搜档网
当前位置:搜档网 › 时分复用系统设计

时分复用系统设计

时分复用系统设计
时分复用系统设计

目录

第一章绪论 (1)

第二章设计原理 (2)

2.1 PCM编码原理 (2)

2.2 时分复用原理 (2)

第三章总体设计思路 (4)

3.1总体结构框图 (4)

3.2各单元电路设计 (4)

第四章软件仿真 (7)

4.1仿真软件 (7)

4.2两路信号 (7)

4.3编码以及时分复用子模块 (8)

4.4位同步模块 (11)

4.5帧同步模块 (12)

4.6时分解复用模块 (14)

4.7 PCM译码模块 (15)

4.8总系统仿真 (18)

第五章总结与体会 (19)

第一章绪论

随着现代通信技术的发展,为了提高通信系统信道的利用率,话音信号的传输往往采用多路复用通信的方式。这里所谓的多路复用通信方式通常是指:在一个信道上同时传输多个话音信号的技术,也称复用技术。复用技术有多种工作方式,例如频分复用,时分复用以及码分复用等。在本文中运用的是两路的时分复用技术。

时分复用(TDM:Time Division Multiplexing)的特点是,对任意特定的通话呼叫,为其分配一个固定速率的信道资源,且在整个通话区间专用。TDM把若干个不同通道(channel)的数据按照固定位置分配时隙(TimeSlot:8Bit数据)合在一定速率的通路上,这个通路称为一个基群。时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据短时间时,在抽样脉冲之间就留有时间空隙,利用这个时间空隙便可以传输其他信号的抽样值。因此,这就有可能沿一条信道同时传送若干个基带信号。

当采用单片集成PCM 编解码器时(如本文采用TP3057),其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。PCM的32路标准的意思是整个系统共分为32个路时隙,其中30 个路时隙分别用来传送30 路话音信号,一个路时隙用来传送帧同步码,另一个路时隙用来传送信令码,即一个PCM30/32 系统。

第二章设计原理

2.1 PCM编码原理

PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码,采用非均匀量化PCM编码其示意图见图2-1。

图2-1 PCM编码

2.2 时分复用原理

时分多路复用通信(此课题为两路),是各路信号在同一信道上占有不同时间间隙进行通信。由前述的抽样理论可知,抽样的一个重要作用,是将时间上连续的信号变成时间上离散的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。图2-2为时分多路复用示意图,各路信号经低通滤波器将频带限在3400Hz以下,然后加到快速电子旋转开关(称分配器)K1,K2开关不断重复地作匀速旋转,每旋转一周的时间等于一个抽样周期T,这样就做到对每一路信号每隔周期T时间抽样一次。由此可见,发端分配器不仅起到抽样的作用,同时还起到复用合路的作用。合路后的抽样信号送到PCM 编码器进行量化和编码,然后将数字信码送往信道。在收端将这些从发送端送来的各路信码依次解码,还原后的PAM信号,由收端分配器旋转开关K2 依次接通每一路信号,再经低通平滑,重建成话音信号。当采用单片集成PCM 编解码器时,其时分复用方式是先将各路信号分别抽

样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。

图2-2 时分多路复用

第三章总体设计思路

3.1总体结构框图

框图如图3-1所示:

图3-1 总框图

两路信号先经过编码以及时分复用子模块形成合路信号,然后通过位同步,帧同步,通过时分解复用分离出两路信号,然后两路信号分别进入不同的译码子系统,完成还原各路信号。

3.2各单元电路设计

3.2.1 PCM 编解码

该电路由晶体振荡电路、帧同步信号产生器、编码器、译码器、话筒电路和耳机电路组成。其中晶体振荡电路用 4.096MHz的晶体谐振器组成振荡电路,通过分频得到PCM 编码和解码的位时钟2.048MHz,帧同步信号产生器产生的同步信号来完成两路信号的复接,话筒电路和耳机是图中的语音电路,完成语音信号的生成与拾取。

3.2.2 复接、分接

数字复接实质上就是对多路数字信号进行时分复用,让不同的支路信号占用不同的时隙时间,在接收端再根据时间上的不同将信号分开,这一步骤叫分接,它是复接的逆过程。

复接方式有三种:按位复接、按字复接、按帧复接。每路每次只插入1个符号的方式称为按位复接。对于二进制码序列,按位复接即按比特复接。这种方法是以1比特码为单位,对每个复接支路的信号每次只复接1位码,按位复接的最大优点是对复接缓冲

存储器的容量要求小、简单易行、容易实现。

3.2.3 压缩与扩张

压缩与扩张特性分别如图3.2,图3.3所示

图3.2 压缩图3-3 扩张

3.2.4 位同步和帧同步

1.位同步基本原理

位同步锁相法的基本原理和载波同步类似。在接收端利用鉴相器来比较接收码元和本地产生的位同步信号的相位,若两者不一致(超前或滞后),鉴相器就产生误差信号去调整位同步信号的相位,直至获取准确的位同步信号为止。

我们把采用锁相环来提取位同步信号的方法称为锁相法。在数字通信中,常采用数字锁相法提取位同步信号。如图3-4所示,它由高稳定度的晶振、分频器、相位比较器和控制器组成。

图3-4 数字锁相原理方框图

2.帧同步基本原理

在时分复用系统中,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,可以集中插入也可以分散插入。

从总体上看,本模块可分为巴克码识别器及同步保护两部分。巴克码识别器包括移位寄存器、相加器和判决器,图3-5中的其余部分完成同步保护功能。

图3-5 帧同步模块原理框图

第四章软件仿真

4.1 仿真软件

随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。

SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。本文主要阐述了如何利用SystemView实现脉冲编码调制(PCM)。系统的实现通过模块分层实现,模块主要由PCM编码模块、PCM译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。

4.2两路信号

本信号源由两路信号组成,分别是频率为2.5kHz与1.5KHz叠加组成的正弦波和高斯噪声。通过截止频率为3KHz的低通滤波器得到两路语音信号。送到复接模块。

图4-1 两路语音模块

图4-2 两路语音信号

4.3编码以及时分复用子模块

4.3.1产生帧同步信号模块

我们在信源库中选取脉冲串作为晶振,设置成频率为6

10Hz,脉宽为的周期性方波分频器用4个分频器对晶振进行分频,参数设定只需将分频系数写成4,8,16等。

1. 三分频:由于三分频器是用来提供两根三选一电路地址线的,所以我们用两个D触发器来进行三分频,注意D触发器的输入除了时钟外还有清零端,置位端两个输入,它们是低电平有效,使用时候应当注意。

2.数据源:在信源库中有用户定义输出,我们可以写下1110010作为巴克码源,数据一,数据二由信号提供八路数据,三个数据源的八个输出分别和八个数据输入相连。

3.三选一或八选一:三选一的功能可以由八选一构成,它有一个使能端,低电平有效,使用时候要加入低电平。

4.3.2 PCM编码以及时分复用模块

PCM编码及时分复用模块主要由信源输入端子、瞬时压缩器、A/D转换器、8位数据选择器、16位分频器、并/串转换器、非门、与门、D触发器、输出端子构成,SystemView 实现模型见图4-1所示。

在通信系统中,由于电话线的带宽约为3000Hz,以电话的音质为准,一般认为在通信中语音的带宽为300Hz~3400Hz。信号经过PCM编码器子模块的输入端(图符277)后,由于PCM量化采用非均匀量化,还要使用瞬时压缩器(图符276)实现A律压缩

后再进行均匀量化,A/D转换器(图符273、274)完成采样及量化,由于A/D转换器

的输出是并行数据,必须通过数据选择器(图符255、256)完成并/串转换成串行数据,最后通过图符270输出PCM编码信号。

图4-3 PCM编码以及时分复用

PCM编码器组件功能实现:

1.瞬时压缩器:瞬时压缩器(图符275、276)使用了我国现采用A律压缩,注意在译码时扩张器也应采用A律解压。对比压缩前后时域信号,明显看到对数压缩时小信号明显放大,而大信号被压缩,从而提高了小信号的信噪比,这样可以使用较少位数的量化满足语音传输的需要。

2.A/D转换器(图符273、274):完成经过瞬时压缩后信号时间及幅度的离散,通常认为语音的频带在300Hz-3400Hz,根据低通采样定理,采样频率应大于信号最高频率两倍以上,在这里A/D的采样频率为8Hz即可满足,均匀量化电平数为256级量化,编码用8bit表示,其中第一位为极性表示,这样产生了64kBit/s的语音压缩编码。

3.数据选择器(图符255、256、260):图符255为带使能端的8路数据选择器,与74LS151功能相同,在这里完成A/D转换后的数据的并/串转换。

图4-4 帧同步

由图形可以看出帧同步码为11110010。

图4-5 两路信号PCM图

由两路被瞬时压缩器A律压缩的信号,经过A/D转换器,形成两路PCM信号。

图4-6 合路PCM图

由图4-6可知,合路信号由帧同步、第一路语音信号、第二路语音信号复接而成。

4.4 位同步模块

位同步模块的SystemView仿真图如图4-7所示。

图4-7 位同步模块

图4-8 位同步信号

如图4-8可知,下面的图合路信号与位同步子系统输出信号正好相位一致,两列信号无论是上升沿还是下降沿都保持对齐。

接收码元的相位可以从基带信号的过零点提取(它代表码元的起始相位),而对数字信号的微分就可以获得过零点的信息,由于数字信号的过零方向有正有负(即0变到1和由1变到0),微分再整流就可以获得接收码元所有过零信息。接收到码元的相位后,再将它加于相位比较器进行比较,因为相位信息是通过微分,整流而获得的,所以称这种方法为微分整流数字锁相法。

其原理是,设输入信号为不归零码,我们将每个码元的宽度分为两个区,前半码元称为“滞后区”,表示位同步脉冲的相位滞后于接收码元的相位;同样,后半码元称为“超前区”。接收码元经过零检测(微分,整流)后,并经单稳态4(图符85)电路后,输出相位比较脉冲,当位同步脉冲波形(它是由n次分频器d端的输出,取其上升沿而形成的脉冲)位于超前区时,相位比较脉冲和分频器d端的输出波形使与门A(图符93)有输出,该输出再经过单稳态1(图符204)就产生一超前脉冲,若位同步脉冲波形、落于滞后区,分频器c端的输出波形(c端和d端互为反相关系),则与门B(图符206)有输出,再经过单稳态2(图符205)产生一滞后脉冲。这样,无论位同步脉冲超前和滞后,都会分别送出超前或滞后脉冲进行扣除或附加,从而达到相位调整的目的。

4.5帧同步模块

帧同步系统可以分为两个部分:巴克码识别器和同步保护。巴克码识别器包括移位寄存器,相加器和判决器。上面其余部分完成同步保护功能。帧同步模块的SystemView 仿真图如图4-3所示。

图4-9 帧同步

当基带信号里的帧同步码(巴克码)输入时,识别器就会发出判别信号P,P的上升沿的最后一位帧同步码的结束时刻到齐。

÷电路是将位同步信号进行24分频得到的,其周期与输入信号的周期一样(24 24

位)。但是它们相位不一定相同。当识别器输入一个P信号时(既捕获到一组正确的帧同步码),在P信号和同步保护器作用下,24

÷电路输

÷电路清零,从而使得输出的24

出信号下降沿与P信号上升沿对齐,该信号驱动一个单稳态电路,单稳态电路设置为下降沿触发,其输出信号上升沿比24

÷电路输出信号下降沿稍有滞后。

当帧同步码没有到达时,识别器的输出为0,与门1关闭,与门2打开单稳态信号通过与门2后输入到3

÷电路的输出信号使得状态触发器置“0”从而关闭与

÷电路,3

门3,同步器无输出信号,此时Q*的高电平把判决器的门限变为7,且关闭或门、打开与门1,同步起始处于捕捉状态。只要识别出一个P信号(因为判决门限较高,这个P 信号表示帧同步信号到达的正确率很高),与门4就可以输出一个置0脉冲使得24

÷电路置0,24

÷电路输出与P同频同相的周期信号。P脉冲通过与门1后使得状态触发器置“1”,从而打开与门3,输出帧同步信号FS-OUT,同时使判决门限降为6、打开或门、同步器进入维持状态。在维持状态下因为判决电平比较低,故识别器的漏识别概率减小,假识别概率增加,但假识别信号与单稳输出不同步,故与门1,与门4不输出假识别信号,从而使得假识别信号不影响24

÷电路的工作状态。与门3输出的仍然是正确的帧同步信号。

在维持态下,识别器也可能出现漏识别,但由于漏识别的概率较小,连续几帧出现漏识别概率就更小。只要识别器不连续3帧出现漏识别,则3

÷电路不输出脉冲,维持状态保持不变。若连续三次出现漏识别,则3

÷电路输出一个脉冲信号,使得维持态变为捕捉态,重新捕捉帧同步码。

由于信源产生的信号是以一帧为周期的周期信号,所以若识别器第一次输出的帧同步信号为假识别信号,则系统进入错误的同步状态,并一直维持下去。实际中信号不会是周期的,所以这种错误的同步状态存在时间是短暂的。

当然,同步保护器中的3

÷电路分频比也可以设为其他值,此值越大,在维持状态下允许漏识别的概率也越大。

在维持态下对同步信号的保护措施称为前方保护,在捕捉态下的同步保护称为后方保护。本同步器中捕捉态下的高门限属于后方保护措施之一。它可以减少假同步的概率,当然还可以采取其他电路措施进行后方保护。低门限和3

÷电路属于前方保护,它可以保护已建立起来的帧同步信号避免识别器偶尔出现的漏识别造成帧同步器丢失帧同步信号,即减少漏同步概率。同步器中的其它保护电路用来减少维持态下的假同步概率。

图4-10 帧同步信号

如图4-10,帧同步信号与位同步信号达成相位一致,帧同步周期是位同步周期的24倍,对应一帧有24位码元,一帧可以传输三路信号:帧同步码,第一路信号,第二路信号。

4.6 时分解复用模块

时分解复用就是把各路信号在同一信道上占有不同时间间隙进行通信分离出原来的模拟信号。把用一个信道传输中的多路数字信号,用被均匀分成若干个时隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开的目的。时分解复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别互相分开并不失真地还原出原来的模拟信号。

时分解复用模块的SystemView仿真图如图4-4所示。

D触发器(图符92):使帧同步与位同步保持相位一致。

单稳态触发器(图符99):使帧同步信号延迟调相,脉冲保持6

?秒,正好是

10

16-

8个位时隙(时间为)组成一个帧时隙。

8位寄存器(图符106、108):图符106,108分别是延长一个和两个的时隙,主

要目的是通过不同的时隙把合路信号分离出第一路,第二路信号。

图4-11 时分解复用

首先,帧同步与位同步通过D触发器保持相位一致,然后通过对位同步信号分别延时一个和两个单位时间,然后再用单稳态触发器让脉冲宽度增大8倍,即保持6

16-

?秒,

10

形成不同的时隙,再将位同步信号和帧同步信号相与,获得两路信号时隙

4.7 PCM译码模块

PCM译码模块是实现PCM编码的逆系统。PCM译码模块主要由串/并转换器、锁存器、D/A转换器、瞬时扩张器、低通滤波器构成。SystemView实现模型见图4-5所示。

图4-12 PCM译码模块

1.串/并转换器(图符90、130):图符90、130为一个由8位移位寄存器实现的串并转换器,SystemView的逻辑库可以提供与74LS164功能一致的组件,其具有两路与输入,需要输入外部时钟及清零设置,数据输入A为PCM信号,为不影响与操作,另一路输入B为高电平,时钟与位时钟相同,为256kHz时钟。

2.锁存器(图符120、132):经过串并转换后的串行数字语音信号,每8bit为一个数据帧,必须经过锁存才可以将数据并行送至D/A转换器。在实际电路中往往使用74LS373实现锁存功能,System View的逻辑库可以提供与74LS373功能基本一致的8位锁存器,差别是无三态输出方式。锁存器的使能端的时序控制应该与采样时钟一致,由于系统存在时延,在使能端通过设置初始相位解决后,送至D/A转换器中。

3.D/A转换器(图符222、223):用来实现与A/D转换相反的过程,实现数字量转化为模拟量,从而达到译码最基本的要求,也就是最起码要有步骤。

4.瞬时扩张器(图符220、221):实现与瞬时压缩器相反的功能,由于采用A律压缩,扩张也必须采用A律瞬时扩张器。

5.低通滤波器(图符224、226):由于采样脉冲不可能是理想冲激函数会引入孔径失真,量化时也会带来量化噪声,及信号再生时引入的定时抖动失真,需要对再生信号进行幅度及相位的补偿,同时滤除高频分量,在这里使用与编码模块中相同的低通滤波器。

图4-13 第一路语音信号与还原信号对比

图4-14第二路语音信号与还原信号对比

4.8 总系统仿真

如图4-8所示:

图4-6 总仿真图

第五章总结与体会

通过此次课程设计,使我更加扎实的掌握了有关通信的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。

过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!

我认为,在这学期的实验中,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。

回顾起此课程设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。

实验过程中,也对团队精神的进行了考察,让我们在合作起来更加默契,在成功后一起体会喜悦的心情。果然是团结就是力量,只有互相之间默契融洽的配合才能换来最终完美的结果。此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,收获颇丰。

三路频分复用系统设计

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2015年春季学期 数字信号处理课程设计 题目:频分多路复用系统的设计 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 频分复用是一种用频率来划分信道的复用方式。在FDM中,信道的带宽被划分成很多个互不重叠的频率段(子通道),每路信号占据其中一个字信道,并且各路之间必须留有未被占用的频段(防护频带)进行隔离,以防止信号重叠。在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出来所需要的信号。 本次以“频分多路复用系统的防真设计”为题目的《数字信号处理》课程设计,在MATLAB仿真环境为基础,利用STMULINK仿真工具,根据频分复用的原理,仿真频分多路复用系统。并设计必要的带通滤波器。低通滤波器,从复用信号中恢复所采集的语音信号。最后通过系统的仿真波形图对系统进行分析。 通过本次《数字信号处理》课程设计,再次熟悉了频分复用的相关理论知识,对如何通过SIMULINK仿真工具进行系统仿真也有了更清晰的认识和掌握。 关键词:频分复用;FFT;Matlab;频谱分析

目录 一设计任务目的及要求 (1) 1.1设计目的及意义 (1) 1.2设计要求 (1) 二原理与模块介绍 (2) 2.1 频分复用通信系统模型建立 (2) 2.2 语音信号采样 (5) 2.3 语音信号的调制 (7) 2.4滤波器的设计 (8) 2.4.1 切比雪夫I型滤波器 (8) 2.5 信道噪声 (10) 三设计内容 (11) 3.1 设计流程图 (11) 3.2 语音信号的时域和频域仿真 (12) 3.2.1 信号的时域仿真 (12) 3.2.2信号频域仿真 (13) 3.3 复用信号的频谱仿真 (13) 3.4传输信号的仿真 (14) 3.5 解调信号的频谱仿真 (15) 3.6恢复信号的时域与频域仿真 (16) 总结 (18) 参考文献 (19) 附录 (20)

频分复用原理及其应用研究

2015届学士学位论文 频分复用原理及其应用研究

频分复用原理及其应用研究 摘要频分复用(FDM)是通信系统中信号多路复用方式中的一种,本质上是依据频率来分隔信道的。频分复用技术在当今通信领域有着很重要的地位。根据性质和特点的不同频分复用还可以被细分为传统的频分复用(FDM)和正交频分复用(OFDM)。 本论文主要由以下几个部分组成。第一部分介绍频分复用基本原理,系统实现以及其应用特点;第二部分介绍正交频分复用的基本原理及DFT的实现;第三部分主要介绍在实际应用中当载波频率接近时,频谱会发生重叠,传统的频分复用解调效果容易出现失真,正交频分复用由于其载波的正交性特点,在频谱发生重叠时可以保证解调效果;最后通过MATLAB程序中的SIMULINK仿真图来表现正交频分复用的优越之处。 关键词频分复用;正交频分复用;MA TLAB仿真

Frequency division multiplexing principle and its application research Abstract Frequency division multiplexing (FDM) is a kind of signal multiplexing mode in communication system, which is divided by frequency channel essentially. Frequency division multiplexing technology is very widely used in today's communication. Frequency division multiplexing can also be divided into the traditional frequency division multiple(FDM) and orthogonal frequency division multiplexing(OFDM) depending on the nature and characteristics. This paper consists of the following parts. The basic principle of frequency division multiplexing, system implementation and its application characteristics are introduced in the first part . The basic principle of orthogonal frequency division multiplexing and its realization of DFT are introduced in the second part .Due to its characteristics ,orthogonal frequency division multiplexing can guarantee the demodulation compare with the traditional frequency division multiplexing when the carrier frequency is close to in the practical application, spectrum overlap happens ,which is introduced in the third part .Finally by SIMULINK of MA TLAB simulation diagram to show the superiority of the orthogonal frequency division multiplexing. Keywords Frequency division multiplexing; Orthogonal frequency division Multiplexing ;MA TLAB simulation

时分多路复用技术

E1时分复用设备在组网中的应用 摘要:文章主要对时分多路复用器、交叉连接复用设备组成及功能做简单介绍,并对时分多路复用器及交叉连接复用设备在组网中的典型应用举例说明。 关键词:时分多路复用技术时分多路复用器交叉连接复用设备路由器时隙 一、E1信道时分多路复用技术 在我国,不论是准同步数字体系(PDH)还是同步数字体系(SDH),都是以2.048Mb/s(E1)为基础群,随着我国国家信息基础设施建设的发展,我国已经拥有了丰富的E1信道资源。随着各种通信业务的迅猛发展,对传输不同速率特别是高速数据的需求日益增多;同时,不同的网络用户又需要在同一条广域网络链路上同时传输数据、会议电视、语音、传真等业务。这些需求要求我们考虑一下因素:(1)具有节约现有通信资源的意识,提高E1信道的利用率;(2)采用先进的网络技术,使集数据、会议电视、语音、传真和远程局域网通信于一体的集成业务数据网,在相对廉价的广域网数据链路上实现;(3)在PCM传输电路上方便、经济地实现N×64kbps如768kbps、384kbps或128、64kbps等高速数据的传输;(4)在现有网络建设基础上,发展低速数据用户(多个低速数据用户共用一个64kbps时隙)时,使用高性能/价格比的专用设备,将节约大量资金。多业务时分多路复用技术(TDM)是您解决这类应用的解决方案。 在E1信道中,8bit组成一个时隙(TS),由32个时隙组成了一个帧(F),16个帧组成一个复帧(MF)。在一个帧中,TS0主要用于传送帧定位信号(FAS)、CRC-4(循环冗余校验)和对端告警指示,TS16主要传送随路信令(CAS)、复帧定位信号和复帧对端告警指示,TS1至TS15和TS17至TS31共30个时隙传送话音或数据等信息。我们称TS1至TS15和TS17至TS31为“净荷”,TS0和TS16为“开销”。如果采用带外公共信道信令(CCS),TS16就失去了传送信令的用途,该时隙也可用来传送信息信号,这时帧结构的净荷为TS1至TS31,开销只有TS0了。 数据复用技术可分为三种:(1)N×64kbps高速数据的复用,对于常用的N×64kbps(CAS 时N=1至30;CCS时N=1至31),如64、128、192、256、384、512、768、1024kbps等的高速数据,可以使其占用E1电路中的N个时隙,很方便地复用到E1线路上去。(2)低速同步数据的复用,对于19.2kbps、9.6kbps、4.8kbps和2.4kbps同步数据,广泛采用 ITU X.50建议将它们复用到64kbps时隙上。为了与PCM时隙一致,采用(6+2)的包封格式,每一包封中含有1个帧比特、6个数据比特和1个状态比特,总共8比特(见图一)。可见,在这

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

计算机网络应用 频分多路复用

计算机网络应用频分多路复用 频分多路复用(Frequency Division Multiplexing,FDM)是指一种在信道上同时发送多个模拟信号的方法。它将具有一定带宽的信道划分成多条具有较窄带宽的子信道,各个子信道之间都保留一定宽度的隔离频带,每条子信道供一个用户使用。每条子信道具有各自的载波信号频率,各个子信道的中心频率互不重合,其模型如图2-30所示。 96KHz 图2-30 频分多路复用模型 频分多路复用技术最早是由电话公司在20世纪30年代开发的。它用来在一条电话线上传输多个语音信号。它可以用于语音、视频或数据信号,其常应用于无线电广播传输系统和有线电视系统中。例如,电话线的带宽达250kHz,而音频信号的有效带宽范围为300Hz~3400Hz,4000Hz的带宽就足够用来传输音频信号。为了使各信道之间保留一定的距离减少相互干扰,在CCITT(国际电报电话咨询委员会)标准中,60kHz~108kHz的带宽可以划分为12条载波电话的信道,每对电话用户都可以使用其中的一条信道进行通信。如图2-31所示,为6路频分多路复用的示意图。 D E F ’’’’’’ 图2-31 6路频分多路复用示意图 另外,ADSL(Asymmetric Digital Subscriber Line ,非对称数字用户环路)也是使用频分多路复用技术。它利用频分多路复用的方法,将PSTN(Public Switched Telephone Network,公共交换电话网络)使用的双绞线划分为3个频段,它们分别是0KHz~4KHz频段、20KHz~50KHz频段、150KHz~500KHz频段或140KHz~1100KHz频段。其中,0KHz~4KHz频段用来传送传统的语音信号;20KHz~50KHz频段用来传送计算机上载的数据信息;150KHz~500KHz频段或140KHz~1100KHz用来传送从服务器上下载的数据信息。

基于MATLAB频分复用系统的研究与仿真设计课程报告

百度文库 . 《电子产品辅助设计与仿真》 课程考核报告 基于MATLAB频分复用系统的研究与仿真设计 完成日期2013年12月

目录 1引言 (1) 2课程设计要求 (2) 课程设计题目 (2) 课程设计目的 (2) 设计要求 (2) 3设计过程及原理 (3) 频分复用通信系统模型建立 (3) 频分复用通信系统理论原理 (4) 4 MA TLAB仿真 (5) 语音信号的时域和频域仿真 (5) 复用信号的频谱仿真 (6) 传输信号的仿真 (6) 解调信号的频谱仿真 (7) 恢复信号的时域与频域仿真 (8) 5体会与收获 (9) 参考文献 (10) 附录 (11)

1引言 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室MATLAB工作界面)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

时分多路复用系统的仿真实现报告

摘要 时分多路复用是一种数字复用技术,在数字通信系统中,模拟信号的数字传输或数字基带信号的多路传输一般都采用时分多路复用方式来提高系统的传输效率。时分复用是将不同源端的数字数据合并到一个时间共享的链路上,适用于媒体数据速率容量超过要传输的几路数字信号总速率的情况。本次课程设计利用MATLAB/Simulink仿真软件实现对时分多路复用系统的模拟仿真,达到对输入信号实现复用和解复用的效果。 关键词:时分复用;Simulink;仿真

目录 第1章时分多路复用系统仿真的基本原理 (1) 1.1 Simulink简介 (1) 1.2 时分多路复用系统的基本原理 (1) 第2章时分复用系统仿真模型 (4) 2.1 Simulink仿真框图搭建 (4) 2.2 仿真参数设置 (5) 第3章时分多路复用的Simulink仿真及结果分析 (11) 3.1 时分多路的Simulink仿真 (11) 3.2 仿真结果分析 (13) 总结 (14) 参考文献 (15) 致谢 (16)

第1章时分多路系统仿真的基本原理 1.1 Simulink简介 Simulink(动态系统仿真)是MATLAB中一个建立系统方框图和基于方框图级的系统仿真环境,是一个对动态系统进行建模、仿真并对仿真结果进行分析的软件包。使用Simulink可以更加方便地对系统进行可视化建模,并进行基于时间流的系统级仿真,使得仿真系统建模与工程中的方框图统一起来。并且仿真结果可以近乎“实时”地通过可视化模块,如示波器模块、频谱仪模块以及数据输入输出模块等显示出来,使得系统仿真工作大为方便。Simulink具有适应面广结构(线性系统、非线性系统、离散系统、连续及系统混和系统)、流程清晰仿真精细和提供大量函数模块等优势特点。由于matlab和simulink是集成在一起的,因此用户可以在两种环境下对自己的模型进行仿真、分析和修改。不用命令行编程,由方框图产生.mdl文件(s函数)当创建好的框图保存后,相应的.mdl文件就自动生成,这个.mdl文件包含了该框图的所有图形及数学关系信息。框图表示比较直观,容易构造,运行速度较快。 Simulink的仿真原理是当在框图视窗中进行仿真的同时,MATLAB 实际上是运行保存于simulink内存中s函数的映象文件,而不是解释运行该mdl文件。Simulink的模型在视觉上表现为方框图,在文件上则是扩展名为mdl的ASCII 代码;在数学上体现为一组微分方程或差分方程;在行为上模拟了物理器件构成的实际系统的动态特性。 Simulink 的一般结构: 输入→系统→输出 1.2 时分多路复用系统的基本原理 抽样定理:一个频带限制在0到fm以内的低通模拟信号x(t),可以用时间上离散的抽样值来传输,抽样值中包含有x(t)的全部信息。当抽样频率fs≧2fm 时,可以从已抽样的输出信号中用一个带宽为fm≦B≦fs—fm的理想低通滤波器不失真地恢复出原始信号。 时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲值所代替。这样,当抽样脉冲占据较短时间时,在单路抽样信号在时间上离散的脉冲间留出很大的空隙。因此,可以

频分复用系统设计报告

《信息处理课群综合训练与设计》任务书学生姓名:黄在勇专业班级:通信1104班 指导教师:周建新工作单位:信息工程学院 题目: 频分复用 初始条件: Matlab软件、信号与系统、通信处理等。 要求完成的主要任务: 根据频分复用的通信原理,用matlab采集两路以上的信号(如语音信号),选择合适的高频载波进行调制,得到复用信号。然后设计合适的带通滤波器、低通滤波器,从复用信号中恢复出所采集的语音信号。设计中各个信号均需进行时域和频域的分析。 参考书: [1]陈慧慧、郑宾. 频分多址接入模型设计及MATLAB仿真计算(第三版). 高等教育出版社,北京: 2000 [2]李建新、刘乃安、刘继平. 现代通信系统分析与仿真MATLAB通信工 具箱. 西安电子科技大学出版社,西安: 2000 [3]邓华等. MATLAB通信仿真及应用实例详. 人民邮电出版社,北京: 2003 时间安排: 1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料; 2、课程设计时间为2周。 (1)理解相关技术原理,确定技术方案,时间2天; (2)选择仿真工具,进行仿真设计与分析,时间6天; (3)总结结果,完成课程设计报告,时间2天。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1绪论 (1) 1.1设计目的 (1) 1.2设计内容 (2) 1.3设计要求 (2) 2频分复用通信系统模型 (3) 3频分复用系统方案设计 (6) 3.1语音信号采样 (6) 3.2语音调制信号 (7) 3.3 系统的滤波器设计 (8) 3.4信道噪声 (9) 4频分复用原理实现与仿真 (11) 4.1 语音信号的时域和频域仿真 (11) 4.2 复用信号的频谱仿真 (12) 4.3 传输信号的仿真 (13) 4.4 解调信号的频谱仿真 (14) 4.5恢复信号的时域与频域仿真 (16) 5 心得体会 (18) 附录I 源程序 (19) 附录II 参考文献 (24)

计算机网络 多路复用技术

计算机网络 多路复用技术 在计算机网络或数据通信系统中,传输介质的传输能力往往会超过传输单一信号的要求。为了提高通信线路的利用率,实现在一条通信线路上同时发送多个信号,使得一条通信线路可以由多个数据终端设备同时使用而互不影响,这就是多路复用技术。 常见的多路复用技术主要由两大类:一种是将带宽较大的信道分割成为多个子信道,即频分多路复用技术;另一种是将多个带宽较窄的信道组合成一个频率较大的信道,即时分多路复用技术。 1.频分多路复用技术 频分多路复用技术(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法。它将传输频带划分为若干个较窄的频带,每个频带构成一个子信道,每个子信道都有各自的载波信号,而且其载波信号的频率是唯一的。一个具有一定带宽的通信线路可以划分为若干个频率范围,互相之间没有重叠,且在每个频率范围的中心频率之间保留一段距离。这样,一条通信线路被划分成多个带宽较小的信道,每个信道能够为一对通信终端提供服务。 频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电话线上传输多个语音信号。它可以用于语音、视频或数据信号,但是最常见的应用是无线电广播传输和有线电视。例如电话线的带宽达250kHz ,而音频信号的有效范围为300Hz~3400Hz ,4000Hz 的带宽就足够用来传输音频信号。为了使各信道之间保留一定的距离减少相互干扰,60kHz~108kHz 的带宽可以划分为12条载波电话的信道(此为CCITT 标准),每对电话用户都可以使用其中的一条信道进行通信。如图3-17所示,为6路频分多路复用的示意图。 D E F ’’’’’’ 图3-17 6路频分多路复用示意图 2.时分多路复 用技术 时分多路复用技术(Time Division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络中替代了频分多路复用技术。在通信序列中,时分多路复用技术将为在网络上交换信号的每一个设备分配一段时间或时间片。在这个时间片中,信道只能传输来自该交换信号设备的数据。 例如,在多台计算机连接在同一条公共传输通道上,多路复用器在通道信道中将会按一定的次序轮流为每台计算机分配一个时间片,当轮到某台计算机时,这台计算机与通信通道接通,进行数据交换。而其他计算机与通信通道的联系均被切断,待分配时间片用完后,则 提 示 由于频分多路复用技术是多路传输的一种较早、效率较低的形式。因此,该技术 在现代数据网络中的使用是有限的。

FDMA频分复用系统设计

山东轻工业学院 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目频分复用系统设计 主要内容: 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,从而加深对所学知识的理解,建立概念,加深理解滤波、FDM等的综合应用。设计5~8路基带信号(带宽相同)进行FDM传输的一个系统,调制方式可以选择DSB、SSB、AM或VSB,也可以采用多采样率系统实现;在接收端进行解复用和解调,恢复出原始的各路基带信号。 基本要求 (1)掌握数字信号处理的基本概念、基本原理和基本方法;掌握DFT对模拟信号进行频谱分析的方法;掌握设计FIR和IIR数字滤波器的方法; (2)掌握FDM系统的原理及简单实现方法 (3)设计出系统模块图,记录仿真结果; (4)对结果进行分析,写出设计报告。 主要参考资料 [1]高西全,丁玉美. 数字信号处理(第三版). 西安电子科技大学出版社. 2009.01 [2]A.V.奥本海姆,R.W.谢弗. 离散时间数字信号处理.(第二版) . 西安交通大学出版社. 2004.09 [3]胡广书. 数字信号处理. 清华大学出版社. [4]matlab数字信号处理的相关资料 [5]樊昌信. 通信原理. 国防工业出版社. 2008 完成期限:自 2012 年 6 月 28 日至 2012年 7 月 13 日 指导教师:张凯丽教研室主任:

目录 1 设计任务及要求 1.1 设计任务 1.2 设计要求 2 设计作用及其目的 3 设计过程及原理 3.1 频分复用通信系统模型建立3.2 信号的调制 3.3 系统的滤波器设计 3.4 信道噪声 4.基于simulink的FDMA仿真5参数设置 6频谱波形分析 7实验心得及体会 8 参考文献

三个同频带信号的频分复用的课程设计

1. 课程设计目的 综合运用信号与系统、数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现从而加深对所学知识的理解,建立概念。 2. 课程设计的基本要求 ①熟悉离散时间信号与系统的时域特性; ②掌握数字信号处理的基本概念,基本理论和基本方法; ③掌握序列快速傅里叶变换方法,利用序列傅里叶变换对离散信号和系统的响应进行频域分析; ④学会MATLAB 的使用,掌握MATLAB 的程序设计方法; ⑤掌握MATLAB 设计各种熟悉滤波器的方法和对信号进行滤波的方法。 3. 课程设计的内容 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时域波形和频谱,与原始信号进行比较,说明频分复用的特点。频分复用结构如图所示 ] [1n y ] [3n y ][2n y 4. 课程设计实现步骤 (1) 产生三路信号 利用MATLAB 语言产生三个不同频段的信号。 (2) 对三路信号进行频谱分析 画出三路信号时域波形,然后对信号进行频谱分析,在MATLAB 中,可以利用函数fft 对信号进行快速傅里叶变换,得到信号的频谱特性。 (3) 设计数字滤波器并画出频率响应 根据三路信号的频谱特点得到性能指标,由性能指标设计三个数字滤波器。在MATLAB 中,可以利用函数fir1设计FIR 滤波器,利用函数butte、cheby1和ellip 设计IIR 滤波器;最后利用MATLAB 中的函数freqz 画出个滤波器的频率响应。 (4) 信号合成 将三路信号进行叠加为一路信号。 (5) 用滤波器对信号进行滤波

频分复用论文

武汉工程大学(硕、博士)研究生试卷本 考试课程名称信号分析与处理 考试 考查 学科专业检测技术及自动化装置 学号 201104025 姓名金璐

信号的频分复用 1 设计任务 根据频分复用的通信原理,运用Matlab软件采集两路以上的语音信号,选择合适的高频载波进行调制,得到复用信号。然后设计必要的带通滤波器、低通滤波器,从复用信号中恢复所采集的语音信号。整个过程运用Matlab进行仿真,并对各个信号进行时域和频域分析。 2 设计要求 (1)使用Matlab软件画出采样后语音信号的时域波形和频谱图。 (2)选择合适的高频载波,对采样信号进行调制。 (3)使用Matlab软件画出复用信号的频谱图。 (4)设计合适的带通滤波器,并画出带通滤波器的频率响应。 (5)对滤波后的信号进行解调,画出解调后各路信号的频谱图。 (6)设计低通滤波器,画出低通滤波器的频率响应。恢复信号的时域波形和频谱图。3设计过程 在本次设计过程中,我们通过输入3段语音信号,并且进行时域和频域的分析,再将3路信号分别乘以一个载波信号进行调制进行混频,再将其经过理想信道合成,合成得到叠加后的信号,再将合成信号进行频谱分析,再将合成信号通过切比雪夫2型带通滤波器进行滤波,得到3路带有语音信号的载波信号,每一个载波信号解调后得到原始的低频声音信号和高频载波与声音信号混频的信号,将3路语音信号频谱搬移还原,再经过低通滤波滤掉高频成分得到与原始语音信号几乎一样的信号,将恢复后的3路信号进行时域和频域分析,与原始输入的3路语音信号的时域谱和频域谱进行比较,得到它们的外围轮廓基本相同。 4理论设计 4.1频分复用通信系统模型建立 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时域波形和频谱,与原始信号进行比较,说明频分复用的特点。 频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。混频的原理,如图(1)所示。 图 1 混频原理 混频过程的时域表示式为:

FDM频分复用实验分析报告

FDM频分复用实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验课程名称现代通信原理 专业班级 13级通信工程本科班 学生姓名陈勇 学号 134090201048 指导教师曹老师 2015至2016学年第1学期第12至13周

《FDM频分复用》实验报告 2015至2016学年第一学期 姓名陈勇系别计科系实验地点综合楼401教室 13级通信工程 实验时间2015年11月24日学号134090201048 年级、班 本科班 实验项目FDM频分复用实验 一、实验目的 1、掌握FDM复用的基本原理。 2、掌握FDM解复用的常用方法。 二、实验环境(条件) 1、信号与系统实验箱一台(主板)。 2、FDM频分复用传输系统实验模块一块。 3、20M双踪示波器一台。 三、实验内容及步骤: (一) 实验内容 1、观察复用信号的波形。 2、观察解复用信号的波形。 3、观察调制信号与解调信号的波形。 (二)实验原理 在信道上(例如无线信道)将若干路信号以某种方式汇合,统一在同一信道中进行传输称之为多路复用。在近代通信系统中普遍采用多路复用技术,如频分复用技术。 频繁复用要求设备在发送端将各路信号频谱搬移到各个不相同的频率范围内,使它们互不重叠,这样就可复用同一信道传输。

(三)实验步骤 1、打开20M双踪示波器,校正示波器。 2、把FDM频分复用传输系统实验模块插在主板上,用导线接通此模块“电源接 入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的 电源开关。 3、载波信号和调制信号的产生:(其频率均可用主板上的频率计进行测量) 载波:在主板上,分别产生16K、31K的正弦信号(具体操作见实验一和实验四),作载波信号,调节其幅度(用“幅度调节”电位器进行调节),使两载波信号 的峰峰值均为3V。 调制信号:FDM频分复用传输系统模块的“200Hz调制信号”输出一峰峰值为2V左右,频率为200Hz作业的正弦信号;FDM频分复用传输系统模块的“500Hz 调制信号”输出一峰峰值为2V左右,频率为500Hz作业的正弦信号。 4、调制单元: 第一路调制波形的产生(调制单元上部分):y(t)=s(t)*x(t),调制在31KHz 的载频上。 (1)将31KHz的正弦信号作为发送载波,通过连接线将其与第一路调制单元的 “载波2”端相连。 (2)将“调制信号”接地,然后观察“已调信号”输出端,观察输出端是否有 信号输出,如果有,然后再调节“FDM频分复用传输系统模块”第一路调制信号的 “调制深度调节”电位器,使“已调信号”输出信号为0。 (3)通过连接线将“FDM频分复用传输系统模块”的“500Hz调制信号”输出端 (500Hz正弦信号),连接到第一路调制单元的“调制信号”端,观察“已调信号” 输出端波形,即为第一路调制波形。 第二路调制波形的产生(调制单元下部分):y(t)=s(t)*x(t),调制在16KHz 的载频上。 (1)将16KHz的正弦信号作为发送载波,通过连接线将其与第二路调制单元的 “载波1”端相连。 (2)将“调制信号”接地,然后观察“已调信号”输出端,观察输出端是否有信号输 出,如果有,然后在调节“FDM频分复用传输系统模块”第二路调制信号的“调制深 度调节”电位器,使“已调信号”输出信号为0。 (3)通过连接线将“FDM频分复用传输系统模块”的“200Hz调制信号”输出 端(200Hz正弦信号),连接到第二路调制单元的“调制信号”端,观察“已调信 号”输出端波形,即为第二路调制的波形。 5、两路已调信号的复用: 将第一路“已调信号”用连接导线接入到上端的“复用输入”,将第二路“已调信号”用连接导线接入到上端的“复用输入”,观察“复用”端测试钩的波形, 即两路已调信号的复用到信道中。 6、复用信号的解复用: 将实验步骤5所获得的复用信号(“复用”输出端),用连接线同时连接到上下端的“解复用输入”端,并观察解复用输出端“X”和“Y”的波形,其应分别和两 路“已调信号”波形基本一致。 其中“X”“Y”分别代表第一路和第二路解复用信号。 7、解调单元:

频分两路复用系统设计

目录 一、设计原理 (2) 2.1 频分复用的概述 (2) 2.2 频分复用原理 (2) 2.3频分复用的的特点与优点: (5) 二、设计流程图 (6) 三、单元电路设计 (7) 1、调制电路 (7) 2、解调电路 (7) 3、加法器电路 (8) 4、滤波电路 (9) 5、电源电路 (10) 四、System View仿真及仿真原理结果分析 (11) 五、总结及实习心得 (15) 总原理图 (16) 参考文献: (17)

一、设计原理 2.1 频分复用的概述 频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。 频分复用是利用各路信号在频率域不相互重叠来区分的。若相邻信号之间产生相互干扰,将会使输出信号产生失真。为了防止相邻信号之间产生相互干扰,应合理选择载波频率fc1, fc2, …, fcn,并使各路已调信号频谱之间留有一定的保护间隔。若基带信号是模拟信号,则调制方式可以是DSB、 AM、SSB、VSB或FM等,其中SSB方式频带利用率最高。若基带信号是数字信号,则调制方式可以是ASK、FSK、PSK 等各种数字调制。 2.2 频分复用原理 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,

频分复用专题设计实验指导书

电子科技大学通信学院 《综合课程设计指导书》 传输专题设计(频分复用) 班级 学生 学号 教师

【设计名称】 传输专题设计(频分复用) 【设计目的】 要求学生独立应用所学知识,对通信系统中的典型部件电路进行方案设计、分析制作与调测电路。通过本专题设计,掌握频分复用的原理,熟悉简单复用系统的设计方法。 【设计原理】 若干路信息在同一信道中传输称为多路复用。由于在一个信道传输多路信号而互不干扰,因此可提高信道的利用率。按复用方式的不同可分为:频分复用(FDM)和时分复用(TDM)两类。 频分复用是按频率分割多路信号的方法,即将信道的可用频带分成若干互不交叠的频段,每路信号占据其中的一个频段。在接收端用适当的滤波器将多路信号分开,分别进行解调和终端处理。时分复用是按时间分割多路信号的方法,即将信道的可用时间分成若干顺序排列的时隙,每路信号占据其中一个时隙。在接收端用时序电路将多路信号分开,分别进行解调和终端处理。频分复用原理框图如图1所示。图中给从的是一个12路调制、解调系统框图。 图1 频分复用原理框图 【设计指标】 设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,

其传输技术指标如下: 1. 语音信号频带:300Hz~3400Hz。 2. 电缆传输频带:60KHz~156KHz。 3.传输中满载条件下信号功率不低于总功率的90%。 4.电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率)不大于1mW。 5.语音通信接口采用4线制全双工。 6.音频端接口阻抗600Ω,标称输入输出功率为0.1mW。 7.滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB,阻带衰耗40dB(功率衰耗),截止频率(设计者定)。 8.系统电源:直流24V单电源。 【频分复用原理】 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输。系统原理如图2所示。以线性调制信号的频分复用为例。在图2中设有n路基带信号, 图2频分复用系统组成方框图 为了限制已调信号的带宽,各路信号首先由低通滤波器进行限带,限带后的信号分别对不同频率的载波进行线性调制,形成频率不同的已调信号。为了避免已调信号的频谱交叠,各路已调信号由带通滤波器进行限带,相加形成频分复用信号后送往信道传输。在接收端首先用带通滤波器将多路信号分开,各路信号由各自

传输专题设计(频分复用)

电子科技大学通信学院97 《综合课程设计实验报告》 传输专题设计(频分复用) 一、设计名称 传输专题设计(频分复用) 二、设计目的 通过本次课程设计,掌握频分复用的原理,学习简单复用系统的设计方法,并学习对通信系统中的典型部件电路进行方案设计、分析制作与调试。 三、设计原理 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信

号,这就是多路复用技术。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision Multiplexing)是两种最常用的多路复用技术。 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。 按频率分割信号的方法叫频分复用,按时间分割信号的方法叫时分复用。 在频分复用中,信道的可用频带被分割成若干互不交叠的频段,每路信号占据其中一个频段,因而可以用适当的滤波器把它们分割开来,分别解调接收。 多路复用原理框图如图一: 图一:多路复用原理框图 四、设计指标 设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,其传输技术指标如下: (一)语音信号频带:300Hz~3400Hz。 (二)电缆传输频带:60KHz~156KHz。 (三)传输中满载条件下信号功率不低于总功率的90%。 (四)电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率) 不大于1mW。 (五)语音通信接口采用4线制全双工。 (六)音频端接口阻抗600Ω,标称输入输出功率为0.1mW。 (七)滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB, 阻带衰耗40dB(功率衰耗),截止频率(设计者定)。 (八)系统电源:直流24V单电源。 五、设计思路和过程 (一)频分复用的优点: 信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。 (二)频分复用中的主要问题: 串扰,即各路信号之间的相互干扰。

频分复用

摘要 《信号与系统》课程是一门理论和技术发展十分迅速、应用非常广泛的前沿性学科,它的理论性和实践性都很强。复用是一种将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。可以把它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端彼此分离开来。按频率区分信号的方法叫频分复用。我们在生活中接触到得大部分都是模拟信号,而计算机只能对数字信号进行处理。我们可以通过FFT变换,通过对模拟信号采样,使其变成数字信号,本设计就是通过FFT来实现的。Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高。它的工具箱里有很多函数可以方便的对信号进行分析与处理。本设计是用FFT实现对三个同频带信号的频分复用,就是通过Matlab语言来实现的。本设计报告分析了数字信号处理课程设计的过程。用Matlab进行数字信号处理课程设计的思路,并阐述了课程设计的具体方法、步骤和内容。 关键词:数字信号处理;滤波器设计;MATLAB;频谱分析 1 设计任务目的及要求 1.1设计目的 巩固已经学过的知识,加深对知识的理解和应用,加强学科间的横向联系,学会应用MATLAB对实际问题进行仿真,并设计MUI界面。 1.2设计要求 一、课程设计的内容 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字

滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号 分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时 域波形和频谱,与原始信号进行比较,说明频分复用的特点。 二、课程设计的要求与数据 (1)熟悉离散信号和系统的时域特性。 (2)掌握数字信号处理的基本概念,基本理论和基本方法。 (3)掌握序列傅里叶变换的计算机实现方法,利用序列傅里叶变换对离散间可以分别调整。 (4)学会MATLAB的使用,掌握MATLAB的程序设计方法。 (5)掌握MATLAB设计FIR和IIR数字滤波器的方法。 (6)掌握GUI界面的设计方法 三、课程设计应完成的工作 (1)利用MATLAB语言产生三个不同频段的信号。 (2)对产生的三个信号进行FFT变换。 (3)将三路信号叠加为一路信号。 (4)根据三路信号的频谱特点得到性能指标,由性能指标设计三个滤波器。 (5)用设计的滤波器对信号进行滤波,并对其频谱图进行分析。 (6)分析得到信号的频谱,并画出滤波后信号的时域波形和频谱。 2 原理与模块介绍 2.1 快速傅里叶变换FFT原理 快速傅立叶变换(FFT)算法 长度为N的序列的离散傅立叶变换为:

相关主题