搜档网
当前位置:搜档网 › 齿轮故障诊断方法综述

齿轮故障诊断方法综述

齿轮故障诊断方法综述
齿轮故障诊断方法综述

齿轮故障诊断方法综述

摘要齿轮就是机械设备中常用得部件,而齿轮传动也就是机械传动中最常见得方式之一。在许多情况下,齿轮故障又就是导致设备失效得主要原因。因此对齿轮进行故障诊断具有非常重要得意义。介绍了故障得特点与几种诊断方法,并比较了基于粒子群优化得小波神经网络,基于相关分析与小波变换,基于小波包与BP神经网络与基于小波分析等故障诊断方法得优缺点,并提出了齿轮故障诊断得难点与发展方向。

关键字齿轮故障诊断诊断方法分析比较发展

目录

第一章齿轮故障诊断发展及故障特点 (1)

1、1 齿轮故障诊断得发展 (1)

1、 2齿轮故障形式与震动特征 (1)

第二章齿轮传动故障诊断得方法 (2)

2、 1高阶谱分析 (2)

2、1、1参数化双谱估计得原理 (3)

2、1、2试验装置与信号获取 (3)

2、1、3 故障诊断 (4)

2、1、4 应用双谱分析识别齿轮故障 (4)

2、2基于边频分析得齿轮故障诊断 (6)

2、2、1分析原理 (6)

2、2、2铣床振动测试 (6)

2、2、3 边频带分析 (7)

2、2、4 故障诊断 (8)

2、 3时域分析 (10)

2、3、1 时域指标 (10)

2、3、2非线性时间分析 (10)

第一章齿轮故障诊断发展及故障特点

1、1 齿轮故障诊断得发展

齿轮故障诊断始于七十年代初,早期得齿轮故障诊断仅限于在旋转式机械上测量一些简单得振动参数,用一些简单得方法进行诊断。这些简单得参数与诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障得部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断得频域法发展很快,其中R、B、Randall与James1、Taylor等人做好了许多有益得工作,积累了不少故障诊断得成功实例,出现了一些较好得频域分析方法,对齿轮磨损与齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理与网络技术得发展与融合使得齿轮系统故障诊断进入了蓬勃发展得时期。

我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障得时频域特点。1988年,颜玉玲、赵淳生对滚动轴承得振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障得振动频谱机理研究”中对齿轮得故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测与识别方法得研究”中提出了一种新方法即基于一致度分析。

1、 2齿轮故障形式与震动特征

通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式得故障。故障形式又随齿轮材料、热处理、运转状态等因素得不同而不同,常见得齿轮故障形式有齿面磨损、齿面胶合与擦伤、齿面接触疲劳与弯曲疲劳与断齿。

在齿轮运转状态下,伴随着内部故障得发生与发展,必然会产生振动上得异常。实践证明,振动分析就是齿轮故障检测中最有效得方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC

为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总就是存在得,但两种状态下得振动水平有差异。如果仅仅依靠对齿轮振动信号得啮合频率及其倍频成分得差异来识别齿轮得故障就是不够得,因故障对振动

信号得影响就是多方面得,其中包括幅值调制、频率调制与其她频率成分。

第二章齿轮传动故障诊断得方法

齿轮故障得诊断方法从难易程度来说可以分为简易诊断方法与精密诊断方法。

简易诊断方法包括:有经验得人员可以通过直接听噪声,或感受振动强度来初步判断齿轮系统就是否处在正常状态。通过直接观察信号波形得幅值、变化趋势来判断齿轮得工作状态。简易诊断方法简单、快速,但效果一般。精密诊断方法利用精密仪器来获取系统运行得信号,并对信号进行一系列处理来获得所需要得信息。精密诊断方法得准确性高,但对人员素质要求高,需要得仪器也比较精密。

齿轮系统在运行过程中,与运行状态有关得一系列物理量都就是随时间得变化,以各种各样得信号表达出来。因此,信号处理方法就是齿轮故障诊断中最关键得一个环节。它对前面环节所得到得信号进行分析,又给后面最终得决策环节提供信息。有关齿轮得信号处理方法目前已经取得了很大得发展,它借鉴了振动力学、摩擦学、系统论、控制论、计算机技术、人工智能技术与非线性理论等多个领域得研究成果,广泛采用传感器技术、计算机与信息处理等现代科学技术作为其技术支持。

2、 1高阶谱分析

高阶谱就是在高阶累积量得基础上发展起来得,就是近年来国际上在一个信号处理方面

比较新得方向。它就是用来分析非高斯、非线性、非最小相位得有力工具,相对于相关函数与功率谱来说,它不仅能提供时间、幅值、频率上得信息,还能提供相位上得信息。目前国内外已经将其引入齿轮检测中。双谱技术用于齿轮故障诊断,利用该方法能有效地识别出信号中得二次相位耦合情况,可以准确地检测出齿轮中存在得分布缺陷。将双谱与双相干谱进行比较,通过对齿轮在正常、磨损、断齿状态下得分析表明双谱比双相干谱得能量分布更集中,更利于故障特征提取。

齿轮啮合过程中得振动信号往往呈现出非线性、非高斯性,加上强噪声得干扰,给故障特征得提取带来了较大得困难。为实现齿轮单一故障得分类与诊断,采用时序参数化得双谱分析

方法,对齿轮故障模拟试验台上采集得正常状态与3种故障状态得振动信号进行了分析,根据双谱谱峰得分布及数目得差异性,实现了齿轮正常、裂纹、磨损、剥落4种状态得识别与分类。结果表明,双谱分析可以抑制背景噪声,并有效提取信号中得非高斯成分,就是一种有效得故

障诊断方法。

2、1、1参数化双谱估计得原理

双谱得计算方法有2种:①直接由定义计算双谱(实质上,双谱定义为平稳时序得3阶自相关函数得二维傅立叶变换);②间接由参数模型估计双谱,其计算简便,本研究利用AR(p)模型来估计双谱。

2、1、2试验装置与信号获取

试验装置为齿轮故障模拟实验台,它由控制台、直流电动机、加载电机、直流调速加载系统、齿轮减速器组成,如图1所示。传感器得安装位置就是正确获取信号得关键,对于齿轮箱而言,齿轮故障得振动信号在传递中经过环节较多(齿轮—轴—轴承—轴承座—测点),很多高频信号在传递中可能丧失了,所以,进行测试时应选择轴承座附近刚性较好得部位,两个压电

式传感器分别布置在中间轴与输出轴得轴承座外壁上,方向均为竖直向上。

齿轮箱就是由三轴式二级变速器组成,输入轴与输出轴上齿轮均为正常齿轮

(z1=26,z4=85,m =2),中间轴上齿轮为二联齿轮(z2=64,m =2)与三联齿轮(z3=40,m =2),上面

布置有模拟故障,故障得变换由齿轮箱前后两个换档手柄调节实验中采样频率设定为10 kHz,数据长度为12 902,分3种转速(400、700与1 000 r/min),在3种承载(无载,轻载,重载)工况下进行采样。

2、1、3 故障诊断

实验中,在1 000 r/min重载工况下采集正常信号与3种故障信号得时域图及FFT频谱图如图3、图4所示

从时域波形图中可见,齿轮得4种运行状态得差别较小。从FFT频谱图可见,当存在故障时,能量得分布发生了一定得变化,出现了新得能量集中区域,但就是4种状态在低频处得能量集中有一定得相似性,因此直接用肉眼区分存在一定得困难,需进一步处理才能进行准确得分类与诊断。

2、1、4 应用双谱分析识别齿轮故障

当齿轮出现裂纹、局部剥落等故障时,将产生周期性得冲击信号,信号得分布则发生一定

得变化,呈现出一定得非高斯性,故将双谱分析应用到齿轮故障得分类与诊断中。Matlab信号处理工具箱提供得函数arorder与arrcest指令可用于AR模型定阶与模型得参数估计,调用相关指令对已经估计出得参数再进行双谱分析, 4种状态得双谱估计结果如图5所示

由图5可以瞧出,不论就是正常齿轮还就是故障齿轮,双谱图上都存在着谱峰,其高斯偏离性很明显。在正常情况下,主峰值仅在低频处有一处,而故障情况下,裂纹与剥落故障均出现了6个谱峰,但谱峰得形状及能量有一定得差异,而磨损故障得谱峰个数较多也较集中,且故障状态下得谱峰在低频及高频处均有分布,这就是由于不同齿轮故障得调制作用不同,由此产

生“调制频率各分量之间发生耦合程度不同”得必然结果。根据4种状态谱峰得数目及分布不同,可以完成较好得分类与诊断。

2、2基于边频分析得齿轮故障诊断

2、2、1分析原理

边频带得产生主要与振动信号被调制有关,如齿轮箱中齿轮轴上若存在偏心故障或者啮

合齿轮得某些齿上出现较为严重故障时,就会产生调制,即在特征频得两旁有一些边频带

[3-4]97-101。为了准确得诊断,就必须进行细化分析。细化分析[5-6]得基本思想就是利用频移定理,对被分析信号进行复调制,再进行重新采样做傅立叶变换,即可得到较高得频率分辨率,其主要步骤为:假定要在频带(f1~f2)范围内进行频率细化,此频带中心频率为

f0=(f1+f2)/2,对被分析信号x(k)进行复调制,得到频移信号y(k)=x(k)e-i2πKL/N,L=f0Δf 式中,Δf就是未细化分析前得频率间隔。根据频移定理,Y(n)=X(n+L),相当于把X(n)中得第L条线移到Y(n)得零谱线位置了。此时降低采样频率为2NΔf/D,对频移信号重新采样或对已采样数据频移处理后进行选抽,就能提高频率分辨率D倍分析Y(n)零谱线附近得频谱,也即

X(n)中第L条谱线附近得频谱。

2、2、2铣床振动测试

本次试验中,首先对铣床得振动信号进行了采集与分析,并且进行了故障分析。

(1) 测试系统试验仪器

信号得采集就是由压电式加速度传感器进行,经DLF系列多通道电荷电压滤波积分放大

器转换为电压信号,用INV310大容量数据自动采集系统与DASP软件进行信号处理,分析其频谱。

(2) 试验方案与测试过程

(1)确定测点与转速。首先,在机床空载状态下,通过触摸找出振动较大得部位。其次,在各部位用测试仪器确定在铣床空载状态下,振动较大得位置。选定主轴转速在n=75、150、300、

475、600、750、950、1180、1500r/min时,传动路线为

其中1~10号点(图1)振动较大,并且大部分得振动与加工精度有直接关系,因此作为这次研究得主要测试点(对称点也进行相应测试,但没在图中标出)。

(2)计算测试转速下得轴得转动频率、齿轮啮合频率(表1、表2)。

(3)测试过程。①连接仪器,对仪器仪表进行零位调整,设置参数;②启动机床,观察接收得信号,当信号稳定后进行采集;③改变转速与测点,记录每种工作状况下各点得数据。

2、2、3 边频带分析

边频带成分包含有丰富得齿轮故障信息,要提取边频带信息,在频谱分析时必须有足够高得频率分辨率[4]97-101。当边频带谱线得间隔小于频率分辨率时,或谱线间隔不均匀,都会给边频带分析带来误差,为此必须进行细化分析、

通过测试,将各测点记录得振动信号回放后,使用DASP软件进行频谱分析,得到各个工况下各点得频谱图百余副,如图2所示为75r/min时第5号点得频谱图

与幅值相对比较大点得数据图。从图2可知,图中频谱峰值比较突出,振动出现较大信号峰值得频率有222、88Hz、642、24Hz、900~1000Hz。分析所有得频谱图可以瞧出:在642、24Hz 附近得幅值都就是比较大得,占有一定得地位;主要分析这一范围得频谱,由于频率分辨率太低,因此,挑选能够反应这个特性得频带重新进行细化分析。如图3所示为主轴在

1180r/min(实际转速就是1212r/min)时第5号点未细化得频谱图与细化后(598Hz到700Hz)得频谱图。从图3a中可以瞧出,要想准确得分析出边频值来就是比较困难得,所以要进行细化分析,在图3b中可以很精确得瞧出边频值(特征频率642、24Hz,边频24、7Hz),这样进行故障得判断就是非常有利得。

2、2、4 故障诊断

(1)故障元件及位置。从图3中可以瞧出,642、24Hz就是造成振动幅值偏大得主要频率,而以实测主轴转数1212r/min推算,第一对齿轮啮合(26/54)得频率为640、92Hz(表1),Ⅰ轴

得旋转频率为24、65Hz(表2),从图3b中还可以瞧到642、24Hz两侧存在边频,边频得大小为24、7Hz,这充分说明就是由轴得旋转频率经过第一对齿轮啮合频率调制所得。经过检查,发现第一对齿轮啮合(26/54)中有一齿轮基节误差过大,并且齿轮有一定得点蚀,每一圈均在此齿处产生猛烈冲击一次。

(2)在主轴转速为1500r/min工况下,还发现在1002、956Hz(万能铣头中一对齿轮啮合频率501、67Hz得一倍频,见表1)得两侧也存在边频23~26Hz(与此轴得转动频率25、08Hz相近,见表2),说明这对齿轮同样有问题,后经检查发现安装万能铣头时略有松动(由于篇幅有限,不再另附图来说明)。

(3)在万能铣头上选择较多测点就是为了更好得分析影响加工精度得因素,此次试验中,在75r/min工下,幅值谱(图4)中222Hz附近得幅值相对也比较大,这主要就是由Ⅱ、Ⅲ轴齿轮啮合(16/39、19/36、22/33,见表2)振动造成得,但总体所占比例相对较小,检查或修理后对机床十分有益。

应用边频分析方法进行齿轮(特别对于带有齿轮箱机床得研究)故障诊断简单易行。同时,必须对重点频带进行细化分析,提取准确得边频值,就能准确分析故障产生得部位与原因。细化分析可以很好得提高频率分辨率,它与边频分析相结合对于齿轮得故障诊断就是一种非常有效而又简便得方法。

2、 3时域分析

2、3、1 时域指标

时域指标就是以一系列得指标来给出系统得状态特征。主要包括均方根值、斜度(Skewness)、波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标( Impulse Factor)、裕度指标(Clearance Fac-tor)、峭度指标(KurtosisValue)等。峭度指标、裕度指标与脉冲指标对于冲击脉冲类故障比较敏感,特别就是在故障早期发生时,它们有明显增加;但上升到一定程度后,随故障得逐渐发展,反而会下降,表明它们对早期故障有较高得敏感性,但稳定性不好。一般说,均方根值得稳定性较好,但对早期故障信号不敏感。为了取得好得效果,通常将它们同时使用,以利于全面分析。利用最大峭度(KurtosisMaxmi isation)作为一个指标来识别直升机齿轮中故障得出现,并且表明相对于现行得方法在下述方面具有更好得效果:(1)能够在早期或更显著地识别出裂纹; (2)能够检测复杂齿轮箱特别就是直升机齿轮箱中得故障。利用零滞后得高阶统计量作为一种新得指标来识别出齿轮裂纹、断齿状态。因为高阶累积量具有抑制高斯噪声得能力,首先通过Hilbert变换提取出信号得包络信号,然后计算零滞后得高阶累积量,效果明显。峰态因数指标对于齿轮局部点蚀故障反应非常敏感,微小故障可以引起峰态因数指标得明显变化。不过时域指标只能用于定性得分析齿轮中可能出现得故障,对于需要精确确定得故障还需要结合其它方法。

2、3、2非线性时间分析

随着机械诊断中信号处理方法得发展,人们不断提出新得非线性分析方法以解决实际中得需要。将ARMA时间序列模型引入齿轮故障诊断,建立起了齿轮状态得分类网络,该方法对动态数据具有外延性,可避免在求取动态数据加窗时所造成得影响。

1

齿轮故障诊断

第1章齿轮箱失效比重及失效形式 齿轮箱在机械设备中扮演着非常重要的角色,通常情况下,原动机输出的转矩和转速不能直接用于执行元件执行操作,需要进行转矩放大和降低转速,通常使用的传动设备有齿轮减速箱、带传动、链传动等,由于齿轮箱传动瞬时传动比恒定、传动效率高、工作可靠、使用寿命长、结构紧凑、适用范围从1W到数万KW等优点,所以齿轮箱传动是机械传动系统中运用最广泛的一种传动形式。 1.1 齿轮箱失效原因及比重 机械设备中的齿轮箱从装配投入使用开始,除了设备维护以外,齿轮箱都需要保持一个稳定的运行状态,长期的高负荷运转使齿轮箱的故障率非常大,在机械设备中,造成齿轮箱故障的原因及失效比重如下表所示: 由此可见,齿轮箱失效主要的原因是维护和操作不当,相邻的零件故障也会造成齿轮箱的故障,设计不合理也是严重影响齿轮箱使用的重要因素,为保障机械设备在运行中稳定可靠,除了合理设计齿轮箱外,正确选择相邻零件、合理操作维护是保障稳定运行的重要手段。当出现故障时,能够准确找出故障是对齿轮箱维护的重要前提,因此,掌握齿轮箱故障诊断技术非常重要。 1.2 齿轮箱失效零件及失效比重 在齿轮箱中,失效的主要零件及失效比重如下表所示:

由此可见,齿轮失效是造成齿轮箱失效的主要原因,由于制造误差、装配不当或在不适当的条件(如载荷、润滑等)下使用,齿轮常发生损伤,从而导致机械设备不能够用稳定运行,甚至发生生产安全事故。 1.3 齿轮的主要失效形式 齿轮的主要失效形式有四种:轮齿断裂、齿面磨损、齿面疲劳、齿面塑性变形。 1.31 轮齿折断 齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生过负荷断裂。即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。 轮齿的断裂是齿轮的最严重的故障,常因此造成设备停机,在齿轮故障中,轮齿折断概率为41%。 1.32 齿面磨损 (1)粘着磨损在低速、重载、高温、齿面粗糙度差、供油不足或油粘度太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有利于防止粘着磨损的发生。 (2)磨粒磨损与划痕含有杂质颗粒以及在开式齿轮传动中的外来砂粒或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 (3)腐蚀磨损由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属的腐蚀而导致齿面损伤。 (4)烧伤烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。 (5)齿面胶合大功率软齿面或高速重载的齿轮传动,当润滑条件不良时易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿面上而在此齿面上

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21 电力系统故障的智能诊断综述 李再华1 刘明昆2 (1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086) 摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。 关键词:电力系统;智能故障诊断;专家系统;发展趋势 Review of Intelligence Fault Diagnosis in Power System Li Zaihua 1 Liu Mingkun 2 (1.China Electric Power Research Institute ,Beijing 100192; 2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086) Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually. Key words :power system ;intelligence fault diagnosis ;expert system ;development trend 1 引言 电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技 术,包括专家系统(Expert System ,ES )、人工神 经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support Vector Machine ,SVM )、仿生学理论(Bionics Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。 2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

齿轮传动系统的故障诊断方法研究要点

齿轮传动系统的故障诊断方法研究内容提要:在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。 关键词:齿轮故障;故障诊断;振动;裂纹

目录 引言 (1) 第一章影响齿轮产生振动的因素 (2) 1.1 振动的产生 (2) 1.2 振动的故障 (2) 第二章齿轮裂纹故障诊断 (4) 2.1 裂纹产生的原因 (4) 2.2齿轮裂纹分类、特征、原因及预防措施 (4) 2.2.1淬火裂纹 (4) 2.2.2磨削裂纹 (4) 2.2.3疲劳裂纹 (5) 2.2.4轮缘和幅板裂纹 (6) 第三章齿轮故障诊断方法与技术展望 (7) 3.1 齿轮故障诊断的方法 (7) 3.1.1 时域法 (7) 3.1.2 频域法 (7) 3.1.3 倒频谱分析 (8) 3.1.4 包络分析 (8) 3.1.5 小波分析方法 (8) 3.2 齿轮故障诊断技术的展望 (9) 结论 (10) 致谢 (11) 参考文献 (12)

引言 随着科学技术的不断进步,机械设备向着高性能、高效率、高自动化和高可靠性的方向发展。齿轮由于具有传动比固定、传动转矩大、结构紧凑等优点,是改变转速和传递动力的最常用的传动部件,是机械设备的一个重要组成部分,也是易于故障发生的一个部件,其运行状态对整机的工作性能有很大的影响。 在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

机械故障诊断之齿轮故障小议

机械故障诊断之齿轮故 障小议 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械故障诊断之齿轮故障小议随着时代的不断发展,机械已日益成为生产过程中不可或缺的一部分。而机械的高性能化、高自动化、高效率化是现代机械的一个重要发展方向。齿轮作为传动机械设备中至关重要的部件,它不仅关乎机械的正常运转,且对整个生产过程的进度与经济效益等产生巨大影响。而齿轮发生故障又是常出现的事件,因此,加大对齿轮出现故障的原因与解决方法的研究尤显必要。本文将针对此进行粗略探讨。 现代化的不断发展让机械设备也日益朝着大型化、复杂化方向发展,其设备的构造与操作原理也愈加复杂。齿轮是机械设备中用来传递动力的重要部件,而齿轮故障又时常发生,这无疑会对机械的整体运作产生不利影响。所以,有必要对齿轮故障进行分析,并能理论联系实际,通过实际案例来寻求解决方法,从而做到故障出现时能及时解决并予以防范。 机械设备中齿轮常见故障分析 齿轮在机械设备中有个重要作用,这就是它能传递运动,而且能控制运动方向,影响运动速度。而为更好地调控齿轮运转速度,就需要齿轮减速机装置的安装。我们知道,与齿轮减速机有关的几个主要频率为轴频、齿轮的啮合频率、轴承的内外圈、滚动体、保持架的频率,它们与

“谐频”、“边频”相结合,成为对齿轮减速机故障判定的依据。同时,与齿轮减速机有密切关系的是齿轮振动,且通过齿轮振动是判断齿轮故障的一个重要方式。因此,笔者将重点针对齿轮减速与齿轮振动的有关故障开展具体探讨。 2.1齿轮振动发生故障的一个重要原因是齿轮在生产与安装中存在失误。生产齿轮是齿轮得以发挥自身作用的首要条件,而生产制作中的微小误差就能导致齿轮的啮合精度降低,从而带来齿轮的振动和噪声增大,这些问题的出现无疑会提高齿轮的故障率[2]。因而,我们的相关机械使用单位应对齿轮的生产源与齿轮安装予以极大关注。 2.2齿轮振动出现故障的另一个原因是与齿轮的工作环境适宜度有关。因不同的工作环境在空气湿度、空气质量、温度等方面都存在差异。而齿轮作为现代化机械,其对工作环境有一定要求。因齿轮在啮合过程中,齿与齿连续冲击使齿轮产生受迫振动,如果此时其工作环境存在高湿度或其他不利影响,就会对齿轮的正常振动带来不利影响。为减少此种不必要的失误,我们的机械使用单位就应提前做好齿轮工作环境的净化工作。 2.3齿轮运行过程中存在因所使用到的润滑剂质量不达标而导致齿轮故障的现象。齿轮的运转少不了润滑剂的调节,有些单位为减少经济成本投入而使用不够清洁的润滑剂,或者使用的润滑剂不足,这些情况无疑会

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮就是机械设备中常用得部件,而齿轮传动也就是机械传动中最常见得方式之一。在许多情况下,齿轮故障又就是导致设备失效得主要原因。因此对齿轮进行故障诊断具有非常重要得意义。介绍了故障得特点与几种诊断方法,并比较了基于粒子群优化得小波神经网络,基于相关分析与小波变换,基于小波包与BP神经网络与基于小波分析等故障诊断方法得优缺点,并提出了齿轮故障诊断得难点与发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点 (1) 1、1 齿轮故障诊断得发展 (1) 1、 2齿轮故障形式与震动特征 (1) 第二章齿轮传动故障诊断得方法 (2) 2、 1高阶谱分析 (2) 2、1、1参数化双谱估计得原理 (3) 2、1、2试验装置与信号获取 (3) 2、1、3 故障诊断 (4) 2、1、4 应用双谱分析识别齿轮故障 (4) 2、2基于边频分析得齿轮故障诊断 (6) 2、2、1分析原理 (6) 2、2、2铣床振动测试 (6) 2、2、3 边频带分析 (7) 2、2、4 故障诊断 (8) 2、 3时域分析 (10) 2、3、1 时域指标 (10) 2、3、2非线性时间分析 (10)

第一章齿轮故障诊断发展及故障特点 1、1 齿轮故障诊断得发展 齿轮故障诊断始于七十年代初,早期得齿轮故障诊断仅限于在旋转式机械上测量一些简单得振动参数,用一些简单得方法进行诊断。这些简单得参数与诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障得部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断得频域法发展很快,其中R、B、Randall与James1、Taylor等人做好了许多有益得工作,积累了不少故障诊断得成功实例,出现了一些较好得频域分析方法,对齿轮磨损与齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理与网络技术得发展与融合使得齿轮系统故障诊断进入了蓬勃发展得时期。 我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障得时频域特点。1988年,颜玉玲、赵淳生对滚动轴承得振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障得振动频谱机理研究”中对齿轮得故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测与识别方法得研究”中提出了一种新方法即基于一致度分析。 1、 2齿轮故障形式与震动特征 通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式得故障。故障形式又随齿轮材料、热处理、运转状态等因素得不同而不同,常见得齿轮故障形式有齿面磨损、齿面胶合与擦伤、齿面接触疲劳与弯曲疲劳与断齿。 在齿轮运转状态下,伴随着内部故障得发生与发展,必然会产生振动上得异常。实践证明,振动分析就是齿轮故障检测中最有效得方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC 为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总就是存在得,但两种状态下得振动水平有差异。如果仅仅依靠对齿轮振动信号得啮合频率及其倍频成分得差异来识别齿轮得故障就是不够得,因故障对振动

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

论述齿轮啮合频率产生的机理及齿轮故障诊断方法分析

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 一、齿轮啮合频率的机理 由齿轮传动理论可知,渐开线齿廓齿轮在节点附近为单齿啮合,而在节线的两边为双齿啮合,啮合区的大小则由重叠系数ε决定。因此,每对轮齿在啮合过程中承受的载荷是变化的,从而引起齿轮的振动,另外,一对轮齿在啮合过程中两齿面的相对滑动速度和摩擦力均在节点处改变方向,引起齿轮的振动.这两者形成了啮合频率fz 及其谐波Nfz ,其计算式为: 60z nZ f = 式中 Z ——齿轮的齿数;n ——轴的转速,/min r 。 60z nZ Nf N =? 式中N —自然数,1,2,3,……。N=1称为基波,即啮合频率;N = 2,3,……时,称为二次,三次…谐波。 啮合频率fz 及其谐波Nfz 的频谱特点: ①初始状态,啮合颇率的幅值最高,各次谐波的幅值依次减小(图1的实线部分); ②随着齿轮磨损的增加,渐开线齿廓逐渐受到破坏,使齿轮振动加剧,此时啮合频率及其各次谐波的幅值逐渐增大,而且各次谐波幅值的增加比啮合频率快得多(图中虚线所示); ③磨损严重时,二次谐波幅值超过啮合频率幅值。 图1 啮合频率及其谐波 图2 严重磨损时的啮合频率及其二次谐波 由频谱图上啮合频率及其谐波幅值的增量可判断出齿轮的磨损程度。

啮合频率分析: (1)负载和啮合刚度的周期性变化 负载和啮合刚度的变化可用两点来说明:一是随着啮合点位置的变化,参加啮合的单一齿轮的刚度发生了变化,二是参加啮合的齿数在变化。如渐开线直齿轮,在节点附近是单齿啮合,在节线两侧某部位开始至齿顶、齿根区段为双齿啮合。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理单齿啮合时,载荷由一个齿承担,此时齿轮的啮合刚度较小。从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的负载和啮合刚度就变化一次,所以齿轮的负载和啮合刚度周期性变化的频率与齿轮旋转频率成整数倍关系。 (2)节线冲击的周期性变化 齿轮在啮合过程中,轮齿表面既有相对滚动,又有相对滑动。主动轮带动从动轮旋转时,主动轮上的啮合点从齿根移向齿顶,啮合半径逐渐增大,速度渐次增高;而从动轮上的啮合点是由齿顶移向齿根,啮合半径逐渐减小,速度渐次降低。两轮齿齿面在啮合点的速度差异就形成了主动轮和从动轮的相对滑动。在主动轮上,齿根和节点之间的啮合点速度低于从动轮上的啮合点速度,因此滑动方向向下;在节点处,因为两轮上的啮合点速度相等,相对滑动速度为零。因此,摩擦力在节点处改变了方向,形成节线冲击。由以上分析可知,从一个轮齿开始进入啮合到下一个轮齿进入啮合,发生两次节点冲击,所以节线冲击发生的频率与齿轮旋转频率成整数倍关系。 (3)齿轮运转时,其振动频谱上都含有啮合频率及其谐波分量。随着齿轮的磨损,频谱上的啮合频率及其各次谐波都会上升,即幅值增大。但值得注意的是,啮合频率高次谐波的幅值要比基波的幅值上升得快。啮合频率是齿轮振动中比较突出的成分,它既是齿轮齿廓磨损的一个灵敏指标,同时齿面上产生点蚀、剥落等损伤也会在啮合频率及各次谐波成分上表现出来。对于一对新齿轮来说,其频谱的整个振动能量水平较低,啮合频率的基波及其第二、三次谐波幅值依次减小。对于具有中等点蚀故障的齿轮,其频谱随着点蚀的增加,整个谱的水平都随之增加,且啮合频率高次谐波幅值将超过基波。另一个特点是啮合频率的二次谐波两边的边频带愈加丰富。当齿面出现重度点蚀时,谱噪声总量急剧上升,且啮合频率的谐频延伸到七次以上。啮合频率分析也有其不足之处,它毕竟是众多齿轮振动能量的平均值,因此在局部轮齿呈现损伤时,其幅值的增长就不那么明显,只有大多数轮齿受到磨损或出现点蚀、剥落等损坏时才有明显的增量。 当齿轮发生故障时,振动信号常会发生调制现象而产生调制波(调幅波和调频波),其载

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点..................... 错误!未定义书签。齿轮故障诊断的发展................................... 错误!未定义书签。 1. 2齿轮故障形式与震动特征 ........................... 错误!未定义书签。第二章齿轮传动故障诊断的方法......................... 错误!未定义书签。 2. 1高阶谱分析........................................ 错误!未定义书签。 参数化双谱估计的原理 .............................. 错误!未定义书签。 试验装置与信号获取 ................................ 错误!未定义书签。 故障诊断 ......................................... 错误!未定义书签。 应用双谱分析识别齿轮故障 ........................ 错误!未定义书签。基于边频分析的齿轮故障诊断............................ 错误!未定义书签。 分析原理 .......................................... 错误!未定义书签。 铣床振动测试 ...................................... 错误!未定义书签。 边频带分析 ...................................... 错误!未定义书签。 故障诊断 ........................................ 错误!未定义书签。 2. 3时域分析.......................................... 错误!未定义书签。

相关主题