则X就是我们研究的总体(所有灯泡寿命的集合),每一个灯泡的寿命就是一个个体。 再如:考查某一群体的身高和体重,则全体人员的(身高、体重)是总体,每个人的身高和体重是个体。 由此给出定义: 总体:对所研究对象的某些指标进行试验,将试验的全部可能的观测值称为总体记为X。 个体:每一个可能的观测值称为个体。 对不同的个体,X的取值一般是不同的。例如在试验中观察若干个个体就会得到X的一种数值,但在试验或观察之前,无法确定会得到一组什么样的数值,所以X是一个随机变量或随机向量,而X的分布也就完全描述了我们所关心的指标,即总体的分布。 为方便起见,以后我们将X的可能取值的全体组成的集合称为总体,或直接称随机变量X为总体,X的分布也就是总体的分布。 例如:正态总体:是指表示总体某个数量指标的随机变量服从正态分布。 【注1】总体的分布一般情况下是未知的,这就需要利用总体中部分个体的数据资料来

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

应用数理统计试题库

一 填空题 1 设 6 21,,,X X X 是总体 ) 1,0(~N X 的一个样本, 26542321)()(X X X X X X Y +++++=。当常数C = 1/3 时,CY 服从2χ分布。 2 设统计量)(~n t X ,则~2X F(1,n) , ~1 2 X F(n,1) 。 3 设n X X X ,,,21 是总体),(~2 σu N X 的一个样本,当常数C = 1/2(n-1) 时, ∑-=+-=1 1 212 )(n i i i X X C S 为2σ的无偏估计。 4 设)),0(~(2σεε βαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。对于固定的0x , 则0x βα+~ () 2 0201,x x N x n Lxx αβσ?? ? ?- ???++ ??? ?????? ? 。 5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为?λ = 。 6.设总体2 12~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的 置信区间为 ()()()()22 2212211,11n S n S n n ααχχ-??--????--???? 。 7.设X 服从二维正态),(2∑μN 分布,其中??? ? ??=∑??? ? ??=8221, 10μ 令Y =X Y Y ???? ??=???? ??202121,则Y 的分布为 ()12,02T N A A A A μ??= ??? ∑ 。 8.某试验的极差分析结果如下表(设指标越大越好): 表2 极差分析数据表

第六章数理统计学的基本概念

第六章数理统计的基本概念 一、教学要求 1.理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。 2.了解分布、t分布和F分布的定义和性质,了解分位数的概念并会查表计算。 3.掌握正态总体的某些常用统计量的分布。 4.了解最大次序统计量和最小次序统计量的分布。 本章重点:统计量的概念及其分布。 二、主要内容 1.总体与个体 我们把研究对象的全体称为总体(或母体),把组成总体的每个成员称为个体。在实际问题中,通常研究对象的某个或某几个数值指标,因而常把总体的数值指标称为总体。设x为总体的某个数值指标,常称这个总体为总体X。X的分布函数称为总体分布函数。当X为离散型随机变量时,称X的概率函数为总体概率函数。当X为连续型随机变量时,称X的密度函数为总体密度函数。当X服从正态分布时,称总体X为正态总体。正态总体有以下三种类型: (1)未知,但已知; (2)未知,但已知; (3)和均未知。 2.简单随机样本 数理统计方法实质上是由局部来推断整体的方法,即通过一些个体的特征来推断总体的特征。要作统计推断,首先要依照一定的规则抽取n个个体,然后对这些个体进行测试或观察得到一组数据,这一过程称为抽样。由于抽样前无法知道得到的数据值,因而站在抽样前的立场上,设有可能得到的值为,n维随机向量()称为样本。n称为样本容量。()称为样本观测值。 如果样本()满足 (1)相互独立; (2) 服从相同的分布,即总体分布; 则称()为简单随机样本。简称样本。 设总体X的概率函数(密度函数)为,则样本()的联合概率

函数(联合密度函数为)

3. 统计量 完全由样本确定的量,是样本的函数。即:设是来自总体X 的 一个样本,是一个n 元函数,如果中不含任何总体的未知参数,则称 为一个统计量,经过抽样后得到一组样本观测值 ,则称 为统计量观测值或统计量值。 4. 常用统计量 (1)样本均值: (2)样本方差: (3)样本标准差: 它们的观察值分别为: 这些观察值仍分别称为样本均值、样本方差和样本标准差。 (4)样本(k 阶)原点矩 1 1,1,2,n k k i i A X k n ===∑L (5)样本(k 阶)中心矩 1 1(),2,3,n k k i i B X X k n ==-=∑L 其中样本二阶中心矩21 1(),n k i i B X X n ==-∑又称为未修正样本方差。 (6)顺序统计量 将样本中的各个分量由小到大的重排成 (1)(2)()n X X X ≤≤≤L 则称(1)(2)(),,n X X X L 为样本顺序统计量,()(1)n X X -为样本的极差。 (7)样本相关系数: 1 1 2 211 ()()()() 11()()n n i i i i i i xy n n x y i i i i x x y y x x y y r S S x x y y n n ====----= = --∑∑∑∑

数理统计的基础知识

第4章数理统计的基础知识 数理统计与概率论是两个有密切联系的学科, 它们都以随机现象的统计规律为研究对象.但在研究问题的方法上有很大区别:概率论——已知随机变量服从某分布,寻求分布的性质、数字特征、及其应用; 数理统计——通过对实验数据的统计分析, 寻找所服从的分布和数字特征, 从而推断整体的规律性. 数理统计的核心问题——由样本推断总体 从本章开始,我们将讨论另一主题:数理统计。 数理统计是研究统计工作的一般原理和方法的科学,它主要阐述搜集、整理、分析统计数据,并据以对研究对象进行统计推断的理论和方法,是统计学的核心和基础。 本章将介绍数理统计的基本概念:总体、样本、统计量与抽样分布。 由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来。但客观上只允许我们对随机现象进行次数不多的观察试验,也就是说, 我们获得的只是局部观察资料。 数理统计就是在概率论的基础上研究怎样以有效的方式收集、整理和分析可获的有限的, 带有随机性的数据资料,对所考察问题的统计性规律尽可能地作出精确而可靠的推断或预测,为采取一定的决策和行动提供依据和建议.

§4.1 总体与样本 一、 总体与总体分布 1.总体:具有一定的共同属性的研究对象全体。总体中每个对象或成员称为个体。 研究某批灯泡的质量,该批灯泡寿命的全体就是总体;考察国产 轿车的质量,所有国产轿车每公里耗油量的全体就是总体;某高校学习“高等数学”的全体一年级学生。 个体与总体的关系,即集合中元素与集合之间的关系。统计学中关心的不是每个个体的所有具体特性,而是它的某一项或某几项数量指标。某高校一年级学生“高等数学”的期末考试成绩。 对于选定的数量指标 X (可以是向量)而言,每个个体所取的值是不同的,这一数量指标X 就是一个随机变量(或向量);X 的概率分布就完全描述了总体中我们所关心的这一数量指标的分布情况。数量指标X 的分布就称为总体的分布。 说明 例如 服装厂生产的各式服装,玩具厂生产的儿童玩具,检验部门通常将产品分成若干等级。 3X 总体分布就是设定的表示总体的随机变量.的分布. 4.1 X X 定义统计学中称随机变量(或向量)为,并把随机 变量(或向量)的分布称为总体总体分布.1X 表示总体的既可以是随机变量,也可以.是随机向量.2 有时个体的特性本身不是直接由数量指.标来描述的.

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显着影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显着性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显着性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显着水平下确定这批元件是否合格。 解: {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一

北航应用数理统计考试题及参考解答

北航2010《应用数理统计》考试题及参考解答 09B 一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而12 15(,,)X X X 是来自X 的样本,则22 110 22 11152() X X U X X ++=++服从的分布是_______ . 解:(10,5)F . 2,?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 3,分布拟合检验方法有_______ 与____ ___. 解:2 χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ . 解:推断各因素对试验结果影响是否显著. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计?β 的协方差矩阵?βCov()=_______ . 解:1?σ-'2Cov(β) =()X X . 二、单项选择题(每小题3分,共15分) 1,设总体~(1,9)X N ,129(,, ,)X X X 是X 的样本,则___B___ . (A ) 1~(0,1)3X N -; (B )1 ~(0,1)1X N -; (C ) 1 ~(0,1) 9X N -; (D ~(0,1)N . 2,若总体2(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的 置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的; (B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .

1-数理统计基础

1、数理统计基础 1.1 随机变量 1.1.1随机事件和概率 观测或试验的一种结果,称为一个事件。在一定条件下进行大量重复试验时,每次都发生的事件,称为必然事件(Ω);反之,每次都不发生的事件,称为不可能事件(Φ);有时发生有时不发生的事件,称为随机事件或偶然事件(A )。 随机事件的特点是在一次观测或试验中,它可能出现,也可能不出现,但在大量重复观测或试验中呈现统计规律性。用来描述事件发生可能性大小的量就是概率。 概率的统计定义是:在相同条件下进行n 次重复试验,事件A 发生了m 次,称m 为事件的频数,称m /n 为事件的频率。当n 足够大时,频率m /n 稳定地趋向于某一个常数p ,此常数p 称为事件A 的概率,记为)(A P =p ,即: )(A P =n m n ∞→lim =p (1.1) 即概率是频率的极限值。 由概率的定义可归纳出概率的三个基本性质: (1)必然事件Ω的概率等于1,即)(Ωp =1; (2)不可能事件Φ的概率等于0,即)(Φp =0; (3)任何事件的概率都介于0和1之间,即0≤)(A P ≤1。 小概率原理:当某一事件的概率非常接近于0时,说明这个事件在大量的试验中出现的概率非常小,这样的事件称为小概率事件。小概率事件虽然不是不可能事件,但在一次连续试验中出现的可能性很小,一般可以认为不会发生,此即为小概率原理。 概率的三个定理: (1)互补定理:某事件发生的概率与不发生的概率之和为1。当发生的概

率为p,则不发生的概率为1-p。全部基本事件之和为必然事件。 (2)加法定理:相互独立而又互不相容的各个事件,其概率等于它们分别 出现之和。例如,A 1,A 2 ,…A n 为相互独立而又互不相容的事件,其中任一事件 出现的概率为各个事件概率的总和,即 P(A)=P(A 1)+P(A 2 )+…+P(A n )=∑ = n i i A P 1 ) ((1.2) (3)乘法定理:相互独立的事件同时发生的概率是这些事件各自发生的概率的乘积,即 P(A 1A 2 …A n )=P(A 1 )P(A 2 )…P(A n )=∏ = n i i A P 1 ) ((1.3) 1.1.2 随机变量与分布函数 每次试验的结果可以用一个变量X的数值来表示,这个变量的取值随偶然因素而变化,但又遵从一定的概率分布规律,这种变量称为随机变量。 随机变量根据其取值的特征可以分为离散型随机变量和连续型随机变量。 离散型随机变量试验结果的可能值可以一一列举出来,即随机变量X可取的值是间断的、可数的。 连续型随机变量试验结果的可能值不能一一列举出来,即随机变量X可取的值是连续充满在一个区间的。 随机变量的特点是以一定的概率在一定的区间范围内取值,但并不是所有的观测值都能以一定的概率取某一固定值。因此人们关心的是随机变量在某一个区间取值的概率是多少?即P(a≤X≤b)=? 根据概率的加法定理,某随机变量X在区间[a,b]的取值概率为: P(a≤X≤b)=P(X<b)-P(X<a)显然只要求出P(X<b)和P(X<a)即可,这比求出P(a≤X≤b)简单得多。 对于任何实数x,事件(X<x)的概率当然是x的函数,令F(x)=P(X <x)表示(X<x)的概率,并定义F(x)为随机变量X的概率分布函数,

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

应用数理统计大作业1——逐步回归法分析终

应用数理统计多元线性回归分析 (第一次作业) 学院:机械工程及自动化学院 姓名: 学号: 2014年12月

逐步回归法在AMHS物流仿真结果中的应 用 摘要:本文针对自动化物料搬运系统(Automatic Material Handling System,AMHS)的仿真结果,根据逐步回归法,使用软件IBM SPSS Statistics 20,对仿真数据进行分析处理,得到多元线性回归方程,建立了工件年产量箱数与EMS数量、周转箱交换周期以及AGC物料交换服务水平之间的数学模型,并对影响年产量箱数的显著性因素进行了分析,介绍了基本假设检验的情况。 关键词:逐步回归;残差;SPSS;AMHS;物流仿真

目录 1、引言 (1) 2、逐步回归法原理 (4) 3、模型建立 (5) 3.1确定自变量和因变量 (5) 3.2分析数据准备 (6) 3.3逐步回归分析 (7) 4、结果输出及分析 (8) 4.1输入/移去的变量 (8) 4.2模型汇总 (9) 4.3方差分析 (9) 4.4回归系数 (10) 4.5已排除的变量 (11) 4.6残差统计量 (11) 4.7残差分布直方图和观测量累计概率P-P图 (12) 5、异常情况说明 (13) 5.1异方差检验 (13) 5.2残差的独立性检验 (14) 5.3多重共线性检验 (15) 6、结论 (15) 参考文献 (17)

1、引言 回归被用于研究可以测量的变量之间的关系,线性回归则被用于研究一类特殊的关系,即可用直线或多维的直线描述的关系。这一技术被用于几乎所有的研究领域,包括社会科学、物理、生物、科技、经济和人文科学。逐步回归是在剔除自变量间相互作用、相互影响的前提下,计算各个自变量x与因变量y之间的相关性,并在此基础上建立对因变量y有最大影响的变量子集的回归方程。 SPSS(Statistical Package for the Social Science社会科学统计软件包)是世界著名的统计软件之一,目前SPSS公司已将它的英文名称更改为Statistical Product and Service Solution,意为“统计产品与服务解决方案”。SPSS软件不仅具有包括数据管理、统计分析、图表分析、输出管理等在内的基本统计功能,而且用它处理正交试验设计中的数据程序简单,分析结果明了。基于以上优点,SPSS已经广泛应用于自然科学、社会科学中,其中涉及的领域包括工程技术、应用数学、经济学、商业、金融等等。 本文研究内容主要来源于“庆安集团基于物联网技术的航空柔性精益制造系统”,在庆安集团新建的320厂房建立自动化物料搬运系统(AMHS),使用生产仿真软件EM-Plant对该系统建模并仿真,设计实验因子及各水平如表1-1,则共有3*4*6=72组实验结果,如表所示。为方便描述,将各因子定义为:X1表示AGC物料交换服务水平,X2表示周转箱交换周期,X3表示EMS数量,Y表示因变量年产量箱数。本文目的就是建立年产量箱数与AGC物料交换服务水平、周转箱交换周期和EMS数量之间的关系。 表1-1 三因子多水平实验方案

研究生《应用数理统计基础》庄楚强 四五章部分课后答案

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49 试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α) (参考数据:) 4-45. 解:数据的顺序统计量为: 10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82 所以 6131 .0][)()1(5 1 ) (=-= -+=∑k k n k k x x a L , 又 5264.10=x , 得 38197 .0)(11 1 2 =-∑=i i x x 故 984.0) (11 1 2 2 =-= ∑=i i x x L W , 又 当n = 11 时,85.005.0=W 即有 105.0<

数理统计的基本知识习题 1++

习题一 1.1 任意抛掷一颗骰子,观察出现的点数.设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”. (1) 写出试验的基本事件空间,把事件A 及B 表示为基本事件的集合; (2) 事件 B A AB B A A ,,,, 分别表示什么事件? 并把它们表示为基本事件(即样本点)的集合. 1.2 袋中有10个球,分别标有号码1~10, 其中1, 2, 3, 4, 5号球为红球, 6, 7, 8号球为白球, 9, 10号球为黑球.设试验为 (1) 从袋中任取一球,观察其颜色; (2) 从袋中任取一球,观察其号码. 分别写出两个试验的基本事件空间,并指出其中的基本事件是否是等可能的. 1.3 设A ,B ,C 为三个事件,试将下列事件用A ,B ,C 表示出来: (1) 三个事件都不发生; (2) 三个事件不都发生; (3) 三个事件恰有一个发生; (4) 三个事件恰有两个发生; (5) A 发生,B 与C 都不发生; (6) A 与B 都发生,C 不发生; (7) 三个事件至少有一个发生; (8) 三个事件至少有两个发生; (9) 三个事件至多有两个发生; (10) 三个事件至多有一个发生. 1.4 设A ,B 为随机事件,试证明下列等式: (1) B B A B A =; (2) BC AC C B A -=-)(; (3) AB A B A B B A -=-=-)( ; (4) )()()(A B B A AB B A --=- . 1.5 从分别标有1至n 2的n 2张卡片中无放回地任取3张,求卡片号大于、小于和等于n 的各有一张的概率. 1.6 某班有12名学生是在1987年出生的,求: (1) 这12名学生中至少有两人是在同一天出生的概率; (2) 这12名学生中至少有一人是五月一日出生的概率.

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

研究生 习题2: 2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2 χ分布。 2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η 所以 )1,0(~3 1 N η , )1,0(~3 2 N η )2(~)(3 1332 22212 22 1χηηηη+=??? ??+??? ?? 由于 2 22 1ηηη+= 因此 当 3 1=c 时,)2(~2 χηc 。 2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2 N 的一个样本,求 ? ?? ???>∑=101244.1i i P ξ 。(参考数据:) 2-8解:因为 )3.0,0(~),,,(2 1021N ξξξξΛ=, 所以 )1,0(~3 .0N ξ , 即有)10(~3.0210 12 χξ∑=?? ? ??i i 所以 ??? ???>∑=101244.1i i P ξ??????>=∑=1012223.044.13.0i i P ξ??????>=∑=10122163.0i i P ξ ? ?? ???≤-=∑=10122163.01i i P ξ1.09.01=-= 2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{} 20≤≤ξP ,其中ξ是样本容量为16的样 本均值。(参考数据:)

2-14解: {}20≤≤ξP )0()2(F F -=)210()212( -Φ--Φ=)2 1 ()21(-Φ-Φ= 1)2 1 (2-Φ=3830.016915.02=-?= 由于 )4,1(~N ξ , 所以 )1,0(~21 1 16 21N -=-ξξ {} 20≤≤ξP ????? ?-≤-≤-=21122112110ξP ? ?? ???≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-?=-Φ= 2-17. 在总体)20,80(2 N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的 绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2 N ξ, 所以 )1,0(~2 80 100 20 80 N -= -ξξ 所以 {}380>-ξP {} 3801≤--=ξP ?? ? ?????? ?≤--=232801ξP ? ?? ???≤ -≤--=23280 231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-= 2-25. 设总体ξ的密度函数为 ?? ?<<=其它 102)(x x x p 取出容量为4的样本),,,(4321ξξξξ,求: (1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)??? ? ??>21)3(ξP 。 2-25解:(1)由 ()()[][])()(1)(! !1! )(1)(x p x F x F k n k n x p k n k k -----= ξ 所以 当 10<

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

相关主题