搜档网
当前位置:搜档网 › 锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计
锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计

一、摘要

这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。

二、锅炉设备的介绍及设计任务的分析

1、锅炉设备介绍

锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。

锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。

燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备

热空气汽包

炉膛

烟气排出

冷空气送入

水送入

热空气送往炉膛过热器

减温器

空气预热器

图1锅炉设备主要工艺流程图

锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下:

锅炉汽包水位控制系统,要求保证汽包水位平稳;

锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定;

锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量;

锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行;

锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。

锅炉安全连锁控制系统,以防止回火和脱火。

本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。

2、任务分析与设计思路

锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。

蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

出口温度维持在允许范围内,并保护过热器时管壁温度不超过允许的工作温度。

我们知道,过热蒸汽温度过高或过低,对锅炉运行及蒸汽用户设备都是不利的,所以必须把过热器出口蒸汽的温度控制在规定范围内。

在锅炉生产过程中,过热蒸汽温度是整个汽水通道中最高的温度。过热器温度过高将导至过热器损坏,同时还会危及汽轮机的安全运行。影响过热蒸汽温度的因素很多,其中主要的有:过热器是一个多容且延迟较大的惯性环节,设备结构设计与控制要求存在若矛盾,各种扰动因素之闻相互影响。而对各种不同的扰动,过热蒸汽温度的动态特性也各不相同。因此,过热蒸汽温度控制的主要任务就是:

(1) 克服各种干扰因素,将过热器出口蒸汽温度维持在规定允许的范围内,从而保持蒸气质量合格:

(2) 保护过热器管壁温度不超过允许的工作温度。

本设计主要以控制减温水流量的变化来设计对过热蒸汽温度的自动调节。三、控制原理简介及设计方案的确定

随着生产的发展以及工艺的革新,对操作条件要求更加严格,变量间的相互关系也更加复杂了。为了适应生产发展的需要,且基于控制理论的发展,越来越多的智能控制技术,如自适应控制、模型预测控制、模糊控制、神经网络等,被引入到锅炉过热蒸汽温度控制中。但这些控制技术主要是为了改善和提高控制系统的控制品质,并没有从引起过热蒸汽温度波动的源头入手。通常,烟气温度过高是引起过热蒸汽温度过高的主要原因。一般,过热蒸汽温度在烟气扰动下延迟较小,而在减温水量扰动下延迟较大,这种特性将使过热蒸汽温度的控制滞后。因此,本设计基于解决减温水扰动下保证过热器出口蒸汽温度的稳定的问题。1、控制方案选择

(1)单回路控制方案

在系统运行过程中,改变减温水流量,实际上是改变过热器出口蒸汽的热焙,亦改变进口蒸汽温度,如下图所示:

M

减温器

调节器减温水

图2锅炉过热蒸汽单回路控制系统

从动态特性上看,这种调节方法是最不理想的,但由于设备简单,因此,应用得最多。

减温器有表面式和喷水式两种。减温器应尽可能地安装在靠近蒸汽出口处,但一定要考虑过热器材科的安全问题,这样能够获得较好的动态特性。但作为控制对象的过热器,由于管壁金属的热容量比较大,使之有较大的热惯性。加上管道较长有一定的传递滞后,如果用上图所示的控制系统,调节器接受过热器出口蒸汽温度t 变化后,调节器才开始动作,去控制减温水流量F 的变化又要经过一段时向才能影响到蒸汽温度t 这样,既不能及早发现扰动,又不能及时反映控制的效果,将使蒸汽温度t 发生不能允许的动态偏差。影响锅炉生产的安全和经济运行。

实际中过热蒸汽控制系统常采用减温水流量作为操纵变量,但由于控制通道的时间常数及纯滞后均较大,组成单回路控制系统往往不能满足生产的要求。因此常采用串级控制系统,减温器出口温度为副参数,以提高对过热蒸汽温度的控制质量。

(2)串级控制方案

过热器出口蒸汽温度串级控制系统的方框图如下图所示。采用两级调节器,这两级调节器串在一起,各有其特殊任务,调节阀直接受调节器1的控制,而调节器1的给定值受到调节器2的控制,形成了特有的双闭环系统,由副调节器调节器和减温器出口温度形成的闭环称为副环。由主调节器和主信号—出口蒸汽温度,形成的闭环称为主环,可见副环是串在主环之中。

M

减温器调节器2

减温水

调节器1温度

变送

温度变送器

图3锅炉过热蒸汽温度串级控制系统

调节器2称主调节器,调节器1称为副调节器。将过热器出口蒸汽温度调节器的输出信号,不是用来控制调节阀而是用来改变调节器2的给定值,起着最后校正作用。

串级系统是一个双回路系统,实质上是把两个调节器串接起来,通过它们的协调工作,使一个被控量准确地保持为给定值。通常串级系统副环的对象惯性小,工作频率高,而主环惯性大,工作频率低。为了提高系统的控制性能,希望主副环的工作频率相差三倍以上,以免频率相近时发生共振现象面破坏正常工作。串级控制系统可以看作一个闭合的副回路代替了原来的一部分对象,起了改善对象特征的作用。除了克服落在副环内的扰动外,还提高了系统的工作频率,加快过渡过程。

串级控制由于副环的存在,改善了对象的特性,使等效副对象的时间常数减小,系统的工作频率提高。同时,由于串级系统具有主、副两只控制器,使控制器的总放大倍数增大,系统的抗干扰能力增强,因此,一般来说串级控制系统的控制质量要比单回路控制系统高。

在炉温过热蒸汽温度控制系统中,为了获得更好的控制精度,所以采用串级控制系统以得到良好的控制特性。

2、串级控制方案论证

串级控制是随着工业的发展,新工艺不断出现,生产过程日趋强化,对产品质量要求越来越高,简单控制系统已不能满足工艺要求的情况下产生的。

主调节器副调节器调节阀

副对象主对象副变送器

主变送器给定副参数主参数二次

扰动

一次扰动--

图4串级控制系统方框图

由上图可知,主控制器的输出即副控制器的给定,而副控制器的输出直接送往控制阀。主控制器的给定值是由工艺规定的,是一个定制,因此,主环是一个定值控制系统;而副控制器的给定值是由主控制器的输出提供的,它随主控制器输出变化而变化,因此,副环是一个随动控制系统。

串级控制系统中,两个控制器串联工作,以主控制器为主导,保证主变量稳定为目的,两个控制器协调一致,互相配合。若干扰来自副环,副控制器首先进行“粗调”,主控制器再进一步进行“细调”。因此控制质量优于简单控制系统。

串级控制有以下优点

① 迅速克服进入副回路扰动的影响,使进入串级副环的扰动减少到相当于单回路进入副环的1/(1+Gc2*Gv*Gp2*Gm2)倍,同时使余差减小到相当于单回路的Kc2/(1+Kc2*Kv*Kp2Km2)倍;

② 改善了对象特性提高了工作频率,使Tp2缩小为

1/(1+Kc2*Kv*Kp2*Km2),等效对象时间常熟缩小,使控制过程时间加快。

③ 对负荷变化和操作条件的改变有一定的自适应能,副回路等效放大倍数Ko2'=(kc ,由于

Kc2*Kv*Ko2*Km2>1,因此,Ko2的变化对等效对象放大倍数Ko2'来说是很小的。

一般来说,一个设计合理的串级控制系统,当干扰从副回路进入时,其最大

偏差将会较小到控制系统的100

1~101,即便是干扰从主回路进入,最大偏差也会缩小到单回路控制系统的5

1~31。但是,如果串级控制系统设计得不合理,其优越性就不能够充分体现。因此,串级控制系统的设计合理性十分重要。

四、控制系统详细设计

图5串级控制系统框图

本部分根据串级控制系统框图,确定各环节的参数及控制阀控制器的类型

1、被控变量与操纵变量的选择

(1)主被控变量的选择

主被控变量y1是串级控制系统中要保持平稳控制的主要被控变量。串级控制系统主被控变量选择应遵循以下原则:

①尽量选择能直接反映产品质量的变量作为主被控变量;②所选的主被控变量能满足生产工艺稳定、安全、高效的要求;

③控制通道的Ko 尽量大,тo/To 应尽量小;

④过程的To/Tf 应尽量小扰动进入系统的位置应尽量远离主被控变量。

综合以上原则,应选择过热器出口蒸汽温度即送入负荷设备的出口蒸汽温度作为主变量。直接反应控制目的。

(2)副被控变量的选择

副被控变量y2是串级控制系统的辅助被控变量,是副回路的设计质量是保证发挥串级系统优点的关键。副变量的选择应遵循以下原则:

Gm1(s) Gc1(s) Gc2(s)

Gf2(s) Gf1(s) Gp2(s) Gp1(s) Gv(s) Gm2(s)

① 应尽量包含生产过程中主要的、变化剧烈、频繁的和幅度大的扰动,并力求包含尽可能多的扰动;

② 应使主、副对象的时间常数匹配;

③ 应考虑工艺上的合理性、可能性和经济型。

综合以上原则,选择减温器和过热器之间的蒸汽温度作为副被控变量。

(3)操纵变量的选择

工业过程的输入变量有两类:控制变量和扰动变量。其中,干扰时客观存在的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统重新稳定运行的因素。操纵变量的基本原则为:

① 操纵变量必须是工艺上允许调节的变量;

②选择对所选定的被控变量影响较大的输入变量作为操纵变量,即Ko 尽量大;

③选择对被控变量有较快响应的操纵变量,即过程的тo/To 应尽量小; ④过程的To/Tf 应尽量小,使过程的Kf*F 尽量小;

⑤工艺的合理性和与动态响应的快速性相结合。

综合以上原则,应选择减温水的输入量作为操纵变量。

2、检测变送环节的选择

检测变送环节的作用是将工业生产过程的参数(流量、压力、温度、物位、成分等)经检测变送单元转换为标准信号。要求准确、迅速、可靠。检测变送仪表的量程应满足读数误差的精度要求,同时应尽量选用线性特性。仪表量程越大,Km 越小,而量程越小则Km 越大。控制仪表的主要类型大致分为电动或气动,电动I 型、II 型、III 型,单元组合仪表或是基地是仪表等。常用的控制仪表有电动II 型、III 型。在串级控制系统中,选用的仪表不同,具体的实施方案也不同。

电动III 型和电动II 型仪表就其功能来说基本相同,但是其控制信号不相同,控制II 型典型信号为mADC 10~0,而电动III 型仪表的典型信号为mADC 20~4,此外。III 型仪表较II 型仪表操作、维护更为方便、简捷,同时III 型仪表还具有完善的跟踪、保持电路,使得手动切换非常方便,随时都可以进行切换,且保证无扰动。所以在本设计中选用电动

III 型仪表。

3、执行器(气动薄膜控制阀)的选择

控制阀是自动控制系统中的一个重要组成部分,其作用是根据控制器输出的信号,直接控制能量或物料等介质的输送量,达到控制工艺参数的目的。在本控制系统中,调节阀是系统的执行机构,是按照控制器所给定的信号大小和方向,改变阀的开度,以实现调节流体流量的装置。

(1)调节阀的气开、气关形式选择

对于一个具体的控制系统来说,该选择气开阀还是气关阀,即在阀的气源信号发生故障或控制系统某环节失灵时,阀出于全开的位置安全,还是处于全关的位置安全,要有具体的生产工艺决定,应遵循以下几条原则选择:

①首先要从安全生产出发,当气源供气中断,或调节阀出故障而无输出等情况下,应该确保生产工艺设备的安全,不至发生事故;

②从保证产品质量:当发生控制阀处于无源状态而恢复到初始位置时,不应降低产品的质量;

③从尽可能的降低原料、产品、动力损耗;

综合以上各种因素,在锅炉过热蒸汽温度控制系统中,选择调节阀为气开阀,即Kv>0。

(1)调节阀的流量特性的选择

根据控制系统稳定运行原则,扰动或设定变化时,控制系统稳态稳定运行的条件是控制系统各开环增益之积基本恒定;控制系统动态稳定运行的条件是控制系统总开环传递函数的模基本恒定。在实际生产中常用的调节阀有线性特性、对数特性和快开特性三种,在本系统中选择调节阀的流量特性为线性特性。

(3)调节阀的口径大小的选择,

确定控制阀口径大小也是选用控制阀的一个重要内容,其主要依据阀的流通能力。正常工况下要求控制阀开度处于15%~85%之间。因此不宜将控制阀选得过小或者过大;否则,可能会使控制阀运行在全开时的非线性饱和工作状态,系统失控;或者阀门经常处于小开度的工作状态,造成流体对阀芯、阀座严重腐蚀,甚至引起控制阀失灵。

(4)阀门定位器的选择

阀门定位器是调节阀的一种辅助装置,与调节阀配套使用,它接受控制器来的信号作为输入信号,并以其输出信号去控制调节阀,同时将调节阀的阀杆位移反馈到阀门定位器的输入端而构成一个闭环随动系统,阀门定位器可以消除阀膜头和弹簧的不稳定以及各运动部件的干摩擦,从而提高调节阀的精度和可靠性,实现准确定位;阀门定位器增大了执行机构的输出功率,减少了系统的传递滞后,加快阀杆的移动速度;阀门定位器还可以改善控制阀的流量特性。

4 、控制规律及控制器作用方向的选择

(1)控制器控制规律的选择

通过以上设计可知,本次设计的控制系统为串级控制系统。串级控制系统中,主、副控制器所起的作用是不同的,主控制器起定值控制作用,副控制器对主控制器输出起随动控制作用,而对扰动作用起定值控制作用。因此,朱控制变量要求无余差,副被控变量可以在一定范围内变动。为使串级控制系统稳定,主控制器通常选用比例积分控制器,对于本系统由于控制通道容量滞后较大,为克服容量滞后,选用比例积分微分控制器作为主控制器。副环是一个随动系统,它的给定值随主控制器输出的变化而变化,为了加快跟踪,副控制器一般不带积分作用。故选择副控制器为比例控制器。

(2)主、副控制器正、反作用选择

对于串级控制系统,主、副控制器正、反作用的选择顺序应该是先副后主。

控制阀:由上文可知,Kv>0;

副被控对象:阀开度增大,减温水量增加,副被控对象即减温器后端温度降低,因此Kp2<0;

副控制器:为保证负反馈,应满足Kc2*Kv*Kp2*Km2>0,而Km2>0,所以Kc2<0,即应选副控制器为正作用控制器。

主被控对象:减温器后端温度升高,过热器出口温度升高,因此,Kp1>0;主控制器:为保证负反馈,应满足Kc1*Kp1*Km1>0,而Km1>0,所

以Kc1>0,即应选主控制器为反作用控制器。

五、串级控制系统控制器参数的整定

参数整定,就是通过调整控制器的参数,改善控制系统的动稳态特性,找到

最佳的调节过程,使控制品质最好。串级控制系统常用的参数整定方法有3种:逐步逼近法、两步法和一步法。本串级控制系统选用逐步逼近法,具体整定步骤如下:

1、首先断开主环,闭合副环,按照单回路控制系统的整定方法(通常有经验整定法、临界比例度法、衰减曲线法、反应曲线法)整定副控制器参数。

2、闭合主、副回路,保持上一步取得的副控制器参数,按单回路控制系统的整定方法整定主控制器参数。

3、在闭合主、副回路,在主控制器参数保持的情况下,再次调整副控制器参数。

4、至此,已完成一个循环,如控制品质未达到规定指标,返回2继续。

六、系统控制流程图及控制过程的实现

1、系统整体控制流程图如下图:

减温器调节阀

过热器

副温度变送

主温度变送

主调节器负调节器

入口蒸汽

出口蒸汽

温度蒸汽温度

减温水

图6本设计串级控制系统流程图

2、控制过程的实现及分析

当减温器入口蒸汽温度或减温器进水流量波动时,假设这些波动使减温器输出蒸汽温度升高。这时过热器出口蒸汽温度还没有发生变化,因此主控制器输出不变,因副控制器(减温器后端蒸汽温度控制器)为正作用控制器,所以副控制器输出测量值变大,由于控制阀为气开型,故使减温水流量控制阀开度增大,从而增加减温水,以降低减温器输出蒸汽温度。与此同时,由于减温器输出蒸汽温度的升高,也使过热器出口蒸汽温度升高,由于主控制器(过热器出口蒸汽温度控制器)是反作用控制器,所以主控制器输出减小,即使副控制器设定减小,副控制器设定减小而测量值增大,输入控制器的偏差值双重增加,进一步加大了副

控制器的输出,从而迅速的使控制阀阀度增大,快速增加减温水流量,使减温器输出蒸汽温度迅速降低,从而使过热器输出蒸汽温度快速恢复到设定值。

若扰动使减温器输出蒸汽温度减低,实现控制的分析过程跟上述相同,只是方向相反。

七、心得体会

通过这次课程设计,锅炉设备有了更全面的了解和认识,尤其是手工绘制锅炉设备控制系统的过程,使我对锅炉设备各个部分有了更清楚的认识,对工程画图有了初步的了解。锅炉设备根据不同的生产工艺要求,可以有多重不同的控制系统,而我们组的任务是设计锅炉过热蒸汽温度控制系统,在设计中,通过对方案的分析与论证,我们选用串级控制系统,这使我对串级控制系统有了更详细更深如的了解和认识。我个人设计没有太多的改变书中控制系统的设计过程,几乎按照课本《过程控制系统》提供的步骤进行,这使我,对控制系统设计从方案到各种变量的选择、再到各个环节的选择及参数确定、最后到参数整定,整个过程有了更清晰的把握,对控制系统设计有了一个比较清晰的轮廓,这对于我以后的工作将有很大的影响。

当然,设计中也遇到了不少的问题,尤其是知识的欠缺。很多东西,虽然学了,还是留在书上,用时都得翻阅课本及相关资料,这让我意识到,学习更应该掌握真正的知识,应做到胸有成竹,而不能等应用时每一步都依靠书本。以后的学习工作中,应更注重知识的掌握和应用。

这次课程设计,使我学习到了很多,提高了动手能力实践能力;也使我意识到自身的很多不足,在以后的学习中要更注意克服这些不足。

八、参考资料及参考文献

(1)方康玲,《过程控制系统》,武汉理工大学出版社,2002

(2)王骥程,《化工过程控制工程》,化学工业出版社,1996

(3)王树青,《工业过程控制工程》,化学工业出版社,1995

(4)将慰孙,《过程控制工程》(第二版),中国石化出版社,2004

(5)何衍庆,《工业生产过程控制》,化学工业出版社,2004

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

完成版基于单片机的锅炉温度控制系统的设计.

1.1 课题背景及研究意义 锅炉是一种热能转换设备,由锅和路两大主体和保证其安全经济连续运行的附件,仪表附属设备,自控和保护系统组成,水在锅(锅筒)中不断被炉里燃料燃烧释放出来的能量加热,温度升高并产生带压蒸汽,由于水的沸点随压力的升高而升高,锅是密封的,水蒸气在里面的膨胀受到限制而产生压力形成热动力(严格的说锅炉的水蒸气是水在锅筒中定压加热至饱和水再汽化形成的)作为一种能源广泛使用。锅炉广泛用于生产和生活之中。中小型锅炉作为供暖设备用于提供热水,取暖方面得到了广泛应用。目前,取暖多采用集中供暖方式。集中供暖,一般都是按一个采暖季每平方(建筑面积)来收费的,对北方地区来说,天气比较冷,需要供暖时间长,应该集中供暖省钱。指集中集团式供暖的一种形式。从能源利用方面讲,集中供暖一次性投资大,运行费用高,无论是否需要,暖气始终全天供热,因楼层不同而造成温度不均,若遇到供暖偏热,居民只有开窗降温,使宝贵的能源白白浪费。这种供暖方式从原理上而言,效率较高。集中供暖的锅炉大多数是燃媒锅炉,锅炉燃烧时污染大,已经带来了严重的环境污染问题。由于这些用户采用集中取暖,给个别用户带来不便的缺陷。 基于这种情况,近年来采用以天然气,液化石油气为燃料的中小型燃气锅炉具有高效、环境污染小,发热量大甚至无污染等特点,受到普遍欢迎。尤其在国外,燃气锅炉目前已得到了普遍应用。家用燃气锅炉常见的是套管式燃气锅炉、板换式燃气锅炉、冷凝式燃气锅炉。随着科技的发展以及各种客观条件的具备,生活采暖用燃气锅炉的应用也必将得到进一步的发展与推广。随着燃料不断补给,燃料充足,城市燃气管网逐步完善,燃气使用率逐步会提高。市场经济的发展与开放,国有企业享受国家能源补贴的取消,住房逐渐私有化,供热管网费、采暖费全部由个人支付。会有越来越多的人放弃集中供热方式而采用分散采暖方式。而小型家用燃气锅炉的使用作为集中供暖的一个很好补充或替代它必将被越来越多的人关注和选用成为趋势。 目前市场上家用燃气锅炉为进口,价格高,售后服务不够完善,不利于燃气锅炉的推广使用,研制燃气锅炉的公司亦相对较少。因此研制开发小型家用燃气锅炉就具有现实的意义与客观的市场价值。 本设计将结合小型家用燃气锅炉实际的需要,利用MCS-51系列单片机为核心器件组成温度控制系统,采用温度采集技术,通过运行和分析研究,以期正确认识和全面理解利用单片机实现温度采集技术在过程控制中的应用。 1.2 系统的总体设计思想 目前,世界计算机市场上出现了专门用于工业控制的单片机系列产品,单片机以其体积小、重量轻、功耗低、价格便宜、功能强的特点,在工业控制的实践中得到越来越广泛的应用单片机不仅可以实现各种常规的控制,还可以根据被控对象

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式 版

蒸汽过热器(锅炉)爆管剖析——调节 蒸汽温度正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

锅炉温度控制系统的设计

齐鲁理工学院 课程设计说明书 题目基于PID的锅炉温度控制系统的设计 课程名称过程控制系统与仪表 二级学院机电工程学院 专业自动化 班级2014级自动化二班 学生姓名金高翔 学号201410532019 指导教师黄丽丽

设计起止时间:2016年12月5日至2016年12月18日

目录 摘要 (1) 1 绪论 (2) 1.1 课程设计的背景: (2) 1.2 课程设计的任务: (2) 1.3 课程设计的基本要求: (2) 2 PLC和组态软件介绍 (3) 2.1 可编程控制器 (3) 2.1.1 可编程控制器的工作原理 (3) 2.2 组态软件 (3) 2.2.1 组态的定义 (3) 2.2.2 组态王软件的特点 (4) 2.2.3组态王软件仿真的基本方法 (4) 3 PID控制及参数整定 (4) 3.1.PID控制器的组成 (4) 3.2.采样周期的分析 (5) 4 被控对象的建模 (6) 5 PLC控制系统的软件设计 (9) 5.1.程序编写 (9) 5.2用指令向导编写PID控制程序 (11) 6 组态的设计 (15) 7 系统测试 (18) 7.1 启动组态王 (18) 7.2 实时曲线界面 (18) 7.3历史曲线界面 (19)

8 结论 (19) 参考文献: (21) 致谢: (22)

基于PID的锅炉温度控制系统的设计 摘要:从上世纪的80年代到90年代中期,PLC得到了飞速的发展,在这个时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了大幅度的提高,PLC逐渐的进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等优点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的未来,是无法取代的。 本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。 锅炉的应用领域相当广泛,在相当多的领域里,锅炉的性能优劣决定了产品的质量好坏。目前锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。 本文分别就锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。 关键词:电热锅炉的控制系统温度控制PLC PID

智能温度控制系统毕业论文

目录 引言 (1) 1 系统的相关介绍 (2) 1.1 系统的目的及意义 (2) 1.2 设计要求 (2) 1.3 系统传感器DS18B20的介绍 (2) 1.3.1 DS18B20的主要特性 (2) 1.3.2 DS18B20的外形和部结构 (3) 2 系统分析设计 (4) 2.1 温度控制系统结构图及总述 (4) 2.2 系统显示界面方案 (4) 2.3 系统输入方案 (5) 2.4系统的功能 (5) 3 相关软件编译知识介绍 (5) 3.1 C语言简介 (5) 3.1.1 C语言的优点 (5) 3.1.2 C语言缺点 (6) 3.2 Keil简介 (6) 3.2.1 系统概述 (6) 3.2.2 Keil C51单片机软件开发系统的整体结构 (7) 4系统流程图设计 (7) 4.1主程序流程图 (7) 4.2 DS18B20控制程序流程图 (8) 4.2.1 DS18B20 复位程序流程图 (9) 4.2.2 DS18B20写数据程序流程图 (9) 4.2.3 DS18B20读数据程序流程图 (10) 4.3 温度读取及转换程序流程图 (12) 4.4 MAX7219驱动程序流程图 (13) 4.4.1 MAX7219写入一个字节数据程序流程图 (13) 4.4.2 MAX7219写入一个字数据程序流程图 (15) 4.5 数码管温度显示程序流程图 (16) 4.6 按键中断服务程序流程图 (17) 5 电路仿真 (19) 5.1 PROTEUS软件介绍 (19) 5.2 温度控制系统PROTEUS仿真 (19) 6总结 (20) 7参考文献 (21) 附录1 源程序代码 (22)

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备 热空气汽包 炉膛 烟气排出 冷空气送入 水送入 热空气送往炉膛过热器 减温器 空气预热器 图1锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

#蒸汽锅炉控制系统技术方案

DL-1000燃煤蒸汽锅炉控制系统技术方案 设计依据和原则 1.依据客户北京昌科供暖中心有关45t/h、35t/h、20t/h燃煤蒸汽锅炉控制系统的要求,并按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计。 2.符合以下规范与标准: 《蒸汽锅炉安全技术监察规程》1996; 《锅炉房设计规范》GB50041-92; 《工业锅炉监测与控制装置的配置标准》DB31/T72-1999; 《工业锅炉热工试验规范》GB10180-88; 《电气装置安装工程施工及验收规范》GB50303-2002; 《低压电器基本标准》GB1497-93; 《工业自动化仪表工程施工及验收规范》GBJ50093-2003。 1.0系统概述 本系统为DL-1000分散型集中控制系统,是集控制技术,通讯技术于一体,是当今控制系统的主流机型。可完成调节控制,联锁保护,顺序控制,数据采集等任务。人机接口采用触摸屏及上位机进行实时监控。运用多媒体技术,具有3D动画、全中文显示、声光提示等丰富多彩的人机互动界面,能直观地显示锅炉和燃烧的实际情况及燃烧负荷状态,各运行数据实时动感地显示在彩色触摸屏上,使锅炉的运行状态一目了然,操作更直观、更简便。该系统具有良好的互联性和开放性,留有充分的升级和后备功能,满足IEC61158和EN50170标准的要求。并且具有在恶劣工作环境下安全可靠运行和全视角直观显示锅炉系统工作状态的优点。 1.1 硬件 1.1.1 概述 本方案所配置的系统硬件均是有现场运行实绩的,先进可靠的和使用以微处理器为基础的分散型硬件。 1.1.2 处理器模件(PLC CPU226) PLC为可编程逻辑控制器,是一种以微处理器为基础,综合了现代计算机技术、自动控制技术和通讯技术发展起来的一种通用的工业自动控制装置,由于它拥有体积小、功能强、程序设计简单、维护方便等众多优点,特别是它适应恶劣工业环境的能力和它的高可靠性,使它的应用越来越广泛。 其主要负责数字量的数据处理和运行(控制),数据高速公路通讯管理和过程输入/输

锅炉主汽温度控制系统设计说明书

内蒙古科技大学 本科生过程控制课程设计说明书 摘要 随着先进的电子和计算机技术的发展和控制功能的不断完善以及对热电厂中锅炉仪表控制系统进行的先进改造,以先进的DCS系统作为锅炉的控制核心,锅炉鼓风机和引风机采用变频驱动技术,以保护电机和节约能源,结合实际的现场仪表、变频调速器、DCS控制方案的具体实施方案。而在锅炉主汽温度控制系统中,也有越来越多的方法可以实现生产控制,这里需要我们对过热器的出口蒸汽温度进行检测,当温度不在控制范围内时就通过对过热器阀门的控制,设计锅炉主汽温度控制系统,实现对汽包主蒸汽温度的控制,以产生合格的产品,这个就是这次设计的主要内容。 关键词:锅炉;主汽;温度;控制

目录 第一章绪论 (3) 第二章热电厂概述 (4) 2.1锅炉概述 (4) 2.2锅炉、锅筒设备及结构 (5) 2.3锅炉控制的工作原理 (6) 第三章锅炉主汽温度控制系统概述 (7) 3.1锅炉蒸汽温度控制概述 (7) 3.2过热器的基本概念 (7) 3.3锅炉主汽温度控制系统的总体设计方案 (8) 第四章锅炉主汽温度控制的设计过程 (9) 4.1锅炉主汽温度控制说明 (9) 4.2锅炉主汽温度控制系统的分析与初步设计 (10) 4.3锅炉主汽温度串级控制系统图解及仪表选型 (11) 4.4锅炉主汽温度控制系统安全保护对策 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 这个学期的第一个课程设计是过程控制课程设计,通过上个学期的热电厂的实习,以及对热电厂的工艺和锅炉的生产设备及工艺的了解,我们选择了各自的课程设计题目,我的设计主要是介绍锅炉控制中的主汽温度控制系统的设计。随着科学的进步以及各种仪器的发展,现在已经有很成熟的控制方法来控制锅炉的生产,我这里是根据一般的场合所需要的控制方案,设计了一个串级的控制系统。对一些大的生产设备和一些有大的延迟或者是大的滞后的生产过程就不做叙述了。

锅炉温度控制系统的设计

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。 一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择

硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS 公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU 连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM 存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。 1.2.1输入输出通道及其接口设计 1)温度检测模拟输入通道设计 图1-2 输入通道原理图 设V /F 变换器的额定输出频率为F ,计数器对输出脉冲的计数时间为Ts ,A /D 转换结果的分辨率为i ,则有: s i s F T 2 取Ts =1s ,则在V /F 的输出频率范围0~10kHz 内,可以得到13位的A /D 转换结果。

相关主题