搜档网
当前位置:搜档网 › 过控综合自动化实验指导书整理版

过控综合自动化实验指导书整理版

过控综合自动化实验指导书整理版
过控综合自动化实验指导书整理版

第一章实验装置说明

第一节系统概述

一、概述

“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。它是本企业根据工业自动化及其他相关专业的教学特点,并吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证而推出的一套全新的综合性实验装置。本装置结合了当今工业现场过程控制的实际,是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。本装置还可根据用户的需要设计构成AI智能仪表,DDC远程数据采集,DCS分布式控制,PLC可编程控制,FCS现场总线控制等多种控制系统,它既可作为本科,专科,高职过程控制课程的实验装置,也可为教师、研究生及科研人员对复杂控制系统、先进控制系统的研究提供一个物理模拟对象和实验平台。

学生通过本实验装置进行综合实验后可掌握以下内容:

1.传感器特性的认识和零点迁移;

2.自动化仪表的初步使用;

3.变频器的基本原理和初步使用;

4.电动调节阀的调节特性和原理;

5.测定被控对象特性的方法;

6.单回路控制系统的参数整定;

7.串级控制系统的参数整定;

8.复杂控制回路系统的参数整定;

9.控制参数对控制系统的品质指标的要求;

10.控制系统的设计、计算、分析、接线、投运等综合能力培养;

11.各种控制方案的生成过程及控制算法程序的编制方法。

二、系统特点

●真实性、直观性、综合性强,控制对象组件全部来源于工业现场。

●被控参数全面,涵盖了连续性工业生产过程中的液位、压力、流量及温度等典型参数。

●具有广泛的扩展性和后续开发功能,所有I/O信号全部采用国际标准IEC信号。

●具有控制参数和控制方案的多样化。通过不同被控参数、动力源、控制器、执行器及工艺管路的组合可构成几十种过程控制系统实验项目。

●各种控制算法和调节规律在开放的实验软件平台上都可以实现。实验数据及图表在上位机软件系统中很容易存储及调用,以便实验者进行实验后的比较和分析。

●多种控制方式:可采用AI智能仪表控制、DCS分布式控制、S7-200或S7-300PLC可编程控制、DDC远程数据采集控制等多种控制方式。

●充分考虑了各大高校自动化专业的大纲要求,完全能满足教学实验、课程设计、毕业设计的需要,同时学生可自行设计实验方案,进行综合性、创造性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。

三、实验装置的安全保护体系

1.三相四线制总电源输入经带漏电保护装置的三相四线制断路器进入系统电源之后又分为一个三相电源支路和三个不同相的单相支路,每一支路都带有各自三相、单相断路器。总电源设有三相通电指示灯和380V三相电压指示表,三相带灯熔断器作为断相指示。

2.控制屏上装有一套电压型漏电保护和一套电流型漏电保护装置。

3.控制屏设有服务管理器(即定时器兼报警记录仪),为学生实验技能的考核提供一个统一的标准。

4.各种电源及各种仪表均有可靠的自保护功能。

5.强电接线插头采用封闭式结构,以防止触电事故的发生。

6.强弱电连接线采用不同结构的插头、插座,防止强弱电混接。

第二节THSA-1型过控综合自动化控制系统对象实验对象总貌图如图1-1所示:

图1-1 实验对象总貌图

本实验装置对象主要由水箱、锅炉和盘管三大部分组成。供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流

量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、

涡轮流量计及手动调节阀组成。

一、被控对象

由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。

1.水箱:包括上水箱、中水箱、下水箱和储水箱。上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。

2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。

3.盘管:模拟工业现场的管道输送和滞后环节,长37米(43圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。盘管的出水通过手动阀门的切换既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。它可用来完成温度的滞后和流量纯滞后控制实验。

4.管道及阀门:整个系统管道由敷塑不锈钢管连接而成,所有的手动阀门均采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底部有一个出水阀,当水箱需要更换水时,把球阀打开将水直接排出。

二、检测装置

1.压力传感器、变送器:三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。采用标准二线制传输方式,工作时需提供24V直流电源,输出:4~20mADC。

2.温度传感器:装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。Pt100测温范围:-200~+420℃。经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信号。Pt100传感器精度高,热补偿性较好。

3.流量传感器、变送器:三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。它的优点是测量精度高,反应快。采用标准二线制传输方式,工作时需提供24V直流电源。流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。

三、执行机构

1.电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀型号为:QSVP-16K。具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。

2.水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。泵体完全采用不锈钢材料,以防止生锈,使用寿命长。本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。

3.电磁阀:在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃;工作电压:24VDC。

4.三相电加热管:由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50Ω左右。

第三节THSA-1型过控综合自动化控制系统实验平台

“THSA-1型过控综合自动化控制系统实验平台”主要由控制屏组件、智能仪表控制组件、远程数据采集控制组件、DCS分布式控制组件、PLC控制组件等几部分组成。

一、控制屏组件

1.SA-01电源控制屏面板

充分考虑人身安全保护,装有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。图1-2为电源控制屏示意图。合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮。此时打开照明开关、变频器开关及24V开关电源即可提供照明灯,变频器和24V电。按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相Ⅰ、单相Ⅱ、单相Ⅲ空气开关即可提供相应电源输出,作为其他设备的供电电源。

图1-2 电源控制屏示意图

2.SA-02 I/O信号接口面板

该面板的作用主要是通过航空插头(一端与对象系统连接)将各传感器检测信号及执行器控制信号同面板上自锁紧插孔相连,便于学生自行连线组成不

同的控制系统。

3.SA-11交流变频控制挂件

采用日本三菱公司的FR-S520S-0.4K-CH(R)型变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。有关变频器的使用请参考变频器使用手册中相关的内容。

变频器常用参数设置:

P 30=1;P 53=1;P 62=4;P 79=0。

4.三相移相SCR调压装置、位式控制接触器

采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。

位式控制接触器和AI-708仪表一起使用,通过AI-708仪表输出继电器触点的通断来控制交流接触器的通断,从而完成锅炉水温的位式控制实验。

二、智能仪表控制组件

1.AI智能调节仪表挂件

采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能调节仪控制挂件为AI-818型,SA-13智能位式调节仪为AI-708型。AI-818型仪表为PID控制型,输出为4~20mADC信号;而AI-708型仪表为位式控制型,输出为继电器触点型开关量信号。AI系列仪表通过RS485串口通信协议与上位计算机通讯,从而实现系统的实时监控。

AI仪表常用参数设置:

CtrL:控制方式。CtrL=0,采用位式控制;CtrL=1,采用AI人工智能调节/PID调节;CtrL=2,启动自整定参数功能;CtrL=3,自整定结束。

Sn:输入规格。Sn=21,Pt100热电阻输入;Sn=32,0.2~1VDC电压输入;Sn=33,1~5VDC电压输入。

DIL:输入下限显示值,一般DIL=0。

DIH:输入上限显示值。输入为液位信号时,DIH=50.0;输入为热电阻信号时,DIH=100;输入为流量信号时,DIH=100。

OP1:输出方式,一般OP1=4为4~20mA线性电流输出。

CF:系统功能选择。CF=0为内部给定,反作用调节;CF=1为内部给定,

正作用调节;CF=8为外部给定,反作用调节;CF=9为外部给定,正作用调节。

Addr:通讯地址。单回路实验Addr=1;串级实验主控为Addr=1,副控为Addr=2;三闭环实验主控为Addr=1,副控为Addr=2,内环为Addr=3。实验中各仪表通讯地址不允许相同。

P、I、D参数可根据实验需要调整,其他参数请参考默认设置。

有关AI系列仪表的使用请参考说明书上相关的内容。

2.SA-14比值、前馈补偿及解耦装置挂件

比值、前馈补偿装置同调节器一起使用,其原理如图1-3所示。上面一路作为比值器,输入电压经过电压跟随器、反相比例放大器、反相器输出0~5V 电压,可以实现流量的单闭环比值、双闭环比值控制系统实验;当上面一路作为干扰输入,下面一路作为调节器输出时,两路相加或相减(通过钮子开关切换),再经过I/V变换输出4~20mA电流,这部分构成一个前馈补偿器,可以实现液位与流量、温度与流量的前馈-反馈控制系统实验。

图1-3 比值、前馈补偿器原理图

解耦装置同调节器一起使用,其原理如图1-4所示。上面一路的输入对输出的影响,以及下面一路的输入对输出的影响均为1:1的关系;两路之间相互的影响通过可调比例放大器及加法器实现。值得注意的是上面一路对下面一路

的影响可通过钮子开关选择相加或相减,可以实现锅炉内胆与锅炉夹套的温度、上水箱液位与出口水温的解耦控制系统实验。

图1-4 解耦装置原理图

三、远程数据采集控制组件

远程数据采集控制即我们通常所说的直接数字控制(DDC),它的特点是以计算机代替模拟调节器进行控制,并通过数据采集板卡或模块进行A/D、D/A 转换,控制算法全部在计算机上实现。在本装置中远程数据采集控制系统包括SA-21远程数据采集热电阻输入模块挂件、SA-22远程数据采集模拟量输入模块挂件、SA-23远程数据采集模拟量输出模块挂件。采用台湾鸿格ICP7000系列智能采集模块,其中I-7017是8路模拟量输入模块,I-7024是4路模拟量输出模块,I-7033是3路热电阻输入模块。ICP7000系列智能采集模块通过RS485等串行口通讯协议与PC相连,由PC中的算法及程序控制并实现数据采集模块对现场的模拟量、开关量信号的输入和输出、脉冲信号的计数和测量脉冲频率等功能。图1-5所示即为远程数据采集控制系统框图。图中输入输出通道即为ICP7000智能采集模块。关于ICP7000智能模块的具体使用请参考装置附带的光盘中的相关内容。

图1-5 远程数据采集系统框图

四、DCS分布式控制组件

分布式控制系统(DCS),国内也称为集散控制系统,它的特点是将危险分散化,而监视、操作和管理集中化,因而具有很高可靠性和灵活性。本装置采用北京和利时公司生产的MACS系统,包括一台操作员站兼工程师站、一台服务器、一台现场主控单元和三个挂件,即FM148现场总线远程I/O模块挂件、FM143现场总线远程I/O模块挂件和FM151现场总线远程I/O模块挂件,其中FM148为8路模拟量输入模块、FM143为8路热电阻输入模块、FM151为8路模拟量输出模块。图1-6所示为MACSⅡ系统结构图。有关MACSⅡ系统软硬件的具体使用请参考装置附带的光盘中相关的内容。

图1-6 DCS分布式系统框图

五、PLC控制组件

可编程控制器(简称PLC)是专为在工业环境下应用的一种数字运算操作的电子系统。目前国内外PLC品种繁多,生产PLC的厂商也很多,其中德国西门子公司在S5系列PLC的基础上推出了S7系列PLC,性能价格比越来越高。S7系列PLC有很强的模拟量处理能力和数字运算功能,具有许多过去大型PLC才有的功能,其扫描速度甚至超过了许多大型的PLC,S7系列PLC功能强、速度快、扩展灵活,并具有紧凑的、无槽位限制的模块化结构,因而在国内工控现场得到了广泛的应用。在本装置中采用了S7-200、S7-300PLC两套控制系统,两套系统各有特点且区别较大,以使学生对于西门子中小型PLC有

较深入的了解。这两套系统包括SA-42 S7-200PLC可编程控制器挂件和SA-41 S7-300PLC可编程控制器挂件。

方案一、S7-200PLC控制系统:S7-200是一种叠装式结构的小型PLC。本实验系统包括一个CPU224主机模块和一个EM235模拟量I/O模块,以及一根PC/PPI连接线。其中CPU224模块带有14点开关量输入和10点开关量输出,EM235模拟量扩展模块带有4路模拟量输入和1路模拟量输出。图1-7所示为

S7-200PLC控制系统结构图。

图1-7 S7-200PLC控制系统框图图1-8 S7-300PLC控制系统框图方案二、S7-300PLC控制系统:S7-300是采用模块化结构的中小型PLC,包括一个CPU315-2DP主机模块、一个SM331模拟量输入模块和一个SM332模拟量输出模块,以及一块西门子CP5611专用网卡和一根MPI网线。其中SM331为8路模拟量输入模块,SM332为4路模拟量输出模块。图1-8所示为S7-300PLC控制系统结构图。

第四节软件介绍

一、MCGS组态软件

本装置中智能仪表控制方案、远程数据采集控制方案和S7-200PLC控制方案均采用了北京昆仑公司的MCGS组态软件作为上位机监控组态软件。MCGS (Monitor and Control Generated System)是一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,可运行于Microsoft Windows95/98/NT/2000等操作系统。

MCGS 5.1为用户提供了解决实际工程问题的完整方案和开发平台,能够完成现场数据采集、实时和历史数据处理、报警和安全机制、流程控制、动画显示、趋势曲线和报表输出以及企业监控网络等功能。

有关MCGS软件的使用请参考配套的手册及光盘。

二、MACS系统软件

本装置中DCS控制方案采用了北京和利时公司的MACS Ⅱ系统。MACS 系统给用户提供了一个通用的系统组态和运行控制平台,应用系统需要通过工程师站软件组态产生,即把通用系统提供的模块化的功能单元按一定的逻辑组合起来,形成一个能完成特定要求的应用系统。系统组态后将产生应用系统的数据库、控制运算程序、历史数据库、监控流程图以及各类生产管理报表。

MACS系统具有功能:数据采集、控制运算、闭环控制输出、设备和状态监视、报警监视、远程通信、实时数据处理和显示、历史数据管理、日志记录、事件顺序记录、事故追忆、图形显示、控制调节、报表打印、高级计算、组态、调试、打印、下装、诊断。

有关MACS系统的使用请参考配套光盘。

三、西门子S7系列PLC编程软件

本装置中PLC控制方案采用了德国西门子公司的S7-200和S7-300PLC,其中西门子S7-200PLC采用的是Step 7-MicroWIN 32编程软件,而西门子S7-300PLC采用的是Step 7编程软件。利用这两个软件可以对相应的PLC进行编程、调试、下装、诊断。

有关软件使用请参考光盘中相应的内容。

四、西门子WinCC监控组态软件

S7-300PLC控制方案采用WinCC软件作为上位机监控组态软件,WinCC 是结合西门子在过程自动化领域中的先进技术和Microsoft的强大功能的产物。作为一个国际先进的人机界面(HMI)软件和SCADA系统,WinCC提供了适用于工业的图形显示、消息、归档以及报表的功能模板;并具有高性能的过程耦合、快速的画面更新、以及可靠的数据;WinCC还为用户解决方案提供了开放的界面,使得将WinCC集成入复杂、广泛的自动化项目成为可能。

关于WinCC软件的使用请参考配套光盘中的电子文档。

五、7000 Utility软件

远程数据采集控制方案采用台湾鸿格I-7000系列智能采集模块,7000 Utility是其配套的模块调试软件。软件安装完以后,会在桌面创建快捷方式,双击“7000 Utility”图标,运行程序自动检测模块,当检测到模块后,可双击模块进行模块参数的显示及修改。若模块通讯失败,请检查通讯线是否已按实验要求连接;若上位机MCGS组态与模块通讯失败,请用7000 Utility检查模块地址,并作正确修改。

第五节实验要求及安全操作规程

一、实验前的准备

实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,并按实验项目准备记录等。

实验前应了解实验装置中的对象、水泵、变频器和所用控制组件的名称、作用及其所在位置。以便于在实验中对它们进行操作和观察。熟悉实验装置面板图,要求做到:由面板上的图形、文字符号能准确找到该设备的实际位置。熟悉工艺管道结构、每个手动阀门的位置及其作用。

认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备都是很重要的。

二、实验过程的基本程序

1.明确实验任务;

2.提出实验方案;

3.画实验接线图;

4.进行实验操作,做好观测和记录;

5.整理实验数据,得出结论,撰写实验报告。

在进行本书中的综合实验时,上述程序应尽量让学生独立完成,老师给予必要的指导,以培养学生的实际动手能力,要做好各主题实验,就应做到:实验前有准备;实验中有条理,实验后有分析。

三、实验安全操作规程

1.实验之前确保所有电源开关均处于“关”的位置。

2.接线或拆线必须在切断电源的情况下进行,接线时要注意电源极性。完成接线后,正式投入运行之前,应严格检查安装、接线是否正确,并请指导老师确认无误后,方能通电。

3.在投运之前,请先检查管道及阀门是否已按实验指导书的要求打开,储水箱中是否充水至三分之二以上,以保证磁力驱动泵中充满水,磁力驱动泵无水空转易造成水泵损坏。

4.在进行温度试验前,请先检查锅炉内胆内水位,至少保证水位超过液位

指示玻璃管上面的红线位置,无水空烧易造成电加热管烧坏。

5.实验之前应进行变送器零位和量程的调整,调整时应注意电位器的调节方向,并分清调零电位器和满量程电位器。

6.仪表应通电预热15分钟后再进行校验。

7.小心操作,切勿乱扳硬拧,严防损坏仪表。

第二章对象特性测试实验

被控对象数学模型的建立通常采用下列二种方法。一种是分析法,即根据过程的机理,物料或能量平衡关系求得它的数学模型;另一种是用实验的方法确定。本装置采用实验方法通过被控对象对阶跃信号的响应来确定它的参数及数学模型。由于此法较简单,因而在过程控制中得到了广泛地应用。

第一节单容自衡水箱液位特性测试实验

一、实验目的

1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;

2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;

3.掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备

1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;

2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;

3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;

4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;

5.SA-41挂件一个、CP5611专用网卡及网线;

6.SA-42挂件一个、PC/PPI通讯电缆一根。

三、实验原理

所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表

达式。

根据动态物料平衡关系有

Q 1-Q 2=A dt dh

(2-1)

将式(2-1)表示为增量形式

ΔQ 1-ΔQ 2=A dt h

d ? (2-2)

式中:ΔQ 1,ΔQ 2,Δh ——分别为偏

离某一平衡状态的增量;

A ——水箱截面积。

在平衡时,Q 1=Q 2,dt dh

=0;当Q 1

发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图

。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即

ΔQ 2=R h

? 或 R=2Q ??h (2-3)

式中:R ——阀F1-11的阻力,称为液阻。

将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为

W 0(s )=)()

(1s Q s H =1RCs R +=1s +T K (2-4)

式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系数。若令Q 1(s )作阶跃扰动,即Q 1(s )=

s x 0,x 0=常数,则式(2-4)可改写为 H (s )=T T

K 1s /+×s x 0=K s x 0-T K 1s x 0

+

对上式取拉氏反变换得

h(t)=K x 0(1-e -t/T ) (2-5)

当t —>∞时,h (∞)-h (0)=K x 0,因而有 K=

0x 0h h )()(-∞=阶跃输入输出稳态值 (2-6)

当t=T 时,则有

h(T)=K x 0(1-e -1)=0.632K x 0=0.632h(∞) (2-7)

式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a )所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。

图2-2 单容水箱的阶跃响应曲线 如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b ),在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为: H(S)=Ts Ke s

+-1τ (2-8)

四、实验内容与步骤

本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将“SA-12智能调节仪控制” 挂件挂到屏上,并将挂件的通讯线插头

插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

图2-3 仪表控制单容水箱特性测试实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液

电工电子实验指导书

电工电子技术实验指导书 实验一日光灯电路及功率因数的改善 一、实验目的 1、验证交流电路的基尔霍夫定律。 ⒉了解日光灯电路的工作原理。 ⒊了解提高功率因数的意义和方法。 二、实验仪器及设备 ⒈数字万用表一块 ⒉交流电流表一块 ⒊ZH-12电学实验台 ⒋日光灯管、镇流器、电容器、起辉器各一个 三、实验原理 ⒈日光灯工作原理: 日光灯电路由灯管、启动器和镇流器组成,如图5-1所示。 ①日光灯:灯管是内壁涂有荧光物质的细长玻璃管,管的两端装有灯丝电极,灯丝上涂有受热后易发射电子的氧化物,管内充有稀薄的惰性气体和少量的水银蒸汽。它的起辉电压是400~500V,起辉后管压降只有80V左右。因此,日光灯不能直接接在220V电源上使用。 图5-1 日光灯的原理电路

②启辉器:相当于一个自动开关,是由一个充有氖气的辉光管和一个小容量的电容器组成。辉光管的两个金属电极离得相当近,当接通电源时,由于日光灯没有点亮,电源电压全部加在启动器辉光管的两个电极之间,使辉光管放电,放电产生的热量使到“U”形电极受热趋于伸直,两电极接触,这时日光灯的灯丝通过电极与镇流器及电源构成一个回路。灯丝因有电流通过而发热,从而使氧化物发射电子。同时,辉光管两个电极接通时,电极间的电压为零,辉光放电停止,倒“U”形双金属片因温度下降而复原,两电极分开,回路中的电流突然被切断,于是在镇流器两端产生一个瞬间高压。这个高感应电压连同电源电压一起加在灯管的两端,使热灯丝之间产生弧光放电并辐射出紫外线,管内壁的荧光粉因受紫外线激发而发出可见光。 小电容用来防止启燃过程中产生的杂散电波对附近无线电设备的干扰。 ③镇流器:它的作用一是在灯管起燃瞬间产生一高电压,帮助灯管起燃 ;二是在正常工作时,限制电路中的电流。 ⒉提高功率因数的意义和方法 在电力系统中,当负载的有功功率一定,电源电压一定时,功率因数越小,线路中的电流就越大,使线路压降、功率损耗增大,从而降低了电能传输效率,也使电源设备得不到充分利用。因此,提高功率因数具有重大的经济意义。 在用户中,一般感性负载很多。如电动机、变压器、电风扇、洗衣机等,都是感性负载其功率因数较低。提高功率因数的方法是在负载两端并联电容器。让电容器产生的无功功率来补偿感性负载消耗的无功功率以减少线路总的无功功率来达到提高功率因数的目的。四、实验内容及步骤 ⒈了解日光灯的各部件及其工作原理 ⒉按图5-2接好线路,电容器先不要接入电路。

食品化学实验指导书(第二版)

食品化学实验指导书 编写整理人员: 丁长河鲁玉杰王争艳布冠好杨国龙田双岐河南工业大学粮油食品学院 2013年4月

实验一食品水分活度的测定 一、实验目的 掌握食品水分活度仪器测量方法。 二、实验原理 样品在密闭空间与空气水汽交换平衡后,其分水活度近似等于密闭空间空气的相对湿度。 三、实验材料与仪器 水分活度仪LabSwift(瑞士Novasina)。 测量样品:小麦、面粉。 四、实验步骤 1.接上电源线,将电源线插头插入带电插座内; 2.按MENU键开机,仪器自动运行“WARM UP”模式,经几分钟后,稳定并显示出测量腔的温度和水分活度值; 3.将标准品放入测量腔内(体积不要超过塑料器皿的上边缘),盖上仪器的上盖,默认模式为F模式,按MENU键开始测量; 4.仪器显示器上方会显示数据,下方会显示ANALYSIS及温度,下方数字会闪烁; 5.待仪器到达分析终点后会发出蜂鸣声并所有数字停止闪烁,此时即为测定平衡终点; 6.按MENU键,然后按ACTURAL键至屏幕显示CALIB页面,再按MENU 键进入校正程序; 7.仪器页面此时会显示数字,下面会有CAL XX字样,XX代表着放进去的标准品的浓度,然后按MENU键; 8.仪器页面会显示0000提示输入密码,按ACTURAL及MENU键输入8808,具体是按ACTURAL选择数字,按MENU确认; 9.密码输入后仪器显示为CAL NO,此时按ACTURAL使之变为CAL YES,按MENU确认,仪器会显示WAITING至DONE,此时校正结束,仪器页面显示水活度值; 10.将待测样品放入塑料盒(去掉塑料盒的盖子)后放入测量腔内,盖上盖子,默认模式仍然是F,仪器自动进行测量; 11.仪器显示器上方会显示数据,下方会显示ANALYSIS及温度,下方数字会闪烁; 12.待仪器到达分析终点后会发出蜂鸣声并所有数字停止闪烁,此时即为测定平衡终点; 13.分析结束后,长按MENU键仪器会显示OFF,并自动关机,拔下电源线,将仪器及电源线放入便携箱内。 注意:实际试验操作过程中,由于设备已校准,第3-9步不需要操作。

09自动化《过程控制系统》实验指导书

实验1 用曲线拟合法估计模型参数 实验目的: 1) 掌握用曲线拟合法测试对象动态特性; 2) 熟悉MATLAB 仿真平台。 实验原理: 图1.1 输入-输出过程模型 在如图1.1 所示的过程模型中,可以通过实验测试或依据积累的操作数据,用数学方法得出过程的经验模型。 在获取了输入输出数据后,进行曲线拟合,可采用计算机和相关的软件实现。首先根据实验数据和其它验前知识,假定对象的模型结构,然后最小化模型输出)(t y 和实际输出y(t)在采样点上的误差平方和,即 ∑=-=n i i i t y t y J 1 2))()((min 进行搜索时,当J 最小时相应的对象参数即为最优参数。式中,n 为计算数据的个数。优化的算法很多,如共轭梯度法、最速下降法、Powell 法、单纯型法、罚函数法等。 本实验利用MA TLAB 优化工具箱中的“lsqcurvefit”函数对过程阶跃响应曲线进行拟合,用户假定模型的结构,编写相应的fun 函数,即ym=fun (x , t ),其中x 为模型的参数向量,待确定,t 为时间向量。给出待估计参数的初始值x0,调用曲线拟合函数计算模型参数向量的估计值x ,格式为x = lsqcurvefit (fun , x 0, t , y ),其中y 为与时间向量t 对应的输出实验数据。 实验要求: 1) 用SIMULINK 工具箱搭建如图1.2所示的开环对象测试系统,模拟实验测试环节 获取输入输出数据,此处输入采用单位阶跃信号。设置合适的“start time”和“stop time”,使得能够得到一个完整的动态过程。仿真类型设置为“Fixed -step”,并设置合适的计算步长(0.01~0.1)。 输入输出数据保存在dataty.mat 文件中,设置变量名为ty ;run 之后,可在命令窗口中输入load dataty.mat 将数据文件中的数据读入工作空间中,然后用size(ty)查看

通信工程专业综合实验指导书

通信工程专业综合实验指导书 XX建筑大学 信息与电气工程学院 通信工程教研室 2009年3月

实验一、学习数字通信系统的SystemView仿真软件 一、实验目的 1.了解SystemView软件,学习数字通信系统SystemView仿真软件的使用方法,为实际的仿真应用打下良好的基础。 2.掌握软件设计和仿真的方法。 二、实验说明 SystemView是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。 利用SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。 SystemView的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案论证。还可进行CDMA通信系统和数字电视业务的分析;用户还可以自己用C语言编写自己的用户自定义库。 SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。 在系统设计和仿真方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形,也可完成对仿真运行结果的各种运算、频谱分析、滤波。 三、实验设备 四、实验内容 1.安装SystemView,对该软件有一个感性认识

根据SystemView安装软件说明,在电脑上安装SystemView软件。 2.了解SystemView设计窗口 启动SystemView后就会出现如图1所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。 3.了解SystemView图符库 SystemView的图标库可分为3种,即基本库、专业库以及用户扩展库。分别了解相关图库的功能,便于后续设计使用。 4.了解SystemView分析窗口

高电压试验指导书20121021

实验二、不均匀电场气体间隙的工频放电实验 一、实验目的 1.了解不均匀电场气体间隙放电电压和电极距离的关系; 2.掌握击穿电压的换算; 3.观察不均匀电场气体间隙放电、击穿现象; 4.观察不均匀电场下的气体间隙在不同电极距离的击穿电压波形中放电时延的变化。 二、实验内容与要求 1.测量尖—板电极不同电极距离的工频击穿电压; 2.作出标准条件下气体间隙击穿电压和电极距离的实验曲线。 三、实验装置线图原理框图 K 1、K 2——交流接触器 A T ——调压器 T ——实验变压器(升压器) R ——电阻 V ——静电电压表 G ——放电间隙 四、实验步骤 1.接好被试品和静电电压表; 2.调节好被试品间隙距离; 3.合上开关柜的刀闸开关DK 和调压电极开关FK ; 4.旋转控制台上的电源开关ZK 在“合”位置; 5.按“合闸”按钮; 6.按“高压通”按钮; 7.按“升压”按钮,控制电压逐渐升高,直至间隙击穿,记录击穿电压值和间隙距离值; 8.按“高压断”和“降压”按钮,直至调压器输出指示电压表为零; 9.按“分闸”按钮,并把电源开关ZK 旋转至“分”位置; 10.重新调节被试品间隙距离; 11.重复4.5.6.7.8.9.项操作,测出不同间隙距离下的放电电压。 五.实验注意事项 1.间隙击穿后,应立即按“高压断”按钮,以免长时间电弧短路而烧坏电极。 2.击穿电压由静电电压表和控制台电压表读出,二者在此情况下误差应不大。 3.注意记录实验时的环境温度和压力,用来做换算用。 六、实验报告要求 1.记录不同电极距离的尖—板放电击穿电压实验值; R G 电源

2.把不同电极距离的尖—板放电击穿电压实验值实验换算成标准条件下的击穿电 压值(换算时湿度修正指数取w =0,空气密度校正指数取m =n =1),写出换算过程; 【注】空气密度校正系数: 空气密度校正系数:K h = 1 平均击穿场强: E m = U 0 / d (kV/cm) 标准条件击穿电压值U 0 (kV)为标准大气状态下外绝缘放电电压:U 0 =U b /K d (kV) 标准大气状态: ? 大气压P 0 = 0.1013MPa; ? 温度t 0 = 20℃; ? 绝对湿度h=11g/m3 3.将实验数据填入表1中; 4.作出标准条件下尖—板间隙击穿电压和电极距离的实验曲线; 5.思考题:分析实验数据和曲线的正确性。 实验环境温度: 大气压力: n m d t t P P K ??? ??++????? ??=27327300

修改高分子化学实验指导书(最新x)

目录 实验一苯乙烯的悬浮聚合 (1) 实验二甲基丙烯酸甲酯的本体聚合 (4) 实验三乙酸乙烯酯的溶液聚合 (6) 实验四醋酸乙烯酯的溶液聚合与聚乙烯醇的制备 (7) 实验五醋酸乙烯酯的乳液聚合 (10) 实验六聚己二酸乙二醇酯的制备 (13) 实验七甲基丙烯酸甲酯-苯乙烯悬浮共聚 (16) 实验八阳离子交换树脂的制备 (19) 实验九酚醛树脂制备 (21) 实验十单体、引发剂和溶剂的精制

实验一苯乙烯的悬浮聚合 1.1 目的要求 (1) 学习悬浮聚合原理和实验技术. (2) 掌握苯乙烯的悬浮聚合的实验操作 1.2 实验原理 悬浮聚合是依靠激烈的机械搅拌使含有引发剂的单体分散到与单体互不相溶的介质中实现的,由于大多数烯类单体只微溶于或几乎不溶于水,悬浮聚合通常都以水为介质。在进行水溶性单体如丙烯酰族的悬浮聚合时,则应当以憎水性的有机溶剂如烷烃等作分散介质,这种悬浮聚合过程被称为反相悬浮聚合。 在悬浮聚合中,单体以小油珠的形式分散在介质中,每个小油珠都是一个微型聚合场所,油珠周围的介质连续相则是这些微型反应器的热传导体。因此,尽管每个油珠中单体的聚合与本体聚合无异,但整个聚合体系的温度控制还是比较容易实现的。 悬浮体系是不稳定的,尽管加入悬浮稳定剂可以帮助稳定单体颗粒在介质中的分散,稳定的高速搅拌与悬浮聚合的成功关系极大。搅拌速度还决定着产品聚合物颗粒的大小,一般说来,搅速越高则产品颗粒越细。产品的最终用途决定着搅拌速度的大小,因为用于不同场合的树脂颗粒应当有不同的颗粒度,用作离子交换树脂和泡沫塑料的聚合物颗粒应当比1mm还大一些,而用作牙科材料的树脂颗粒的粒径则应小于0.1mm,直径为0.2一0.5mm 的树脂颗粒则比较适于模塑工艺。 悬浮聚合体系中的单体颗粒存在着相互结合形成较大颗粒的倾向,特别是随着单体向聚合物的转化,颗粒的粘度增大,颗粒间的粘连便越容易,这个问题的解决在大规模工业生产中有决定性的意义,因为分散颗粒的粘连结块不仅可以导致散热困难和爆聚,还可能因使管道堵塞而造成反应体系的高压力,只有当分散颗粒中单体转化率足够高、颗粒硬度足够大时,粘连结块的危险才消失。因此,悬浮聚合条件的选择和控制是十分重要的。 工业上常用的悬浮聚合稳定剂有明胶、羟乙基纤维素、聚丙烯酰胺和聚乙烯醇等,这类亲水性的聚合物又都被称为保护胶体。另一大类常用的悬浮稳定剂是不溶于水的无机物粉末,如硫酸钡、磷酸钙、氢氧化铝、钛白粉、氧化锌等等,其中工业生产聚苯乙烯时采用的一个重要的无机稳定剂是二羟基六磷酸十钙(Ca10(PO4)6(OH)2)。 本实验进行苯乙烯的悬浮聚合,若在体系中加入部分二乙烯基苯,产物具有交联结构并有较高的强度和耐溶剂性等,可用作制备离子交换树脂的原料。 1.3 仪器及药品 三口烧瓶、回流冷凝管、搅拌器、固定夹及铁架、加热器、温度计、量筒、烧杯。 苯乙烯单体45g、聚乙烯醇1.0g、过氧化二苯甲酰(BPO)0.45g、蒸馏水。 1.4 实验装置

过控控制系统综合设计实验

过程控制系统综合设计实验报告 项目:过程控制系统综合设计 班级:自动化133 姓名: 学号: 指导老师: 一:实验目的及要求 目的: 1.结合比值控制系统、串级控制系统、前馈反馈控制系统、解耦控 制系统的实施,掌握DDC系统应用,以及安装; 2.掌握P900系列智能调节器的参数整定与操作; 3.掌握各类标准信号的测定方法; 4.掌握传感器、执行器的使用; 5.掌握数学建模方法以及PID参数的整定方法。

要求: 1、按照实验指导书上的任务完成实验内容; 2、记录数据以及实验结果,保存实验结果图; 3、完成实验报告的设计,撰写,分析并处理实验结果; 4、进行答辩。

二:实验过程及实验结果 实验一、长滞后环节温度PID 控制实验 一、实验目的 1、熟悉纯滞后(温度)对象的数学模型及其阶跃响应曲线。 2、根据由实际测得的纯滞后(温度)阶跃响应曲线,分析加热系统的飞升特性。 二、实验器材 CS4100型过程控制实验装置 配置:C3000过程控制器、实验连接线。 三、实验原理 整个纯滞后系统如图4-1所示,加热水箱为纯滞后水箱提供热水,在加热水箱的出水口即纯滞后水箱的进水口装有温度传感器。纯滞后水箱,中间固定有一根有机玻璃圆柱,9块隔板呈环形排布在圆柱周围,将整个水箱分隔为9个扇形区间,热水首先流入A 区间,再由底部进入B 区间,流过B 区间后再由顶部进入C 区间,如此再依次流过D 、E 、F 、G 、H 最后从I 区间流出,测温点设在E 、H 区间,当A 区间进水水温发生变化时,各区间的水温要隔一段时间才发生变化,当进水水流流速稳定在1.5L/Min 时,与进水水温T1相比E 区间的水温T2滞后时间常数τ约为4分钟,H 区间的水温T3滞后时间常数τ约为8分钟。各隔板的上沿均低于水箱的外沿,这样如果水流意外过大则会漫过各隔板直接进入I 区间再流出。 A B C D E F G H I t2 t3 六号纯滞后水箱 五号加热水箱 调压 模块 手动设定 Q t1 图3-1 纯滞后系统示意图

高压试验作业指导书

高压试验作业指导书 (企业标准编号) 工程名称: 施工周期: 施工班组: 班组长: 北京送变电公司 年月日

目录 1 施工准备阶段 0 1.1 人员组织 0 1.2 准备工作 0 1.3 技术交底 0 2 施工阶段 (1) 2.1 作业(或每个工作日)开工 (1) 2.2 试验电源的使用 (1) 2.3 施工步骤、方法及标准 (1) 500kV变压器试验 (1) 500kV电抗器试验 (3) 220kV变压器试验 (5) 35kV、10kV变压器试验 (7) 500kV 及以下定开距瓷柱式SF6断路器 (8) 500kV罐式及HGIS;220kV、110kV 罐式及GIS断路器 (9) 500kV、220kV、110kV GIS、HGIS回路电阻试验 (10) 10kV、35kV 真空断路器 (11) SF6气体绝缘电流互感器 (12) 500kV、220kV、110kV GIS电流互感器,变压器、开关、穿墙套管电流互感器, 35kV、10kV穿芯电流互感器 (12) 500kV及以下电压等级油浸式电流互感器 (13) 35kV及以下电压等级干式电流互感器 (14) 500kV电容式电压互感器 (15) 220kV及以下电压等级电容式电压互感器 (15) 220kV及以下电压等级电磁式电压互感器 (16) 500kV及以下无间隙氧化锌避雷器 (17) 隔离开关 (17) 并联电容器 (17) 放电线圈 (18) 橡塑电缆 (18) 66kV及以下系统耐压 (19)

变电站接地装置 (19) 2.4 作业(每个工作日)结束 (20) 3 安全技术措施 (20) 3.1 风险预测及控制措施(新建站) (20) 3.2风险预测及控制措施(扩建站) (21) 3.3安全文明施工及环境保护措施 (21) 3.4 应急措施 (22) 4 结束阶段 (22) 5 附件 (22) 5.1 设备、工器具 (22) 5.2 材料 (24) 5.3 施工作业卡 (24)

高频实验指导书2017

实验平台操作及注意事项 一、实验平台基本操作方法 在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤: (1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验; (2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆); (3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验; (4)根据当前需要进行的实验内容,由老师或自行更换实验模块;更换模块需要专用的钥匙,请妥善保管; (5)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯(每个模块均有电源指示),如果指示灯状态异常,需要关闭电源,检查原因; (6)实验箱开启过程需要大约20s时间,开启后可以开始进行实验; (7)实验内容等选择需用鼠标操作; (8)在实验过程中,可以打开置物槽,选择对应的配件完成实验; (9)实验完成后,关闭电源,整理实验配件并放置到置物槽中; (10)盖上箱盖,将实验箱还原到位。 二、实验平台系统功能介绍 实验平台系统分为八大功能板块,分别为实验入门、实验项目、低频信号源、高频信号源、频率计、扫频仪、高频故障(实验测评)、系统设置。

1.设备入门 设备入门分为四类,分别是平台基本操作、平台标识说明、实验注意事项、平台特点概述。 2.实验项目 实验项目是指实验箱支持的实验课程项目,可以完成的实验内容列表,分为高频原理实验和高频系统实验。 高频原理实验细分为八大实验分类,分别是小信号调谐放大电路实验、非线性丙类功率放大电路实验、振荡器实验、中频放大器实验、混频器实验、幅度解调实验、变容二极管调频实验、鉴频器实验。如下图所示。

A3000高级过程控制系统实验指导书V

HUATEC A3000过程控制实验系统 实验指导书 V3.0 华晟高科教学仪器编制

目录 第一章安全注意事项与设备使用 ................................................ - 1 - 1.1防止触电 ................................................................................. - 1 - 1.2防止烫伤 ................................................................................. - 2 - 1.3防止损坏 ................................................................................. - 2 - 1.4现场系统组成............................................................................ - 2 - 1.5控制系统组成............................................................................ - 2 - 第二章计算机测控系统实验 ..................................................... - 5 -实验1 实验系统认知 ....................................................................... - 5 - 实验2 ADAM4000模块的通讯和使用 ....................................................- 10 - 实验3 组态软件编程和数据获取.........................................................- 18 - 实验4 PLC系统通讯和使用...............................................................- 21 - 实验5 PLC Step7编程...................................................................- 28 - 实验6 现场总线技术与DCS实验 ........................................................- 33 - 第三章工艺设备和仪器仪表实验 .............................................. - 41 -实验1 温度、压力、液位和流量测量实验..............................................- 41 - 实验2 水泵负载特性测量实验 ...........................................................- 46 - 实验3 管道压力和流量耦合特性测量实验..............................................- 48 - 实验4 电动调节阀特性测量实验.........................................................- 51 - 实验5 调压器特性测量实验 ..............................................................- 53 - 实验6 变频器水泵控制特性测量实验 ...................................................- 55 - 第四章工业系统对象特性的测定研究......................................... - 59 -实验1 单容水箱液位数学模型的测定实验..............................................- 59 - 实验2 双容水箱液位数学模型的测定实验..............................................- 62 - 实验3 非线性容积水箱液位数学模型的测定实验 .....................................- 65 - 实验4 测定不同阻力下单容水箱液位数学模型实验...................................- 67 - 实验5 锅炉与加热器对象数学模型实验 ................................................- 70 - 实验6 滞后管数学模型实验 ..............................................................- 73 - 实验7 换热机组数学模型实验 ...........................................................- 76 - 第五章简单设计型控制实验 ................................................... - 80 -实验1 单闭环流量控制实验 ..............................................................- 80 - 实验2 单容水箱液位定值控制实验......................................................- 83 - 实验3 双容水箱液位定值控制实验......................................................- 89 - 实验4 三容水箱液位定值控制实验......................................................- 93 - 实验5 锅炉水温定值位式控制实验......................................................- 95 - 实验6 锅炉水温定值控制实验 ...........................................................- 99 - 实验7 换热器水温单回路控制实验.................................................... - 102 - 实验8 联锁控制系统实验............................................................... - 105 - 实验9 单闭环压力控制实验 ............................................................ - 109 - 第六章复杂设计型控制系统 .................................................. - 111 -实验1下水箱液位和进口流量串级控制实验.......................................... - 111 - 实验2 闭环双水箱液位串级控制实验 ................................................. - 120 - 实验3 换热器热水出口温度和冷水流量串级控制实验.............................. - 125 - 实验4 单闭环流量比值控制系统实验 ................................................. - 128 - 实验5 下水箱液位前馈反馈控制系统实验............................................ - 131 - 实验6 锅炉温度和换热器前馈反馈控制系统实验 ................................... - 135 - 实验7 管道压力和流量解耦控制系统实验............................................ - 138 -

WDT-IIIC综合实验指导书

第三章一机—无穷大系统稳态运行方式实验一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验

高电压技术实验指导书1

高电压技术实验指导书1标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

高电压技术实验指导书 高电压专业实验室 2007-4-12

安全规则 1.实验前必须熟悉试验内容,并检查设备及仪表是否正常。 2.在合电源之前,务必有两人以上检查接线是否正确,接地是否可靠,做好分工,专人记录。 3.在高压电源和带有高压的设备周围围以遮栏,以便保持一定的安全距离,实验时应站在遮栏之外,不得向遮栏内探头或伸手。 4.在实验进行中不允许交谈或议论,有问题需要讨论时,要切断电源。 5.实验完毕,应先用接地棒使设备放电,尤其是在做完电容器或者电缆等大电容试品实验后,务必仔细放电,同时须将试验场地恢复整齐。 6.在未亲眼看到设备接地之前,不得接近或触摸高压设备。 7.使用升压设备时,升压必须从零开始,使用完毕后,要退回零位。 8.实验中发生事故或异常现象时,应立刻拉闸切断电源,放电后检查线路和设备,如果发生人身事故应立刻进行抢救。 凡在本高压实验室进行试验之人员必须遵守本规则,并保持实验室整洁及良好的工作秩序。

冲击电压放电 一、实验目的 1.了解冲击电压发生器的结构、产生冲击电压的原理和操作方法; 2.了解用分压器与示波器测量冲击电压的方法; 3.观察气体间隙放电、击穿现象; 4.观察在均匀电场和不均匀电场下的气体间隙击穿电压以及不同幅值冲击电压作用下击穿电压波形中放电时延的变化。 二、实验内容及要求: 1.测量冲击电压波形,了解用分压器与示波器测量冲击电压的方法; 2.观察在均匀电场和不均匀电场下的气体间隙击穿电压及电压波形,不 同电压下放电时延的变化,了解冲击电压下的放电时延特性。 3.回答思考题。 三、实验装置及接线图: 冲击电压发生器接线原理图如下图: 冲击电压发生器原理接线图 图中: T:高压试验变压器 D:高压硅堆 C:主电容 R b:充电回路保护电阻 R:充电电阻 g0:点火球隙 g1~g3:中间球隙 g4:隔离球隙 R g:阻尼电阻 R t:波尾电阻 R f :波头电阻 C f :包括负荷电容和电容分压器的电容

(整理)回转体的动平衡实验(实验指导书).

回转体的动平衡实验 一、实验目的 1、掌握刚性转子动平衡的试验方法。 2、初步了解动平衡试验机的工作原理及操作特点。 3、了解动平衡精度的基本概念。 二、实验设备及工具 1、CYYQ —50TNC 型电脑显示硬支承动平衡机 2、转子试件 3、橡皮泥,M6螺钉若干 4、电子天平(精度0.01g ),游标卡尺,钢直尺 三、CYYQ —50TNC 型硬支承动平衡机的结构与工作原理 1、硬支承动平衡机的结构 该试验机是硬支承动平衡机,实物如图1所示。 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备,一般由机座6、左右支承架4、圈带驱动装置2、计算机检测显示系统、传感器5、限位支架3和光电头1等部件组成,如图2所示。 图2 硬支承动平衡机结构示意图 1.光电头 2.圈带驱动装置 3.限位支架 4.支承架 5.传感器 6.机座 左右支承架是动平衡机的重要部件,中间装有压电传感器,此传感器在出厂前已严格调整好,切不可自行打开或转动有关螺丝(否则会严重影响检测质量)。左右移动只需松开支承架下面与机座连接的两个紧固螺钉,把左右支承架移到适当位置后再拧紧即可。支承架下面有一导向键,保证两支架在移动后能互相平行,支承架中部有升降调节螺丝,可调节转子的左右高度,使之达到水平。外侧有限位支架,可防止转子在旋转时向左右窜动。 图1 硬支承动平衡机实物照片

转子的平衡转速必须根据转子的外径及质量,并考虑电机拖动功率及摆架动态承载能力来进行选择。本动平衡机采用变频器对电动机调频变速,使工作速度控制自如。 2、转子动平衡的力学条件 由于转子材料的不均匀、制造的误差、结构的不对称等诸因素导致转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力,它们组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件 ???? ?==∑ ∑00 M F 或 ???? ?==∑∑00 B A M M (1) 即作用在转子上所有离心惯性力以及惯性力偶矩之和都等于零,这就是转子动平衡的力学条 件。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正就叫做动平衡试验。 3、刚性转子的平衡校正 转子的平衡校正工艺过程,包括两个方面的操作工艺: (1)平衡测量:借助一定的平衡试验装置(如动平衡试验机等)测量平衡机支承架由于试验转子上离心力系不平衡引起的振动(或支反力),从而相对地测量出转子上存在着的不平衡重量的大小和方位,测量工作要求精确。 (2)平衡校正:根据平衡测量提供的不平衡量的大小和方位,选择合理的校正平面,根据平衡条件进行加重(或去重)修正,达到质量分布均衡的目的。 A 、去重修正是运用钻削或其它方法在重心位置去除不平衡重量。 B 、加重修正是运用螺纹联接、焊接或其它平衡块方法在轻点位置加进重块平衡。 选择哪种校正办法,要根据转子结构的具体条件择定。在本实验里采用适量的橡皮泥作加重修正。采用橡皮泥作试验的平衡试重,是工业上行之有效的常用方法之一。 4、刚性转子动平衡的精度 即使经过平衡的回转体也总会有残存的不平衡,故需对回转体规定出相应的平衡精度。各种回转体的平衡精度可根据平衡等级的要求,在有关的技术手册中查阅。 5、动平衡机的工作原理 转子的动平衡实验一般需在专用的动平衡机上进行。动平衡机有各种不同的型式,各种动平衡机的构造及工作原理也不尽相同,有通用平衡机、专用平衡机(如陀螺平衡机、曲轴平衡机、涡轮转子平衡机、传动轴平衡机等),但其作用都是用来测定需加于两个校正平面中的平衡质量的大小及方位,并进行校正。当前工业上使用较多的动平衡机是根据振动原理设计的,测振传感器将因转子转动所引起的振动转换成电信号,通过电子线路加以处理和放大,最后显示出被试转子的不平衡质径积的大小和方位。 图3所示是动平衡机的工作原理示意图。被试验转子6放在两弹性支承上,由电动机1通过圈带传动2驱动。实验时,转子上的偏心质量使支承块的水平方向受到离心力的周期作用,通过支承块传递到支承架上,支承架的立柱发生周期性摆动,此摆动通过压电传感器4与5转变为电信号,连同光电传感器3的电信号,通过A/D 转换器,传送到计算机的实验数据采集及处理软件系统,直接在屏幕上显示出来,或由打印机打印输出实验结果。 根据刚性转子的动平衡原理,一个动不平衡的刚性转子总可以在与旋转轴线垂直的两个校正平面上减去或加上适当的质量来达到动平衡目的。

综合实验试验指导书(一)

综合实验实验指导书 福建工程学院土木工程学院 2013年12月

学生实验守则 1、实验前应认真按教师布置进行预习,明确实验目的、要求,掌握实验内容、方法和步骤。 2、实验前的准备工作,经指导教师或实验技术人员检查,合格后方可进行实验。实验过程中认真观察各种现象,记录实验数据,不能马虎的抄袭。实验完毕必须整理好本组实验仪器,并经指导教师或实验技术人员验收后,方可离开。实验后,认真分析实验结果,正确处理数据,细心制作图表,做好实验报告。不符合要求者,应重做。 3、实验室内必须保持安静,不准高声喧哗打闹,不准抽烟,随地吐痰,乱抛纸屑杂物,不准做与实验无关的事。不准穿背心、裤衩、拖鞋(除规定须换专业拖鞋外)或赤脚进入实验室。 4、必须严格遵守实验制订的各项规章制度,认真执行操作规程。注意人身和设备安全。 5、爱护国家财物。节约水电和药品器材,不得动用他组的仪器、工具材料。凡损坏仪器、工具者应检查原因,填写报损单,并依照管理办法赔偿损失。 前言

为了达到预期目的,试验课必须注意以下几方面问题: 1、试验前认真预习指导书和课本有关内容,同时应复习其它已学有关课程的有关章节,充分了解各个试验的目的要求、试验原理、方法和步骤,并进行一些必要的理论计算。一些控制值的计算工作,试验前必须做好。 2、较大的小组试验,应选出一名小组长,负责组织和指挥整个试验过程,直至全组试验报告都上交后卸任,小组各成员必须服从小组长和指导教师的指挥,要明确分工,协调工作,不得擅离各自的岗位。 3、试验开始前。必须仔细检查试件和各种仪器仪表是否安装稳妥,荷载是否为零,安全措施是否有效,各项准备工作是否完成,要经指导教师检查通过后,试验才能开始。 4、试验时应严肃认真,密切注意观察试验现象,及时加以分析和记录,要以严谨的科学态度对待试验的每一步骤和每一个数据。 5、严格遵守实验室的规章制度,非试验用仪器设备不要乱动;试验用仪器、仪表、设备,要严格按规程进行操作,遇有问题及时向指导教师报告。 6、试验中要小心谨慎,不要碰撞仪器、仪表、试件和仪表架等。 7、试验结束后,要及时卸下荷载,使仪器、设备恢复原始状态,以后小心卸下仪器、仪表,擦净、放妥、清点归还,经教师认可并把试验记录交教师签字后离开。 8、试验资料应及时整理,按时独立完成试验报告,除小组分工由别人记录的原始数据外,严禁抄袭。 9、试验报告要求原始记录齐全、计算分析正确、数据图表清楚。 10、经教师认可,试验也允许采用另外方案进行。 试验一量测仪器的参观与操作练习

乐高实验指导书1

创新综合实验

目录 第一部分课程总览 (3) 第二部分综合实验 (6) Lab1 光电传感器自动跟踪小车 (6) Lab2 光电传感器测距功能测试 (8) Lab3 光电传感器位移传感应用 (12) Lab4 超声波传感器测试 (13) Lab5 超声波传感器位移传感应用 (17) 第三部分创新实验 a)双轮自平衡机器人; b)碰触传感机器人设计(基于Microsoft Robotics Studio平台); c)寻线机器人的仿真和建模及实例(基于Lejos-Osek 设计一个机器人的实例); d)自己提出一个合理的项目

第一部分 课程总览 1.目的与意义 提倡“素质教育”、全面培养和提高学生的创新以及综合设计能力是当前高等工科院校实验教学改革的主要目标之一。为适应素质教育的要求,高等工科院校的实验课程正经历着从“单一型”“验证型”向“设计型”“开放型”的变革过程。我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程涵盖了机械设备及加工过程测试控制相关的电子电路、传感器、信号处理、接口、控制原理、测控计算机软件等理论及技术,具有综合性、实践性强的特点,但目前各课程的实验教学存在着孤立、分散、缺乏系统性的问题。为促进机械工程学科学生对于计算机测控技术的工程创新设计能力、促进相关理论知识的理解和灵活应用,本机电一体化创新综合实验以丹麦乐高(LEGO)公司教育部开发的积木式教学组件-智力风暴( MINDSTORMS)为基础进行。 采用LEGO MINDSTORMS 为基础建立开放型创新实验室,并根据我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程设计多层次的综合创新实验设计项目,具有技术综合性和趣味性以及挑战性,能有效激发学生的学习兴趣,使学生在实践项目的过程中激发和强化他们的创造力、动手能力、协作能力、综合能力和进取精神;可使学生在实施项目的过程中对材料、机械、电子、计算机硬件、软件均有直观的认知并掌握机械工程测试与控制的综合分析设计能力。 2.实验基础 2.1 LEGO MINDSTORMS 控制器硬件 要求认识和理解RCX、NXT的基本结构,输入输出设备及接口,DCP传感器及接口,并熟练进行连接与操作。 2.2根据具体的实验要求选择适合的软件 ?Microsoft Robotics Studio基础 ?VPL编程 ?Microsoft Robotics Studio软件 ?Robolab软件 ?NXT软件 ?Matlab等等 2.3授课方式: 课堂讲授,编程以自学为主 参考书: a)LEGO快速入门 b)乐高组件和ROBOLAB软件在工程学中的应用 c)ROBOLAB2.9编程指南 d)ROBOLAB研究者指南

高压试验专业标准化作业指导书讲解

1、变压器试验; 2、电抗器高压试验; 3、电流互感器高压试验; 4、电压互感器高压试验; 5、真空断路器高压试验; 6、套管高压试验; 7、电力电缆高压试验;8、并联电容器高压试验;9、氧化锌避雷器高压试验; 10、SF6断路器高压试验。

高压试验专业标准化作业指导书

、八、, 刖言 供电作为煤矿重要的生产保障单位,肩负着为煤矿供电神圣使命。近年来,煤矿建设和矿区服务 发展对电力的需求越来越高,尤其是确保煤炭持续稳产,给煤矿供电提出了更高的要求。 按照集团总体部署,为进一步强化三基工作,保证电网现场作业安全和工作质量,真正做到“安全第一零事故,质量至上百分百”,公司提出了“四化一成效”工作目标。为全面做好“生产管理标准化”工作,公司结合生产实际,历经半年,依据国家和电力行业生产技术标准,编写了电网运行、检修和试验专业《标准化作业指导书》,内容涵盖了电网巡视、操作、检修、试验、验收等方面工作,是电网生产管理模式的革新,使电网生产管理更加科学化,同时,也是岗位人员培训的基础工具。 本书为《高压试验专业标准化作业指导书》,在广泛征询了相关基层单位和机关部室意见、建议 的基础上,集中了专业技术人员和管理人员的智慧和经验,并得到了公司领导的高度重视和大力支 持,具有较强的专业性、指导性和实用性,对提升电网生产技术管理水平具有重要意义。

目录 变压器高压试验标准化作业指导书 1 消弧线圈高压试验标准化作业指导书10 电抗器高压试验标准化作业指导书16 电流互感器高压试验标准化作业指导书23 电压互感器高压试验标准化作业指导书30 多油断路器高压试验标准化作业指导书35 真空断路器高压试验标准化作业指导书42 套管高压试验标准化作业指导书50 悬式绝缘子和支柱绝缘子高压试验标准化作业指导书57 电力电缆高压试验标准化作业指导书64 并联电容器高压试验标准化作业指导书68 耦合电容器高压试验标准化作业指导书74 无间隙氧化锌避雷器高压试验标准化作业指导书77 串联间隙氧化锌避雷器高压试验标准化作业指导书82 母线高压试验标准化作业指导书86 接地阻抗高压试验标准化作业指导书92 局部放电试验标准化作业指导书92

相关主题