搜档网
当前位置:搜档网 › 培优易错试卷平行四边形辅导专题训练及详细答案

培优易错试卷平行四边形辅导专题训练及详细答案

培优易错试卷平行四边形辅导专题训练及详细答案
培优易错试卷平行四边形辅导专题训练及详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠.

(1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.

(2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由.

(3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由.

【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由

见解析. 【解析】

试题分析:(1)结论:AC=AD+AB ,只要证明AD=

12AC ,AB=1

2

AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;

(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中,

在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°,

∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1

2

AC,同理AD=

1

2

AC.

∴AC=AD+AB.

(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,

∵∠BAC=60°,

∴△AEC为等边三角形,

∴AC=AE=CE,

∵∠D+∠ABC=180°,∠DAB=120°,

∴∠DCB=60°,

∴∠DCA=∠BCE,

∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,

∴∠D=∠CBE,∵CA=CE,

∴△DAC≌△BEC,

∴AD=BE,

∴AC=AD+AB.

(3)结论:AD+AB=2AC.理由如下:

过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,

∴DCB=90°,

∵∠ACE=90°,

∴∠DCA=∠BCE,

又∵AC平分∠DAB,

∴∠CAB=45°,

∴∠E=45°.

∴AC=CE.

又∵∠D+∠ABC=180°,∠D=∠CBE,

∴△CDA ≌△CBE , ∴AD=BE , ∴AD+AB=AE .

在Rt △ACE 中,∠CAB=45°, ∴AE =

245AC

AC cos ?

= ∴2AD AB AC +=.

2.如图1,正方形ABCD 的一边AB 在直尺一边所在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE ⊥MN 于点E .

(1)如图1,线段AB 与OE 之间的数量关系为 .(请直接填结论)

(2)保证点A 始终在直线MN 上,正方形ABCD 绕点A 旋转θ(0<θ<90°),过点 B 作BF ⊥MN 于点F .

①如图2,当点O 、B 两点均在直线MN 右侧时,试猜想线段AF 、BF 与OE 之间存在怎样的数量关系?请说明理由.

②如图3,当点O 、B 两点分别在直线MN 两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

③当正方形ABCD 绕点A 旋转到如图4的位置时,线段AF 、BF 与OE 之间的数量关系为 .(请直接填结论)

【答案】(1)AB=2OE ;(2)①AF+BF=2OE,证明见解析;②AF ﹣BF=2OE 证明见解析;③BF ﹣AF=2OE , 【解析】

试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论; (2)①过点B 作BH ⊥OE 于H ,可得四边形BHEF 是矩形,根据矩形的对边相等可得EF=BH ,BF=HE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH ,然后利用“角角边”证明△AOE 和△OBH 全等,根据全等三角形对应边相等可得OH=AE ,OE=BH ,再根据AF-EF=AE ,整理即可得证; ②过点B 作BH ⊥OE 交OE 的延长线于H ,可得四边形BHEF 是矩形,根据矩形的对边相等可得EF=BH ,BF=HE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH ,然后利用“角角边”证明△AOE 和△OBH 全等,

根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;

③同②的方法可证.

试题解析:(1)∵AC,BD是正方形的对角线,

∴OA=OC=OB,∠BAD=∠ABC=90°,

∵OE⊥AB,

∴OE=1

2 AB,

∴AB=2OE,

(2)①AF+BF=2OE

证明:如图2,过点B作BH⊥OE于点H

∴∠BHE=∠BHO=90°

∵OE⊥MN,BF⊥MN

∴∠BFE=∠OEF=90°

∴四边形EFBH为矩形

∴BF=EH,EF=BH

∵四边形ABCD为正方形

∴OA=OB,∠AOB=90°

∴∠AOE+∠HOB=∠OBH+∠HOB=90°

∴∠AOE=∠OBH

∴△AEO≌△OHB(AAS)

∴AE=OH,OE=BH

∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.

②AF﹣BF=2OE

证明:如图3,延长OE,过点B作BH⊥OE于点H

∴∠EHB=90°

∵OE⊥MN,BF⊥MN

∴∠AEO=∠HEF=∠BFE=90°

∴四边形HBFE为矩形

∴BF=HE,EF=BH

∵四边形ABCD是正方形

∴OA=OB,∠AOB=90°

∴∠AOE+∠BOH=∠OBH+∠BOH

∴∠AOE=∠OBH

∴△AOE≌△OBH(AAS)

∴AE=OH,OE=BH,

∴AF﹣BF

=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE

③BF﹣AF=2OE,

如图4,作OG⊥BF于G,则四边形EFGO是矩形,

∴EF=GO,GF=EO,∠GOE=90°,

∴∠AOE+∠AOG=90°.

在正方形ABCD中,OA=OB,∠AOB=90°,

∴∠AOG+∠BOG=90°,

∴∠AOE=∠BOG.

∵OG⊥BF,OE⊥AE,

∴∠AEO=∠BGO=90°.

∴△AOE≌△BOG(AAS),

∴OE=OG,AE=BG,

∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,

∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,

∴BF﹣AF=2OE.

3.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以

4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.

【答案】(1)见解析;(2)能,t=10;(3)t=15

2

或12.

【解析】

【分析】

(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;

(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;

(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.

【详解】

解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,

∴AB=1

2AC=

1

2

×60=30cm,

∵CD=4t,AE=2t,

又∵在Rt△CDF中,∠C=30°,∴DF=1

2

CD=2t,∴DF=AE;(2)能,

∵DF∥AB,DF=AE,

∴四边形AEFD是平行四边形,

当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;

(3)若△DEF为直角三角形,有两种情况:

①如图1,∠EDF=90°,DE∥BC,

则AD=2AE,即60﹣4t=2×2t,解得:t=15

2

②如图2,∠DEF=90°,DE⊥AC,

则AE=2AD,即2t2(604t)

=-,解得:t=12,

综上所述,当t=15

2

或12时,△DEF为直角三角形.

4.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;

(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;

(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).

【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】

【分析】

(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=1

2

BC,GH∥BC,GH=

1

2

BC,推出

EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;

(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出

S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出

S△PGH=1

2

S△AEF=S△APF,即可得出结果.

【详解】

(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,

∴EG∥AP,EF∥BC,EF=1

2BC,GH∥BC,GH=

1

2

BC,

∴EF∥GH,EF=GH,

∴四边形EGHF是平行四边形,

∵AB=AC,

∴AD⊥BC,

∴EF⊥AP,

∵EG∥AP,

∴EF⊥EG,

∴平行四边形EGHF是矩形;

(2)∵PE是△APB的中线,

∴△APE与△BPE的底AE=BE,又等高,

∴S△APE=S△BPE,

∵AP是△AEF的中线,

∴△APE与△APF的底EP=FP,又等高,

∴S△APE=S△APF,

∴S△APF=S△BPE,

∵PF是△APC的中线,

∴△APF与△CPF的底AF=CF,又等高,

∴S△APF=S△CPF,

∴S△CPF=S△BPE,

∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,

∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,

∴△PGH底边GH上的高等于△AEF底边EF上高的一半,

∵GH =EF , ∴S △PGH =

1

2

S △AEF =S △APF , 综上所述,与△BPE 面积相等的三角形为:△APE 、△APF 、△CPF 、△PGH . 【点睛】

本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.

5.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设

PAQ ?的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.

(1)图①中AB = ,BC = ,图②中m = .

(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:

(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.

【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173

. 【解析】 【分析】

(1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=

1

2

AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=1

2

AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;

(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则

QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-

(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;

②当点P 在BC 边上,A'落在BC 边上时,由折叠的性质得:A'P=AP ,证出∠APQ=∠AQP ,

得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;

③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在

Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.

【详解】

(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,

∴AB=2BE,

由图象得:t=2时,BE=2×2=4,

∴AB=2BE=8,AE=BE=4,

t=11时,2t=22,

∴BC=22-4=18,

当t=0时,点P在E处,m=△AEQ的面积=1

2

AQ×AE=

1

2

×10×4=20;

故答案为8,18,20;

(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:

当t=1时,PE=2,

∴AP=AE+PE=4+2=6,

∵四边形ABCD是矩形,

∴∠A=90°,

∴PQ=2222

106234

AQ AP

+=+=,

设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:

则MN=AB=8,O'M∥AB,MN=AB=8,

∵O'为PQ的中点,

∴O''M是△APQ的中位线,

∴O'M=1

2

AP=3,

∴O'N=MN-O'M=534

∴以PQ为直径的圆不与BC边相切;

(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:

则QF=AB=8,BF=AQ=10,

∵四边形ABCD是矩形,

∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,

由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22

AQ QF

'-=6,

∴A'B=BF-A'F=4,

在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,

由勾股定理得:42+(4-2t)2=(4+2t)2,

解得:t=1

2

②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:

由折叠的性质得:A'P=AP,

∴∠APQ'=∠A'PQ,

∵AD∥BC,

∴∠AQP=∠A'PQ,

∴∠APQ=∠AQP,

∴AP=AQ=A'P=10,

在Rt△ABP中,由勾股定理得:22

108

-,

又∵BP=2t-4,

∴2t-4=6,解得:t=5;

③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:

由折叠的性质得:A'P=AP,A'Q=AQ=10,

在Rt△DQA'中,DQ=AD-AQ=8,

由勾股定理得:DA'=22

108

=6,

∴A'C=CD-DA'=2,

在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,

∴82+(2t-4)2=22+(22-2t)2,

解得:t=17

3

综上所述,t为1

2

或5或

17

3

时,折叠后顶点A的对应点A′落在矩形的一边上.

【点睛】

四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.

6.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;

(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

【答案】(1)AG2=GE2+GF2(2)

【解析】

试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出

GE=CF,在Rt△GFC中,利用勾股定理即可证明;

(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得

x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.

试题解析:(1)结论:AG2=GE2+GF2.

理由:连接CG.

∵四边形ABCD是正方形,

∴A、C关于对角线BD对称,

∵点G在BD上,

∴GA=GC,

∵GE⊥DC于点E,GF⊥BC于点F,

∴∠GEC=∠ECF=∠CFG=90°,

∴四边形EGFC是矩形,

∴CF=GE,

在Rt△GFC中,∵CG2=GF2+CF2,

∴AG2=GF2+GE2.

(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.

∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,

∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,

∴∠AMN=30°,

∴AM=BM=2x,MN=x,

在Rt△ABN中,∵AB2=AN2+BN2,

∴1=x2+(2x+x)2,

解得x=,

∴BN=,

∴BG=BN÷cos30°=.

考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质

7.问题情境

在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME. 特例探究

(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系; (2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸

(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.

【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2

α

.

【解析】 【分析】

(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM?tan 2

α

.证明方法类似;

【详解】

(1) 如图1中,连接CM .

∵∠ACD=90°,AM=MD , ∴MC=MA=MD , ∵BA=BC , ∴BM 垂直平分AC , ∵∠ABC=90°,BA=BC ,

∴∠MBE=

1

2

∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,

∴∠ABE+∠DEC=180°, ∴∠DEC=90°,

∴∠DCE=∠CDE=45°, ∴EC=ED ,∵MC=MD ,

∴EM 垂直平分线段CD ,EM 平分∠DEC , ∴∠MEC=45°,

∴△BME 是等腰直角三角形, ∴BM=ME ,BM ⊥EM . 故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .

证明如下:连接CM ,如解图所示.

∵DC ⊥AC ,M 是边AD 的中点, ∴MC =MA =MD . ∵BA =BC , ∴BM 垂直平分AC . ∵∠ABC =120°,BA =BC ,

∴∠MBE =1

2

∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,

∴∠ABE +∠DEC =180°, ∴∠DEC =60°,

∴∠DCE =∠DEC =60°, ∴△CDE 是等边三角形, ∴EC =ED . ∵MC =MD ,

∴EM 垂直平分CD ,EM 平分∠DEC ,

∴∠MEC =

1

2

∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°. 在Rt △BME 中,∵∠MEB =30°, ∴ME =3MB .

(3) 如图3中,结论:EM=BM?tan

2

理由:同法可证:BM ⊥EM ,BM 平分∠ABC , 所以EM=BM?tan 2

. 【点睛】

本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.

8.如图,抛物线

交x 轴的正半轴于点A ,点B (

,a )在抛物线上,点C 是

抛物线对称轴上的一点,连接AB 、BC ,以AB 、BC 为邻边作□ABCD ,记点C 纵坐标为n , (1)求a 的值及点A 的坐标;

(2)当点D 恰好落在抛物线上时,求n 的值;

(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n =___________.(直接写出答案)

【答案】(1), A (3,0);(2)

【解析】

试题解析:(1)把点B 的坐标代入抛物线的解析式中,即可求出a 的值,令y =0即可求出点A 的坐标.

(2)求出点D 的坐标即可求解;

(3)运用△AEB 的面积为7,列式计算即可得解.

试题解析:(1)当时,

,得

(舍去),

(1分)

∴A (3,0)

(2)过D 作DG ⊥轴于G ,BH ⊥轴于H.

∵CD∥AB,CD=AB

∴,

∴,

(3)

9.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.

(1)求证:四边形DEFG为菱形;

(2)若CD=8,CF=4,求的值.

【答案】(1)证明见试题解析;(2).

【解析】

试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;

(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.

试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,

∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;

(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.

考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.

10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;

(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;

(3)当∠1=∠2时,求直线PE的解析式;

(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.

【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.

【解析】

试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出

△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据

∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据

∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而

∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出

直线PE的解析式.

(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.

试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.

(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;

∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,

∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,

∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,

又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,

∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,

∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣

1),

∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则

解得:,∴直线PE的解析式为y=x﹣3.

(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),

∴点M坐标为(0,﹣3).

②如图2,当点M 在EP 的延长线上时,, 由(3),可得∠AGO=∠PGC=60°, ∴EP 与AB 的交点M ,满足AG=MG , ∵A 点的横坐标是0,G 点横坐标为,

∴M 的横坐标是2

,纵坐标是3, ∴点M 坐标为(2

,3).

综上,可得 点M 坐标为(0,﹣3)或(2,3).

考点:几何变换综合题.

初三数学圆的专项培优练习题含答案

初三数学圆的专项培优练习题(含答案) ?EB 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成 立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三 2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆 的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.C.6 D. 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。 9.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA 的平行线与AF相交于点F,CD=,BE=2.

数学平行四边形的专项培优 易错 难题练习题含答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE, ∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的

培优专题:二次根式

二次根式培优 一、知识的拓广延伸 1、挖掘二次根式中的隐含条件 一般地,我们把形如a a() ≥0 的式子叫做二次根式,其中0 a≥。 根据二次根式的定义,我们知道:被开方数a的取值范围是0 a≥,由此我们判断下列式子有意义的条件: 1 (1; 2 (4); 1 x ++ -+ + 2、 教科书中给出: (0) a a =≥,在此我们可将其拓展为: a a a a a a 2 == ≥ -< ? ? ? || () () (1)、根据二次根式的这个性质进行化简: ①数轴上表示数a 的点在原点的左边,化简 2a ②化简求值: 1 a a= 1 5 ③已知, 1 3 2 m -<< ,化简2m ④______ =; ⑤若为a,b,c ________ =; ___________ =. (2)、根据二次根式的定义和性质求字母的值或取值范围。 ①若1 m=,求m的取值范围。 4x =-,则x的取值范围是___________. ③若a= ④3,2xy 已知求的值。 二.二次根式a的双重非负性质:①被开方数a是非负数,即0 ≥ a

②二次根式a 是非负数,即0≥a 例1. 要使1 21 3-+ -x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .2 1 <x ≤3 例2(1)化简x x -+-11=_______. (2) x +y )2,则x -y 的值为( ) (A)-1. (B)1. (C)2. (D)3. 例3(1)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为( ) A .2 B .0 C .-2 D .以上都不是 (2)已知y x ,是实数,且2)1(-+y x 与42+-y x 互为相反数,求实数x y 的倒数。 三,如何把根号外的式子移入根号内 我们在化简某些二次根式时,有时会用到将根号外的式子移入根号内的知识,这样式子的化简更为简单。在此我们要特别注意先根据二次根式的意义来判断根号外的式子的符号。如果根号外的式子为非负值,可将其平方后移入根号内,与原被开方数相乘作为新的被开方数,根号前的符号不会发生改变;如果根号外的式子为负值,那么要先将根号前的符号变号,再将其其平方后移入根号内,与原被开方数相乘作为新的被开方数。 (1)、 根据上述法则,我们试着将下列各式根号外的式子移入根号内: ①- ②(a -(2)、利用此方法可比较两个无理数的大小。 (2)2-—3 四,拓展性问题 1、 整数部分与小数部分 要判断一个实数的整数部分与小数部分,应先判断已知实数的取值范围,从而确定其整数部分,再由“小数部分=原数—整数部分”来确定其小数部分。 例:(1)1的整数部分为a ,小数部分为b ,试求ab —b 2的值。 (2)若x 、y 分别为 8-2xy —y 2的值。 (3 a ,小数部分为 b ,求a 2+b 2 的值。 (4)若________a a b a b ==是的小数部分,则。 5a a b -(的整数部分为a ,小数部分为b ,求的值。 2、巧变已知,求多项式的值。 32351 x x x x = +-+(1)、若的值。

4、圆的培优专题:圆与勾股定理

圆的培优专题4——圆与勾股定理 1、如图,⊙O 是△BCN 的外接圆,弦AC ⊥BC ,点N 是AB 的中点,∠BNC =60?, 求 BN BC 的值. 解:如图,连接AB ,则AB 为直径,∴∠BNA =90? 连接AN ,则BN =AN ,则△ABN 是等腰直角三角形 ∴BN AB ;又∠BAC =∠BNC =60?, ∴BC AB , ∴BN BC (方法2,过点B 作BD ⊥CN ,即可求解) 2、如图,⊙O 的弦AC ⊥BD ,且AC =BD ,若AD =,求⊙O 半径. 解:如图,作直径AE ,连接DE ,则∠ADE =90? 又AC ⊥BD ,则∠ADB +∠DAC =∠ADB +∠EDB =90? ∴∠DAC =∠EDB ,则CD BE =,∴DE BC =, ∵ AC =BD ,∴AC CD =,则AD BC DE == ∴AD =DE ,即△ADE 是等腰直角三角形 ∴AE AD =4,即⊙O 的半径为2 3、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为CB 延长线上一点,且∠CAD =45?, CE ⊥AB 于点E ,DF ⊥AB 于点F. (1)求证:CE =EF ;(2)若DF =2,EF =4,求AC. (1)证:∵ AB 为⊙O 的直径,∠CAD =45?, 则△ACD 是等腰直角三角形,即AC =DC 又CE ⊥AB ,则∠CAE =∠ECB 如图,过点C 作CG 垂直DF 的延长线于点G 又CE ⊥AB ,DF ⊥AB ,则四边形CEFG 是矩形,∠AEC =∠DGC =90? ∴EF =CG ,CE ∥DG ,则∠ECB =∠CDG =∠CAE ∴△ACE ≌△DCG (AAS ),则CE =CG =EF (2)略解:AC =CD =. 4、如图,AB 为⊙O 的直径,CD ⊥AB 于点D ,CD 交AE 于点F ,AC CE =. (1)求证:AF =CF ; (2)若⊙O 的半径为5,AE =8,求EF 的长

圆的培优专题(含解答)

一运用辅助圆求角度 1、 如图,△ ABC 内有一点 D , DA = DB = DC ,若 DAB = 20 , DAC = 30 , 1 贝U 乙 BDC = _______ . ( ? BDC = "2- ■ BAC = 100 ) 2、 如图,AE = BE = DE = BC = DC ,若 C = 100 ,则 BAD = __________________ . ( 50 ) 3、 如图,四边形 ABCD 中,AB = AC = AD ,/ CBD = 20,/ BDC = 30,贝卩 乙 BAD = _________ .(厶 BAD = Z BAC + Z CAD = 40 °+ 60 ° = 100*) 解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、 如图,口 ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若 ? D = 60 , 贝U AEC = _________ . (/ AEC = 2 ^B = 2 ^D = 120 ) 5、 如图,O 是四边形 ABCD 内一点,OA = OB = OC , ABC = ADC = 70 , 贝U DAO + DCO = ______________ .(所求=360 - Z ADC —乙 AOC = 150 ) A 第1题 第2题 第3题 第5题 第6题 第4题 :第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到 (ABC = ADC = 25 )

6、如图,四边形ABCD 中,ACB = ■ ADB = 90 , - ADC = 25,则ABC = ___________________ ACBD共圆.

(完整版)平行四边形练习题(培优训练)

第8题图 F D ’ D C B A 平行四边形 一、填空. 1、用硬纸片剪一个长为16cm ,宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形,其中周长最大的是________cm ,周长最小的是________cm ; 2、如图,在矩形ABCD 中,已知AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD 于点E ,PF ⊥AC 于点F ,那么PE+PF=_____________; 3、如图,□ABCD 的对角线相交于点O ,且AD≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,若△CDM 周长为a ,则□ABCD 的周长为_________; 4、如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE :∠BAE=3:1,则∠EAC=_____; 5、如图,以△ABC 的三边在BC 的同一侧,分别作三个等边三角形,即△ABD 、△BCE 、△ACF. (1)四边形ADEF 是_________ (2)当△ABC 满足条件________________时,四边形ADEF 为矩形. (3)当△ABC 满足条件________________时,四边形ADEF 不存在; 6、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,△AOB 的周长为33+,∠ABC=60o ,则菱形ABCD 的面积为__________; 7、已知一个三角形的一边长为2,这边上的中线为1,另外两边之和为31+, 则这两边之积为_______; 8、如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点E 处, 则重叠部分△AFC 的面积为____________; 二、选择题 9、四边形的四条边长分别是a 、b 、c 、d ,其中a 、c 为对边,且满足a 2+b 2+c 2+d 2=2ab +2cd ,则这个四边形一定是( ) C B A C B A 12cm O 16cm E F P 第2题图 M O D 第1题图 第3题图 D B A O E D C A B O C B A F E D C 第6题图 第5题图 第4题图 D

【数学】培优圆的综合辅导专题训练含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°. (1)OC的长为; (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标. 【答案】(1)4;(2)3 5 ;(3)点E的坐标为(1,2)、( 5 3 , 10 3 )、(4,2). 【解析】 分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则 MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°, ②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题. 详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH. ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4. ∵∠BHA=90°,∠BAO=45°, ∴tan∠BAH=BH HA =1,∴BH=HA=4,∴OC=BH=4. 故答案为4. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之一 ——难点指导及典型例题 【难点指导】 1、如果a 是二次根式,则一定有a ≥0;当a ≥0时,必有a ≥0; 2、当a ≥0时,a 表示a 的算术平方根,因此有 ()a a =2;反过来,也可以将一个非负数写成 ()2a 的形式; 3、()2a 表示a 2的算术平方根,因此有a a =2,a 可以是任意实数; 4、区别()a a =2和a a =2 的不同: ( 2a 中的可以取任意实数,()2a 中的a 只能是一个非负数,否则a 无意义. 5、简化二次根式的被开方数,主要有两个途径: (1)因式的内移:因式内移时,若m <0,则将负号留在根号外.即: x m x m 2-=(m <0). (2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 6、二次根式的比较: (1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小. < 【典型例题】 1、概念与性质 2、二次根式的化简与计算

例1. 化简a a 1-的结果是( ) A .a - B .a C .-a - D .-a 分析:本题是同学们在做题时常感困惑,容易糊涂的问题.很多同学觉得选项B 形式最简单, 所以选B;还有的同学觉得应有一个负号和原式对应,所以选A 或D;这些都是错误的.本 题对概念的要求是较高的,题中隐含着0a <这个条件,因此原式的结果应该是负值,并 且被开方数必须为非负值. 解:C. 理由如下: { ∵二次根式有意义的条件是1 0a -≥,即0a <, ∴原式= 211 ()()()a a a a a ---=--?-=--.故选C. 例2. 把(a -b )-1 a - b 化成最简二次根式 解: — 例3、先化简,再求值: 11()b a b b a a b ++++,其中a=51+,b=51 -. 3、在实数范围内分解因式 例. 在实数范围内分解因式。(1); (2) ! 4、比较数值 (1)、根式变形法 当0,0a b >>时,①如果a b >a b >a b

初三数学圆的专项培优练习题(含答案)

初三数学圆的专项培优练习题(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初三数学圆的专项培优练习题(含答案) 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的 是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.33C.6 D.23 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

A.19° B.38° C.52° D.76° 图四图五 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。

《二次根式》培优试题及答案

《二次根式》提高测试 4. . ab 、1 . a 3b ' 次根式?…( 3 xF b 简二次根式后再判断.[答案】". = _.[答案】—2a Ji .[点评】注意除法法则和积的算术平方根性 12a 3 质的运用. 8 . a — .. a 2 -1 的有理化因式是 (a 2 —1) . a + Ja —1 .【答案】a + 9 .当 1 o, . y — 3 > 0.当.x 1 + y — 3 = 0 时,x +1 = 0, y — 3 = 0. 1 < x v 4时,x — 4, x — 1是正数还是负数? (一)判断 题: (每小题1分,共5 分) 1. .(-2) ab = — 2 Jab . 2. )【提示】 (-2)2 =| — 2|= 2.【答案】X . = 73 + 2 = .3-2 3 - 4 .(x-1)2 = ("-1)2 .-( )【提示】 (x-1)2 = x — 1|, .3 — 2的倒数是.、3 + 2 .( )【提 示】 (y [3 + 2).【答案】 X. 3. 式相等,必须x > 1?但等式左边x 可取任何数.【答案】X. (? x -1)2 =x — 1 (x > 1).两 5 . 8x ,、.. 3, (二)填空题:(每小题 9 x 2都不是最简二次根式.( ) 9 x 2是最简二次根式.【答案】x. 6.当x 不等于零. 2分,共20分) 时,式子——1 有意义.【提示】?、x 何时有意义? x > 0.分式何时有意义?分母 Vx -3 【答案】x > 0且X K 9 . J2 (x —1 )= X + 1的解是 ______________ .【提示】把方程整理成 ax = b 的形式后,a 、b 分别 ,2 -1, :. 2 1.[答案】x = 3+ 22 . ab -c 2d 2 a 、 b 、 c 为正数, d 为负数,化简 ----------------- J0E&c 2d 2 _ 【答案】I ab + cd .[点评】T ab = ( , ab)2 (ab >0),二 ab — c 2d 2= ( 、. ab cd ) ( , ab - cd ). —— 尸.[提示】2空7 = J 28,4^3 = v 48 . 4”3 10?方程 是多少? 11.已知 1 12.比较大小:— ------- 2J7 .【提示】c 2 d 2 = |cd|=— cd . )【提示】 —v a 3b 、— — f a 化成最 3 x '\ b 7?化简一 )=a 2

圆的培优专题含解答

第4题 第5题 第6题 第1题 第2题 第3题 圆的培优专题1——与圆有关的角度计算 一 运用辅助圆求角度 1、如图,△ABC 内有一点D ,DA =DB =DC ,若∠DAB =20?,∠DAC =30?, 则∠BDC = . (∠BDC = 1 2 ∠BAC =100?) 2、如图,AE =BE =DE =BC =DC ,若∠C =100?,则∠BAD = . (50?) 3、如图,四边形ABCD 中,AB =AC =AD ,∠CBD =20?,∠BDC =30?,则 ∠BAD = . (∠BAD =∠BAC +∠CAD =40?+60?=100?) 解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、如图,□ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若∠D =60?, 则∠AEC = . (∠AEC =2∠B =2∠D =120?) 5、如图,O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70?, 则∠DAO +∠DCO = . (所求=360?-∠ADC -∠AOC =150?) 6、如图,四边形ABCD 中,∠ACB =∠ADB =90?,∠ADC =25?,则∠ABC = . (∠ABC =∠ADC =25?) 解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到ACBD 共圆.

第10题 第11题 第12题 第7题 第8题 第9题 二 运用圆周角和圆心角相互转化求角度 7、如图,AB 为⊙O 的直径,C 为AB 的中点,D 为半圆AB 上一点,则∠ADC = . 8、如图,AB 为⊙O 的直径,CD 过OA 的中点E 并垂直于OA ,则∠ABC = . 9、如图,AB 为⊙O 的直径,3BC AC =,则∠ABC = . 答案:7、45?; 8、30?; 9、22.5?; 10、40?; 11、150?; 12、110? 解题策略:以弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径! 10、如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50?,则∠ADC = . 11、如图,⊙O 的半径为1,弦AB 2,弦AC 3∠BOC = . 12、如图,PAB 、PCD 是⊙O 的两条割线,PAB 过圆心O ,若AC CD =,∠P =30?, 则∠BDC = . (设∠ADC =x ,即可展开解决问题) 解题策略:在连接半径时,时常会伴随出现特殊三角形——等腰三角形或直角三角形或等腰 直角三角形或等边三角形,是解题的另一个关键点! 圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!

(完整版)培优专题:二次根式

二次根式培优 一、 知识的拓广延伸 1、挖掘二次根式中的隐含条件 一般地,我们把形如 ,a(a 0)的式子叫做二次根式,其中 a 0- a 0 。 根据二次根式的定义,我们知道:被开方数 a 的取值范围是a 0 ,由此我们判断下列式子有 意义的条件: ____ ____ ____ 1 / x 1 (1 八 x 1 \1 x ; (2) 、 -- 2 ; 2 V x (3) <1—T J —2; (4) —-; (5) V3—r (x 竺 x 1 Vx 2 (1) 、根据二次根式的这个性质进行化简: ① 数轴上表示数a 的点在原点的左边,化简2a ⑤ 若为a,b,c 三角形的三边,贝U ■(a b c)2 "a b c ^ ------------ ⑥ 计算:J ( 4研&妬5 )2 _____________________ (2) 、根据二次根式的定义和性质求字母的值或取值范围 教科书中给出: 一般地,根据算术平方根的意义可知:' a a(a 0) ,在此我们可将其拓展为: 2、也2的化简 a(a 0) a(a 0) ②化简求值 : 1 其中a= 5 ③已知, 3 ,化简 2m 4m 2 m 1 .m 2 6m 9 1 2 a

m J 2m m2 1,求m的取值范围 ①若 ②若J(2 x)2J(6 2x)2 4 x,则x的取值范围是 ______________________________ ③若 a J2b 14 J7 b ,求J a2 2ab b2的值; ④已知:y= ,2x 5 .5 2x 3,求2xy的值。 .二次根式,a的双重非负性质:①被开方数a是非负数,即a 0 ②二次根式,a是非负数,即...a 0 例1.要伸x 1有意义,则x 应满足( ). J2x 1 1 11 1 A. 1< x< 3 B . x< 3 且X M丄C .丄v x v 3 D . - vx< 3 2 2 2 2 例2 (1)化简打—1 J—x = ____________ . (2)若.E .C=(x+ y)2,贝U x —y 的值为() (A) —1 . (B)1 . (C)2 . (D)3 . 例3(1)若a、b为实数,且满足丨a — 2 | +一b2=0,则b —a的值为() A. 2 B. 0 C. —2 D.以上都不是 ⑵已知x, y是实数,且(x y 1)2与2x y 4互为相反数,求实数y x的倒数 三,如何把根号外的式子移入根号内 我们在化简某些二次根式时,有时会用到将根号外的式子移入根号内的知识,这样式子的化简更为简单。在此我们要特别注意先根据二次根式的意义来判断根号外的式子的符号。如果根号外的式子为非负值,可将其平方后移入根号内,与原被开方数相乘作为新的被开方数,根号前的符号不会发生改变;如果根号外的式子为负值,那么要先将根号前的符号变号,再将其其平方后移入根号内,与原被开方数相乘作为新的被开方数。 (1)、根据上述法则,我们试着将下列各式根号外的式子移入根号内: ①訂,②(a "Ja

圆心角圆心角专题培优

圆心角和圆周角 一、经典考题赏析 例1.(成都)如图,ABC 内接于O ,AB=BC ,0120ABC ∠=,AD 为O 的直径,AD=6,那么 BD= 变式题组: 1.(河北)如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形的顶点,O 的半径为1,P 是O 上的点,且位于右上方的小正方形内,则APB ∠= 。 2.(芜湖)如图,已知点E 是O 上的点,B 、C 分别是劣弧AD 上的三等分点,0 46BOC ∠=,则AED ∠的度数为 。 3.如图,量角器外沿上有A 、B 两点,它们的读数分别是0 70、0 40,则1∠的度数为 。 例2.(盐城)如图,A 、B 、C 、D 为O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动。设运动时间为()t s ,()0 APB y ∠=,则下列图象中表示y 与t 之间函数关系最恰 当的是( ) 变式题组: 4.如图所示,在O 内有折线OABC ,其中OA=8,AB=12,0 60A B ∠=∠=,则BC 的长为( ) A.19 B.16 C.18 D.20 5.(威海)如图,AB 是O 的直径,点C 、D 在O 上,OD AC ,下列结论错误的是( ) A.BOD BAC ∠=∠ B.BOD COD ∠=∠ C.BAD CAD ∠=∠ D.C D ∠=∠

6.(青岛)如图,AB 为O 的直径,CD 为O 的弦,0 42ACD ∠=,则BAD ∠= 。 例3.(柳州)如图,AB 为O 的直径,C 为弧BD 的中点,CE AB ⊥,垂足为E ,BD 交CE 于点F 。 (1)求证:CF=BF (2)若AD=2,O 的半径是3,求BC 的长。 变式题组: 7.(广州)如图,在O 中0 60ACB BDC ∠==,23AC =cm. (1)求∠BAC 的度数;(2)求O 的周长 8.(潍坊)如图,O 是ABC 的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交O 于点D ,连接BD 、CD 。 (1)求证:BD DC DI == (2)若O 的半径为10cm ,0120BAC ∠=,求BDC 的面积。 例4.如图,在ABC 中,036B ∠=,0 128ACB ∠=,CAB ∠平分线交BC 于M ,ABC 的外接圆的切线AN 交BC 的延长线于N ,则ANM 的最小角等于 。 变式题组:9.如图,已知点A 、B 、C 、D 顺次在O 上,AB=BD ,BM AC ⊥于M , 求证:AM DC CM =+

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

平行四边形培优训练题

1、在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. 2、如图,已知,□ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. 3、在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF. 求证:四边形BEDF是平行四边形. 4、已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形. 5、已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形; (2)若BF=EF,求证:AE=AD. 6、如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形 MENF的形状(不必说明理由). 7.已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

8.如图,已知在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC 的延长线上,且AG=CH,连接GE、EH、HF、FG. (1)求证:四边形GEHF是平行四边形; (2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中 的结论是否成立 9、如图所示.?ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF. 10.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积. 11.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平 行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C (2,3),点D在第一象限. (1)求D点的坐标; (2)将平行四边形ABCD先向右平移个单位长度,再向下平移 个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少

最新二次根式化简练习题含答案(培优)

基础巩固: 1、二次根式的性质 ①二次根式.a中被开方数一定是非负数,并且二次根式a_0 ; ②(柘 f =a(a^0); a(a 色0) ③+'a = |a| = 0(a = 0) -a(a 乞0) 2、最简二次根式与同类二次根式: 一个二次根式满足被开方数不含有分母,且不含有能开得尽方的因数或因式,叫做最简二次根式(simplest quadratic radical ). 几个二次根式化为最简二次根式后,如果它们被开方数相同,就把这几个二次根式叫做同类二次根式. 3、移因式到根号内、外的方法: ①把根号外的数移到根号内:当根号外的数是负数时,把负号留在根号外面,然后把这个数的平方移到根号内,即 a.b二- a2b (a<0);当根号外的数是正 数时,直接把它平方后移到根号内,即 b = a 2b (a>0); ②把根号内的数移到根号外:当根号内的数是正数时,直接开方移到根号外,即a2b二a b (a>0);当根号内的数是负数时,开方移到根号外后要添上负号,即,a2b = -a b (a<0). 4、a2与 a $的联系与区别 ①存,(需2都是非负数; a(a 色0) ②Q a j =a(a 王0),M a2=|a| = 0(a = 0)结果不同; —a(a 兰0) ③、.a中a的取值范围是a 一0,a2中a的取值范围是全体实数.

练习: 1、有这样一类题目:将詐±2扁化简,如果你能找到两个数m n, 使m2 且mn = . b ,则将将变成m+n2士2mn,即变成(m± n)2开方, 从而使得a二2 .. b化简. 请根据提示化简下列根式: (1) Q-2.6 ⑵.4 23 2、数a、b在数轴上的位置如图所示,化简 3、计算: _ 1 0.25 2 2 -3 厂一j.-3 2 2什気一』2 ° 4、已知m是2的小数部分,则.m2-2m ■ 1的值是(). 5、对任意不相等的两个数a、b,定义一种运算※如下:b二'a+ b a - b 则代※4= _____ . 答案与解析:

《圆》新定义专题培优训练

《圆》新定义专题培优训练 1.如图,⊙O 的半径为(r >0),若点P ′在射线OP 上(P ′可以和射线端点重合),满足OP ′+OP =2r ,则称点P ′ 是点P 关于⊙O 的“反演点”. (1)当⊙O 的半径为8时, ①若OP 1=17,OP 2=12,OP 3=4, 则P 1,P 2,P 3中存在关于⊙O 的反演点”的是 . ②点O 关于⊙O 的“反演点”的集合是 , 若P 关于⊙O 的“反演点在⊙O 内,则OP 取值范围是 ; (2)如图2,△ABC 中,∠ACB =90°,AC =BC =12,⊙O 的圆心在射线CB 上运动,半径为1.若线段AB 上存在点 P ,使得点P 关于⊙O 的“反演点”P ′在⊙O 的内部,求OC 的取值范围. 2.定义: 对于一个三角形,设其三个内角的度数分别为?x 、?y 和?z ,若x 、y 、z 满足2 22z y x =+, 我们定义这个三角形为和谐三角形. (1)△ABC 中,若 ∠B=50°,∠A=70° ,则△ABC_______(填“是”或“不是” )和谐三角形; (2)如图,锐角△ABC 是⊙O 的内接三角形,∠C=60° ,AC=4 , ⊙O 的直径是24 , 求证:△ABC 是和谐三角形; (3)当△ABC 是和谐三角形,且∠A=30°,则∠C 为 _______°

3.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0. (1)如图1,⊙O的半径为2, ①点A(0,1),B(4,3),则d(A,⊙O)= ,d(B,⊙O)= . ②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值. (2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围. 4.在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”; (2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N. ①点M的坐标为(4,0),求圆心P所在直线的表达式; ②⊙P的半径为5,求m-n的取值范围.

九年级数学圆的综合的专项培优练习题(含答案)含详细答案

九年级数学圆的综合的专项培优练习题(含答案)含详细答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若tan A=1 2 ,探究线段AB和BE之间的数量关系,并证明; (3)在(2)的条件下,若OF=1,求圆O的半径. 【答案】(1)答案见解析;(2)AB=3BE;(3)3. 【解析】 试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

相关主题