搜档网
当前位置:搜档网 › 多肽合成方法

多肽合成方法

多肽合成方法
多肽合成方法

多肽合成中肽键形成的基本原理

一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。

在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。

因此,多肽合成-即每一个肽键的形成,包括三个步聚:

第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在;

第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。

第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。

由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。

在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。

在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险。

多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑地规划,依战略选择,可以选择性脱除Nα-氨基保护基或羧基保护基。“战略”一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分割成合适的片段,并确定在片段缩合过程中,它们能使能C端差向异构化程度最小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最恰当的保护基组合和最佳的片段偶联方法。

最初的固相多肽合成(SPPS)只是肽和蛋白质逐步合成法的一种变化,其概念是将增长的肽链连接到一个不溶性的聚合物载体上,由Robert Bruce Merrifield在1963年首次报道。今天,为纪念他1984年获得诺贝尔奖而称之为Merrifield。在聚合物载体上,也可以进行片段缩合反应。

多肽合成方法之酰基叠氮物法

早在1902年,Theodor Curtius就将酰基叠氮物法引入到肽化学中,因此它是最古老的缩合方法之一。在碱性水溶液中,除了与酰基叠氨缩合的游离氨基酸和肽以外,氨基酸酯可用于有机溶剂中。与其他许多缩合方法不同的是,它不需要增加辅助碱或另一等当量的氨基组分来捕获腙酸。

长期以来,一直认为叠氮物法是唯一不发生消旋的缩合方法,随着可选择性裂解的氨基酸保护基引入,该方法经历了一次大规模的复兴。该方法的起始原料分别是晶体状的氨基酸酰肼或肽酰肼64,通过肼解相应的酯很容易得到。在-10℃的盐酸中,用等当量的亚硝酸钠使酰肼发生亚硝化而转化为叠氮化物65,依次洗涤、干燥,然后与相应的氨基组分反应。有些叠氮化物可用冰水稀释而沉淀出来。

二苯磷酰基叠氮化物(DPPA)也可以用于酰基叠氮化物的合成。Honzl-Rudinger 方法采用亚硝酸叔丁作为亚硝化试剂,并且使叠氮缩合反应可在有机溶剂中进行。因酰基叠氮化物的热不稳定性,缩合反应需在低温下进行。当温度较高时,Curtius重排,即酰基叠氮转化为异氰酸酯的反应成为一个主要的副反应,最终导致生成副产物脲。由于反应温度低(如4℃)而导致反应速率相当慢,使得肽缩合反应通常需要几天才能完全。

对于较长的N端保护的肽链,酯基的肼解一般比较困难,因此,使用正交的N保护肼衍生物是一种选择。在肼基的选择性脱除后,按倒接(backing-off)策略组合的肽片段可以用于叠氮缩合。

如前所述,虽然叠氮法一直被认为是消旋化倾向最小的缩合方法,但在反应中,过量的碱会诱发相当大的消旋。因此,在缩合反应期间要避免与碱接触,例如,氨基组分的铵盐应采用N,N-二异丙胺或N-烷基吗啉代替三乙胺来中和。

虽然有上述局限性,但该方法仍很重要,尤其对于片段缩合而言,因为该方法具有较低的异构化倾向,适用于羟基未保护丝氨酸或苏氨酸组分,同时,Nˊ保护的本行酰肼还具有多种用途。

多肽合成方法之酸酐法

在多肽合成中,最初考虑应用酸酐要追溯到1881年Theodor Curtius对苯甲酰基氨基乙酸合成的早期研究。从氨基乙酸银与苯甲酰氯的反应中,除获得苯甲酰氨基乙酸外,还得到了BZ-Glyn-OH(n=2-6)。早期曾认为,当用苯甲酰氯处理时,N-苯甲酰基氨基酸或N-苯甲酰基肽与苯甲酸形成了活性中间体不对称酸酐。

大约在70年后,Theodor Wieland利用这些发现将混合酸酐法用于现代多肽合成。目前,除该方法外,对称酸酐以及由氨基酸的羧基和氨基甲酸在分子内形成的N-羧基内酸酐(NCA,Leuchs anhydrides)也用肽缩合。最后应该提到,不对称酸酐常常参与生化反应中的酰化反应。

多肽合成方法之混合酸酐法

有机羧酸和无机酸皆可用于混合酸酐的形成。然而,仅有几个得到了广泛的实际应用,多数情况下,采用氯甲酸烷基酯。过去频繁使用的氯甲酸乙酯,目前主要被氯甲酸异丁酯所替代。

由羧基组分和氯甲酸酯起始形成的混合酸酐,其氨解反应的区域选择性依赖依赖于两个互相竞争的羰基的亲电性和(或)空间位阻。在由N保护的氨基酸羧酸盐(羧基组分)和氯甲酸烷基酯(活化组分,例如源于氯甲酸烷基酯)形成混合酸酐时,亲核试剂胺主要进攻氨基酸组分的羧基,形成预期的肽衍生物,并且释放出游离酸形式的活性成分。当应用氯甲酸烷基酯(R1=异丁基、乙基等)时,游离的单烷基碳酸不稳定,立即分解为二氧化碳和相应的醇。然而,对于亲核进攻的区域选择性,也有一些相反的报道,产物为氨基甲酸酯和原来的N保护氨基酸组分。

为了形成混合酸酐,将N保护的氨基酸或肽分别溶于二氯甲烷、四氢呋喃、二氧六环、乙腈、乙酸乙酯或DMF中,用等当量的三级碱(N-甲基哌啶、N-甲基吗啉、N-乙基吗啉等)处理。然后,在-15℃--5℃,剧烈搅拌的同时加入氯甲酸烷基酯以形成不对称酸酐(活化)。经短时间活化后,加入亲核性氨基酸组分。如果作为铵盐使用(需要更多的碱),必须避免碱的过量使用。如果严格按照以上的反应条件,混合酸酐法很容易进行,是最有效的缩合方法之一。

Benoiton和他的同事对混合酸酐的稳定性,减少副产物氨基甲酸酯和消旋等方面进行了深入研究,由此进一步了解了反应机理,并提高了该方法的缩合效率,目前该方法已获得广泛应用。通过研究过量氨基甲酸酯产生的原因,尤其是在异亮氨酰基和缬氨酰基的情况下,发现以二氯甲烷为溶剂和N-甲基哌啶作为三及碱能防止这一主要副反应。混合酸酐对水解有较高稳定性,因此,可以用水洗涤有机相来纯化混合酸酐。从氯甲酸烷基酯制得的混合酸酐的稳定性依赖于使用的烷基。由Boc-、Z-和 Fmoc-的保护氨基酸和氯甲酸异丙酯制得的混合酸酐能够被分离纯化,比从氯甲酸乙酯或氯甲酸异丁酯获得的混合酸酐更稳定。当没有合适的亲核试剂时,混合酸酐在有机溶剂中的分解起始于环化,生成2-烷氧基-5(4H)-恶唑酮,同时释放出二氧化碳和醇R2-OH,副产物为对称酸酐和酯。

在混合酸酐缩合法的实际应用中,有以下几方面需要注意:虽然含水的DMF对于混合酸酐的形成和随后的缩合反应是一个好的溶剂,但是,正如在Z-Gly-Xaa-

OH(Xaa=Ala,Leu,Val,Phe)与H-Val-OEt的反应中所遇到的,它促进消旋的程度比使用四氢呋喃或卤化试剂为溶剂时要高得多。氯甲酸异丙酯优氯甲酸乙酯或异丁酯。有趣的是,在DMF或N-甲基吡咯烷酮中,氯甲酸乙酯活化比氯甲酸异丁酯活化引起的消旋更少。尽管如此,从氯甲酸乙酯制取的混合酸酐,以三乙胺作为三级碱在目前几乎没有实用价值。最初,分别在Nα-甲基磺酰基、Nα-三苯甲基、N α-三氟乙酰基保护的氨基酸活化中观察到混合酸酐法的副反应。

有时特戊酸(2,2-二甲基丙酸)被推荐作为活化基,用于混合酸酐的合成,对于Nα-酰基保护的天冬酰胺尤其如此。类似地,这种不对称酸酐由Nα-酰基氨基酸和特戊酰氯制得,并且与氨基亲核试剂反应的产率高。特戊酸叔丁基的强+I效

应降低了它的羰基的亲电性,同时还因为空间位阻的影响,使亲核试剂在活化的氨基酸上发生预期的区域选择性进攻。从机理上考虑,这里也要提到酰基磷翁盐作为活性中间体在肽缩合中的应用。

多肽合成方法之对称酸酐法

Nα-酰基氨基酸的对称酸酐是用于肽键形成的高活性中间体。与混合酸酐法相反,它与胺亲核试剂的反应没有模棱两可的区域选择性。但肽缩合产率最高,为50%(以羧基组分计)。

虽然由对称酸酐氨解形成的游离Nα-酰基氨基酸可以和目标肽一起,通过饱和碳酸氢钠溶液萃取回收,但在最初,这种方法的实用价值极低。对称酸酐可以用Nα-保护氨基酸与光气,或方便的碳二亚胺反应制得。两当量的Nα-保护氨基酸与-当量的碳二亚胺反应有利于对称酸酐的形成,对称酸酐可以分离出来,也可不经纯化而直接用于后面的缩合反应。基于Nα-烷氧羰基氨基酸的对称酸酐对水解稳定,可采用类似上述纯化混合酸酐的方法进行纯化。

由于Boc-保护氨基酸的商品化和合理的价格,在肽链的逐步延长中,使用对称酸酐法日益受到重视。虽然可以买到晶状的对称酸酐,但原位制备仍然是一种不错的选择。

多肽合成方法-N-羧基内酸酐法

Hermann Leuchs在1906看发现,在N-羧基内酸酐(NCA)中,氨基酸的羧基活化和酰基保护同时发生。因此,在德国文献中,又称之为Leuchs-酸酐。原则上,该类衍生物应具备理想的前提条件以应用于多肽合成。

第一个N-羧基内酸酐(1,3-氧氮杂环戊烷-2,5-二酮)是从N-(乙氧羰基)氨基酸酰氯消除氯乙烷而得到的。制备该类衍生物的一个好方法是游离氨基酸与光气反应,相应的氨基甲酰氨为中间体。然而,痕量的水就能使N-羧基内酸酐发生聚合,因为最初形成的氨基甲酸自动脱去羧基得到游离胺,此游离胺是发生进一步开环反应的亲核试剂。因此,NCA方法在肽合成中的应用一直受到限制,直到1966年才探索出正确的反应条件,可以在水性介质中用N-羧基内酸进行有条件的肽合成。在低温和pH值为10.2的条件下,N-羧基内酸酐能迅速酰化氨基酸和肽。在pH值增加到10.2时,同时加入下一种N-羧基内酸酐,开始下一轮缩合。为减少中间体肽氨基甲酸酯和氨基组分间的羧酸酯的交换,必须剧烈搅拌反应混合物。精确控制pH值是另一个前提条件(氨基酸要求在pH值为10.2-10.5,肽要求在pH 值为10.2),因为当pH值大于10.5时,产生副产物乙内酰脲。

N-羧基内酸酐的硫类似物即N-硫代羧基内酸酐(N-thiocarboxy

anhydrides,NTA)也可以用于肽合成,因为硫代氨基甲酸酯具有较高的稳定性。酰化反应可以在pH值低到9-9.5时进行,因而可以防止可能的水解转化为乙内酰脲。NCA/NTA方法尤其适用于不需要分离反应中间体的片段缩合。三官能团氨基酸(除赖氨酸和半胱氨酸)不需要侧链保护。采用该方法已组合了核糖核酸酶S-蛋白的几个片段,之后采用叠氮物法可得到完整的S-蛋白。

最近,NCA方法再一次引起极大的关注,归功于已制备出氨基甲酸酯保护的N-羧基内酸酐(urethane-protected N-carboxy anhydrides,UNCA),并用于肽合成。在非质子溶剂中和三级碱存在的条件下,利用合适的试剂,可以将NCA的环上氮原子酰化,引入Boc、 Z或 Fmoc基团,得到相应的UNCA68(Y=Boc,Z, Fmoc)。从大多数氨基酸可获得UNCA晶体,并在无水条件下稳定存在。UNCA对亲核试剂表现出高反应活性,在常用于肽固相和液相合成的大多数无水溶剂(除醇以外)中,高速形成所需肽键。二氧化碳是唯一的副产物,并且没有发生寡聚或聚合的危险,因为在缩合反应后,增长中的肽链氨基端仍然被氨基甲酸乙酯保护着。

最近又报道了N-三苯甲基和N-苯基勿甲基保护的NCA。

多肽合成方法之碳二亚胺法

碳二亚胺类化合物可用于氨基和羧基的缩合。在该类化合物中N,Nˊ-二环己基碳二亚胺(DCC)相对便宜,而且可溶于肽合成常用的溶剂。在肽键形成期间,碳二亚胺转变为相应的脲衍生物,N,Nˊ-二环己基脲可以从反应液中沉淀出来。显然,碳二亚胺活化后的活性中间体氨解和水解速率不同,使肽合成能在含水介质进行。经几个课题组的大量研究,确立了以碳二亚胺为缩合剂的肽缩合反应机理,羧酸根离子加成到质子化的碳二亚胺,形成高活性的O-酰基脲;虽然还没有分离出这个中间体,但通过非常类似的稳定化合物推断了它的存在。O-酰基脲与氨基组分反应,产生被保护的肽和脲衍生物。或者,与质子化形式处于处于平衡状态的O -酰基异脲,被第二个羧酸酯亲核进攻,产生对称的氨基酸酐和N,Nˊ-二取代脲。前者与氨基酸反应得到肽衍生物和游离氨基酸。在碱催化下,使用DCC的副反应使酰基从异脲氧原子向氮原子转移,产生N-酰基脲71,它不再发生进一步的氨解。不仅过量的碱可催化O-N的酰基转移,而且碱性的氨基组分或碳二亚胺也可催化该副反应。

另外,极性溶剂有利于这一反应途径。

多肽合成方法

多肽合成中肽键形成的基本原理 一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。 在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。 因此,多肽合成-即每一个肽键的形成,包括三个步聚: 第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。 第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。 由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑地规划,依战略选择,可以选择性脱除Nα-氨基保护基或羧基保护基。“战略”一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分割成合适的片段,并确定在片段缩合过程中,它们能使能C端差向异构化程度最小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成(SPPS)只是肽和蛋白质逐步合成法的一种变化,其概念是将增长的肽链连接到一个不溶性的聚合物载体上,由Robert Bruce Merrifield在1963年首次报道。今天,为纪念他1984年获得诺贝尔奖而称之为Merrifield。在聚合物载体上,也可以进行片段缩合反应。

合成多肽药物有关物质研究的几点考虑

发布日期20071127 栏目化药药物评价>>非临床安全性和有效性评价 标题合成多肽药物有关物质研究的几点考虑 作者审评五部 部门 正文内容 审评五部 有关物质研究是合成多肽药物药学研究的一项重要内容,由于合成多肽本身结构、合成工艺以及稳定性方面的特殊性,这类药物的 有关物质研究较为复杂、存在一定的难度。国家食品药品监督管理 局颁布的《合成多肽药物药学研究技术指导原则》已经就该类产品 的有关物质研究提出了原则性的要求,本文主要是根据审评中遇到 的一些共性问题就合成多肽药物有关物质研究需重点关注的几个 问题做进一步的说明。 (一)合成多肽药物有关物质的特点和研究的难点。 合成多肽的有关物质主要为源于合成过程带来的工艺杂质和由于多肽不稳定而产生的降解产物、聚合物等。 工艺杂质尽管目前合成多肽的纯化工艺已经有了很大进步,但工

艺杂质仍是合成多肽有关物质的重要来源,这主要是由于合成多肽的一些工艺杂质(如缺失肽、断裂肽、氧化肽、二硫键交换的产物等)与药物本身的性质可能非常近似,从而给纯化造成了一定的难度。而且,不同的多肽合成方法也在很大程度上决定了终产品中杂质的性质,例如液相合成和固相合成所引入的工艺杂质就会明显不同,固相合成中Boc合成法与Fmoc合成法所产生的杂质也会有所差异,甚至不同的保护/脱保护策略都会带来不同的工艺杂质。因此,在进行合成多肽的有关物质研究时,研究者必须结合自身的工艺特点对可能由此引入的杂质有充分认识,从而才能够建立有针对性的有关物质研究方法。同时,这也意味着,对于仿制产品而言不能盲目照搬国家标准、已上市产品的有关物质检查方法,必须充分考虑到产品本身的工艺特点。 降解产物及聚合物多肽的化学稳定性和物理稳定性一般较差,因此降解产物、聚合物等是合成多肽有关物质研究的主要对象之一。影响合成多肽稳定性的因素包括脱酰胺、氧化、水解、二硫键错配、消旋、β-消除、聚集等,研究显示合成多肽中最常见的降解产物是脱酰胺产物、氧化产物、水解产物。在组成多肽的各种氨基酸中,天冬酰胺、谷胺酰胺易于发生脱酰胺反应(尤其是在pH值升高和高温条件下);甲硫氨酸、半胱氨酸、组氨酸、色氨酸、酪氨酸最易氧化,对光照也较为敏感;天冬氨酸参与形成的肽链较易断裂,尤其是Asp-Pro和Asp-Gly肽键。由于一个多肽分子中通常

多肽合成基础知识汇编

多肽合成基础知识汇编 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

----------------------------------------------------------------------------------------- 多肽合成 基础知识汇编 编制: 合成部 ----------------------------------------------------------------------------------------- 一、多肽合成概论 1.多肽化学合成概述: 1963年,[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要

生物多肽工艺流程

生物多肽工艺流程 一、固相肽合成 (1)投料:树脂加入固相合成仪,加入DCM溶胀,抽干后加入DMF洗涤,洗涤结束抽干备用。 (2)缩合:将氨基酸用一定体积的DMF溶解,加入缩合剂活化后投入固相合成仪,补充DMF至反应浓度,搅拌反应。 (3)脱除保护基:以Kaiser试剂检测反应程度,反应结束后抽干溶剂,DMF洗涤,加入PIP/DMF溶液脱除保护基,以Kaiser试剂检测反应程度,反应完毕抽干溶剂,DMF洗涤,准备加入下一个氨基酸。 (4)缩合循环:按照树脂序列依次连接氨基酸,按照“脱保护——洗涤——活化氨基酸——投料缩合——洗涤”步骤进行缩合循环操作,按照氨基酸序列完成剩余n个氨基酸的缩合。 (5)出料:合成结束之后用IPA和DCM交叉洗涤树脂,完成树脂收缩收缩,出料至不锈钢托盘。 (6)树脂干燥:树脂在真空干燥箱中室温干燥,干燥完毕称重,计算收率。 (7)有机废液回收,集中处理。 (8)清场:操作结束后操作人员及时清场。 二、树脂裂解 (1)配液:按照裂解液成分比例配置裂解液,并提前置冰柜中冷藏保存。 (2)投料:肽树脂加入反应釜中,加入预冷的裂解液,搅拌反应。 (3)出料:裂解结束后放出反应液,抽滤除去树脂并以TFA洗涤。 (4)浓缩:裂解液转入旋转蒸发仪室温浓缩至小体积。 (5)析出:浓缩后的反应液倾入预冷的甲基叔丁基醚(简称醚)中,搅拌使

析出大量固体。 (6)离心:浊液离心,并用预冷的醚洗涤。 (7)粗肽干燥:涤完成的粗肽转至真空干燥箱中室温干燥。 (8)有机废液回收,集中处理。 (9)清场:操作结束后操作人员及时清场。 三、多肽HPLC纯化 (1)溶解:操作人员将粗肽溶解,调节PH至工艺规定范围。 (2)过滤:滤去粗肽溶液中不溶物,过滤ACN和纯化水。 (3)配制纯化液:根据工艺内容配制A相(乙腈)和B相(水)。 (4)纯化:在制备型液相上进行纯化,分别接收流份。 (5)检验及返工:对制备流份进行检查,合并合格流份,其他部分根据需要再次纯化。 (6)废弃流动相按有机废液回收,集中处理。 四、浓缩过滤冻干 (1)浓缩:合并滤液旋蒸除去有机溶剂,有机废液回收,集中处理。 (2)过滤:浓缩后水相无菌过滤。 (3)冻干:滤液置冻干机中,设定升温程序冻干。 (4)出箱:出料、加内包。 五、质量检查、入库 工艺流程图如下所示。

合成多肽药物药学研究技术指导原则

附件三 合成多肽药物药学研究技术指导原则

合成多肽药物药学研究技术指导原则 一、前言 多肽类化合物是一类重要的生物活性分子。20世纪70年代生物技术在生命科学领域的应用,使多肽等生物技术药物的研究进展迅速;与此同时,随着多肽固相合成技术及高效液相色谱(HPLC)纯化、分析技术等的发展,合成多肽药物的开发也成为药物研究中的一个活跃领域。 采用化学合成方法制备多肽,可以对天然多肽的结构进行修饰,从而增加多肽与受体的亲和力、选择性,增强对酶降解的抵抗力或改善药代动力学特性,甚至由受体的激动剂变为拮抗剂;此外,新技术的发展,例如以多肽固相合成和组合化学为基础的组合肽库合成技术,使得在短时间内获得大量的多肽化合物成为可能,药物筛选的效率不断提高。因此,将会有越来越多的采用化学合成方法制备的多肽类化合物成为治疗用药物。 合成多肽药物是指采用化学合成方法制备的多肽类药物。这类药物的药学研究同样遵循国家食品药品监督管理局已经发布的相关技术指导原则的一般性要求。但是,由于多肽主要由氨基酸(包括天然氨基酸和非天然氨基酸)构成,这使得多肽类药物在制备方法、结构确证、质量研究等方面又有与一般药物不同的独特问题。本指导原则就是在已有的相关指导原则基础上,对合成多肽药物药学研究方面所涉及的特殊问题进行分析,结合国内对多肽药物研究和评价的实践经验,提出多肽药物药学各项研究的一般性要求。当然,具体品种研究的内容与深度还要取决于品种本身的特性。 本指导原则适用于采用液相或固相合成方法制备的多肽药物。

二、合成多肽药物药学研究的基本考虑 合成多肽药物药学研究的主要内容、研究思路、研究方法及一般性的技术要求与其他类型的化学药物基本一致。但是,由于多肽药物的特点,在进行药学研究时还应注意考虑以下问题。 1、关于多肽(原料药)合成工艺选择的考虑 多肽的化学合成是有机合成的一个非常特殊的分支,目前主要有液相合成和固相合成两种方法。 液相合成是经典的多肽合成方法,一般采用逐步合成或片段缩合方法。逐步合成法通常从链的C'末端氨基酸开始,向不断增加的氨基酸组分中反复添加单个α-氨基保护的氨基酸。片段缩合一般先将目标序列合理分割为片段,再逐步合成各个片段,最后按序列要求将各个片段进行缩合。液相合成的优点是每步中间产物都可以纯化、可以获得中间产物的理化常数、可以随意进行非氨基酸修饰、可以避免氨基酸缺失,缺点是较为费时、费力等。 固相合成是将目标肽的第一个氨基酸的羧基以共价键的形式与固相载体(树脂)相连,再以这一氨基酸的氨基为合成起点,使其与相邻氨基酸(氨基保护)的羧基发生酰化反应,形成肽键。然后让包含有这两个氨基酸的树脂肽的氨基脱保护后与下一个氨基酸的羧基反应,不断重复这一过程,直至目标肽形成为止。其优点是简化了每步反应的后处理操作,避免因手工操作和物料转移而产生的损失,产率较高且能够实现自动化等;其缺点是每步中间产物不可以纯化,必须采用较大的氨基酸过量投料,粗品纯度不如液相合成物,必需通过可靠的分离手段进行纯化等。 液相合成和固相合成各有优缺点,应根据合成的实际需要选择适合的工艺。一般而言,液相合成法较适于合成短肽;固相合成法

关于多肽合成

关于多肽合成 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc 法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。化学合成方法有两种,即Fmoc和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc 法合成,如图: 具体合成由下列几个循环组成:

多肽合成方法

多肽合成中肽键形成的基本原理一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。因此,多肽合成-即每一个肽键的形成,包括三个步聚:第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在;第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没 有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一 种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一 的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护 以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑 地规划,依战略选择,可以选择性脱除 N α -氨基保护基或羧基保护基。“战略” 一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间 是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况 下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分 割成合适的片段,并确定在片段缩合过程中,它们能使能 C 端差向异构化程度最 小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最 恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成( SPPS )只是肽和蛋白质逐步合成法的一种变化,其概念是将 增长的肽链连接到一个不溶性的聚合物载体上,由 Robert Bruce Merrifield

多肽的化学合成

多肽的化学合成技术总览 从最简单的病毒到人类,所有生物体内复杂的蛋白质结构都是由相同的20种氨基酸组成,这就构成了千姿百态的蛋白质世界。生物学家在对蛋白质进行深入研究的过程中,发现一类由氨基酸构成但又不同于蛋白质的中间物质,这类物质被称作多肽。 多肽是比蛋白质简单,分子量小,由氨基酸通过肽键相连的一类化合物。多肽具有调节机体生理功能和为机体提供营养的双重功效,它几乎影响着人体的一切代谢合成。一种肽含有的氨基酸少于10个称为寡肽,超过的就称为多肽;氨基酸为50多个以上的多肽就是人们熟悉的蛋白质。 多肽合成的价值 图1. 多肽合成。 到现在,人们已经发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。 通过多肽全合成可以: 1.验证一个新的多肽的结构; 2.设计新的多肽,用于研究结构与功能的关系; 3.为多肽生物合成反应机制提供重要的信息;

多肽的化学合成 多肽的合成主要有两种途径:化学合成和生物合成。化学合成主要通过氨基酸缩合反应来实现。为得到具有特定顺序的合成多肽,当合成原料中含有官能度大于2的氨基酸单体时,应将不需要反应的基团暂时保护起来,然后再进行连接反应,以保证合成的定向进行。一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。 1. α-氨基保护基 常用的氨基保护基可分为烷氧羰基、酰基和烷基三类。其中烷氧羰基保护基可防止消旋化,因此应用广泛。使用最普遍的是Z、Fmoc和Boc。Z基团可用钯黑,5%~20%钯炭催化氢化法脱除。Boc基团具有与Z基团不同的化学性质,不能用催化氢化法脱除,但易于酸解脱除,它可以和Z基团搭配使用,有选择性地脱除。Fmoc基团的特点是对酸稳定,可被碱脱除。因此尤其适合于合成含有Trp、Met、Cys等对酸不稳定的多肽。 2. α-羧基保护基 与氨基保护基相比,羧基保护基种类较少,一般以盐或酯的形式存在。盐是对羧基的临时保护,常用的有钾盐、钠盐、三乙胺盐和三丁胺盐等。常用的酯类有甲酯、乙酯、苄酯和叔丁酯。叔丁酯是近年来最常用的羧基保护基,可用酸在温和条件下脱除。 3. 侧链保护基 为了避免副反应的发生,某些氨基酸的侧链官能团需采用适当的保护基加以保护。同一个侧链有多种不同的保护基,可以在不同的条件下选择性的脱除,这点在环肽以及多肽修饰上具有很重要的意义,而且侧链保护基和选择的合成方法有密切的关系。

多肽合成

多肽合成技术 多肽化学已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,Fred Sanger发明了氨基酸序列测定方法,并为此获得了1958年的Nobel 化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因

多肽合成技术

精心整理 多肽合成技术多肽化学已经走过了一百多年的光辉历程,1902年,EmilFischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,MaxBergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,FredSanger 发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield 提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,LouCarpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因为吲哚性质比较稳定。当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln,Thr,Tyr。

多肽合成方法

实施例1 本发明多肽的合成 1)实验仪器与材料: 二甲基甲酰胺(DMF),哌啶,树脂,二氯甲烷(DCM),茚三酮反应试剂(茚三酮,维C,苯酚),四甲基脲六氟磷酸盐(HBTU),六氢吡啶(哌啶),三异丙基硅烷TIS,乙二硫醇(EDT),无水乙醚,三氟乙酸(TFA),N-甲基吗啉(NMM),甲醇,各种氨基酸,Fmoc-e-Acp-OH,FITC,多肽固相合成管。 2)溶液配制 脱保护溶剂——六氢吡啶:DMF=1:4 反应液——NMM:DMF=1:24 裂解液——TFA(92.5%)TIS(2.5%)EDT(2.5%) 茚三酮测试液——茚三酮、vc、苯酚各一滴 荧光偶联溶剂——吡啶:DMF:DCM=12:7:5 2)实验步骤: 称量树脂并投入到多肽固相合成管(以下简称反应器)中,加入适量的DMF 溶胀半小时以上。抽掉DMF,用脱保护液进行Fmoc去保护反应,10min于摇床。抽掉去保护液,用DMF、DCM洗涤3次,从反应器中取少量树脂(约5~10mg)于试管中,用乙醇洗涤2次,茚三酮法检测并记录颜色,准备投料,进入氨基酸缩合反应。分别按照SEQ.1- SEQ.N肽的氨基酸序列顺序取相应氨基酸、HBTU (氨基酸:HBTU=1:1),用反应液溶解,投入到反应器中,搅拌反应。1-2小时后,从反应器中取少量树脂于试管中,用乙醇洗涤2次,茚三酮法检测。抽掉反应器中的液体,用DMF、DCM各洗涤2次,得到第一个氨基酸缩合后的肽树脂。对所得肽树脂重复进行以上“Fmoc去保护——氨基酸缩合”反应步骤,至最后一个氨基酸反应完毕,得到序列号为SEQ ID NO.1 –N+1的肽。反应完毕后,DMF、DCM各洗涤树脂2-3次,甲醇洗两次,继续抽干15-20min。反应器中取出合成完的肽树脂,在室温下于裂解液(裂解液先冰浴20min)中裂解两小时。将树脂过滤后,于旋蒸仪蒸干,用无水乙醚(冰浴)洗3次。粗肽使用制备型反相HPLC纯化,使用HPLC检测纯度>90%。所得到的纯肽使用质谱(MS, electrospray)鉴定。 至最后一个肽合成后,取出部分加荧光标记。先将Fmoc-e-Acp-OH按氨基

多肽合成技术

. 多肽化学已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,Fred Sanger发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield 在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍?. . 两种Z多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,液相合成合成规模容易放大的许多优点。与固相合成比较,具有保护基选择多,成本低廉,个氨基酸以内的多肽合成,还有合成中需要对10主要缺点是,合成范围小,一般都集中在两种方法,BOC固相合成方法现在主要采用FMOC和中间体进行提纯,时间长,工作量大。个氨基酸左右多30它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到肽。.氨基酸保护基1.1,),IleLeu,,Gly,Val,20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala),,GlnGluAsp,,Asn芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(),亚氨,Thr,Met),含醇氨基酸(Ser碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys直接决定了合成能够成功的关键。。

多肽合成与修饰技术服务

多肽合成与修饰技术服务 实验技术:多肽合成是一个固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点,从而大大的减轻了每步产品提纯的难度。多肽合成总的来说分成两种:固相合成和液相多肽合成。[晶莱生物] 实验技术原理: 多肽合成仪以固相合成为反应原理,在密闭的防爆玻璃反应器中使氨基酸按照已知顺序(序列,一般从C端-羧基端向 N端-氨基端)不断添加、反应、合成,操作最终得到多肽载体。固相合成法,大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。 实验操作流程: 1、去保护:Fmoc保护的柱子和单体必须用一种碱性溶剂(piperidine)去除氨基的保护基团。 2、激活和交联:下一个氨基酸的羧基被一种活化剂所活化。活化的单体与游离的氨基反应交联,形成肽键。在此步骤使用大量的超浓度试剂驱使反应完成。循环:这两步反应反复循环直到合成完成。 3、洗脱和脱保护:多肽从柱上洗脱下来,其保护基团被一种脱保护剂(TFA)洗脱和脱保护。多肽修饰类型: 1、C端标记技术: C端酰胺化(Amidation,C-termainal)、醛基化(Aldehydes)、醇基化(Alcohols)、pNA (p-Nitroanilide) AMC、AFC、巯基乙胺化(Cysteamide)、酯基化(Ester)、N-烷基化(N-Alkyl Amides)等 2、N端标记技术: 乙酰化Acetylated (Acetylated)、Palmytolyl、HYNIC、生物素标记(Biotinylated)、Br乙酰化(Bromoacetylated) 螯合反应(DOTA,DTPA conjugated)、甲醛化(Formylated)、十四烷基、十八烷基化(Myristoylated) 琥珀酰化、棕榈酸化、苹果酸化、脂肪酸化等(Succinylated) 3、荧光标记修饰: C端修饰:AFC, AMC, Dap(Dnp), Lys(Dye), pNA, Rh110 N端修饰:Bodipy-FL, Cy3, Cy5, Texas Red, 5-Tamra, 5-lodoacetamido fluorescein Rhodamine 110 and Rhodamine B Luciferin, EDANS FAM, FITC, MCA, Rox, Sulforhodamine 101, 5-TAMRA 4、环化反应: 首尾成环,中间成环,特殊成环(N -> C or Head to Tail) 2对二硫键,3对二硫键(Disulfide (S-S bond formation) .Trisulfide formation) 天然产物活性肽成环(Cyclic-natural peptides ) 5、甲基化修饰: 侧链甲基化Lys(For),Lys(Me), Lys(Me)2, Lys(Me)3, Arg(Me)2 symmetrical,

多肽合成方法

1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步

相关主题