搜档网
当前位置:搜档网 › 中科院博士研究生英语精读教材课文原文及翻译

中科院博士研究生英语精读教材课文原文及翻译

中科院博士研究生英语精读教材课文原文及翻译
中科院博士研究生英语精读教材课文原文及翻译

第1课知识的悖论The Paradox of Knowledge

The greatest achievement of humankind in its long evolution from ancient hominoid ancestors to its present status is the acquisition and accumulation of a vast body of knowledge about itself, the world, and the universe. The products of this knowledge are all those things that, in the aggregate, we call "civilization," including language, science, literature, art, all the physical mechanisms, instruments, and structures we use, and the physical infrastructures on which society relies. Most of us assume that in modern society knowledge of all kinds is continually increasing and the aggregation of new information into the corpus of our social or collective knowledge is steadily reducing the area of ignorance about ourselves, the world, and the universe. But continuing reminders of the numerous areas of our present ignorance invite a critical analysis of this assumption.

In the popular view, intellectual evolution is similar to, although much more rapid than, somatic evolution. Biological evolution is often described by the statement that "ontogeny recapitulates phylogeny"--meaning that the individual embryo, in its development from a fertilized ovum into a human baby, passes through successive stages in which it resembles ancestral forms of the human species. The popular view is that humankind has progressed from a state of innocent ignorance, comparable to that of an infant, and gradually has acquired more and more knowledge, much as a child learns in passing through the several grades of the educational system. Implicit in this view is an assumption that phylogeny resembles ontogeny, so that there will ultimately be a stage in which the accumulation of knowledge is essentially complete, at least in specific fields, as if society had graduated with all the advanced degrees that signify mastery of important subjects.

Such views have, in fact, been expressed by some eminent scientists. In 1894 the great American physicist Albert Michelson said in a talk at the University of Chicago:

While it is never safe to affirm that the future of Physical Science has no marvels in store even more astonishing than those of the past, it seems probable that most of the grand underlying principles have been firmly established and that further advances are to be sought chiefly in the rigorous application of these principles to all the phenomena which come under our notice .... The future truths of Physical Science ate to be looked for in the sixth place of decimals.

In the century since Michelson's talk, scientists have discovered much more than the refinement of measurements in the sixth decimal place, and none is willing to make a similar statement today. However, many still cling to the notion that such a state of knowledge remains a possibility to be attained sooner or later. Stephen Hawking, the

great English scientist, in his immensely popular book A Brief History of Time (1988), concludes with the speculation that we may "discover a complete theory" that "would be the ultimate triumph of human reason--for then we would know the mind of God." Paul Davies, an Australian physicist, echoes that view by suggesting that the human mind may be able to grasp some of the secrets encompassed by the title of his book The Mind of God (1992). Other contemporary scientists write of "theories of everything," meaning theories that explain all observable physical phenomena, and Nobel Laureate Steven Weinberg, one of the founders of the current standard model of physical theory, writes of his Dreams of a Final Theory (1992).

Despite the eminence and obvious yearning of these and many other contemporary scientists, there is nothing in the history of science to suggest that any addition of data or theories to the body of scientific knowledge will ever provide answers to all questions in any field. On the contrary, the history of science indicates that increasing knowledge brings awareness of new areas of ignorance and of new questions to be answered.

Astronomy is the most ancient of the sciences, and its development is a model of other fields of knowledge. People have been observing the stars and other celestial bodies since the dawn of recorded history. As early as 3000 B.C. the Babylonians recognized a number of the constellations. In the sixth century B.C., Pythagoras proposed the notion of a spherical Earth and of a universe with objects in it chat moved in accordance with natural laws. Later Greek philosophers taught that the sky was a hollow globe surrounding the Earth, that it was supported on an axis running through the Earth, and chat stars were inlaid on its inner surface, which rotated westward daily. In the second century A.D., Ptolemy propounded a theory of a geocentric (Earth-centered) universe in which the sun, planets, and stars moved in circular orbits of cycles and epicycles around the Earth, although the Earth was not at the precise center of these orbits. While somewhat awkward, the Ptolemaic system could produce reasonably reliable predictions of planetary positions, which were, however, good for only a few years and which developed substantial discrepancies from actual observations over a long period of time. Nevertheless, since there was no evidence then apparent to astronomers that the Earth itself moves, the Ptolemaic system remained unchallenged for more than 13 centuries.

In the sixteenth century Nocolaus Copernicus, who is said to have mastered all the knowledge of his day in mathematics, astronomy, medicine, and theology, became dissatisfied with the Ptolemaic system. He found that a heliocentric system was both mathematically possible and aesthetically more pleasing, and wrote a full exposition of his hypothesis, which was not published until 1543, shortly after his death. Early in

the seventeenth century, Johannes Kepler became imperial mathematician of the Holy Roman Empire upon the death of Tycho Brahe, and he acquired a collection of meticulous naked-eye observations of the positions of celestial bodies chat had been made by Brahe. On the basis of these data, Kepler calculated that both Ptolemy and Copernicus were in error in assuming chat planets traveled in circular orbits, and in 1609 he published a book demonstrating mathematically chat the planets travel around the sun in elliptical orbits. Kepler's laws of planetary motion are still regarded as basically valid.

In the first decade of the seventeenth century Galileo Galilei learned of the invention of the telescope and began to build such instruments, becoming the first person to use a telescope for astronomical observations, and thus discovering craters on the moon, phases of Venus, and the satellites of Jupiter. His observations convinced him of the validity of the Copernican system and resulted in the well-known conflict between Galileo and church authorities. In January 1642 Galileo died, and in December of chat year Isaac Newton was born. Modern science derives largely from the work of these two men.

Newton's contributions to science are numerous. He laid the foundations for modem physical optics, formulated the basic laws of motion and the law of universal gravitation, and devised the infinitesimal calculus. Newton's laws of motion and gravitation are still used for calculations of such matters as trajectories of spacecraft and satellites and orbits of planets. In 1846, relying on such calculations as a guide to observation, astronomers discovered the planet Neptune.

While calculations based on Newton's laws are accurate, they are dismayingly complex when three or more bodies are involved. In 1915, Einstein announced his theory of general relativity, which led to a set of differential equations for planetary orbits identical to those based on Newtonian calculations, except for those relating to the planet Mercury. The elliptical orbit of Mercury rotates through the years, but so slowly that the change of position is less than one minute of arc each century. The equations of general relativity precisely accounted for this precession; Newtonian equations did not.

Einstein's equations also explained the red shift in the light from distant stars and the deflection of starlight as it passed near the sun. However, Einstein assumed chat the universe was static, and, in order to permit a meaningful solution to the equations of relativity, in 1917 he added another term, called a "cosmological constant," to the equations. Although the existence and significance of a cosmological constant is still being debated, Einstein later declared chat this was a major mistake, as Edwin Hubble established in the 1920s chat the universe is expanding and galaxies are receding from

one another at a speed proportionate to their distance.

Another important development in astronomy grew out of Newton's experimentation in optics, beginning with his demonstration chat sunlight could be broken up by a prism into a spectrum of different colors, which led to the science of spectroscopy. In the twentieth century, spectroscopy was applied to astronomy to gun information about the chemical and physical condition of celestial bodies chat was not disclosed by visual observation. In the 1920s, precise photographic photometry was introduced to astronomy and quantitative spectrochemical analysis became common. Also during the 1920s, scientists like Heisenberg, de Broglie, Schrodinger, and Dirac developed quantum mechanics, a branch of physics dealing with subatomic particles of matter and quanta of energy. Astronomers began to recognize that the properties of celestial bodies, including planets, could be well understood only in terms of physics, and the field began to be referred to as "astrophysics."

These developments created an explosive expansion in our knowledge of astronomy. During the first five thousand years or more of observing the heavens, observation was confined to the narrow band of visible light. In the last half of this century astronomical observations have been made across the spectrum of electromagnetic radiation, including radio waves, infrared, ultraviolet, X-rays, and gamma rays, and from satellites beyond the atmosphere. It is no exaggeration to say chat since the end of World War II more astronomical data have been gathered than during all of the thousands of years of preceding human history.

However, despite all improvements in instrumentation, increasing sophistication of analysis and calculation augmented by the massive power of computers, and the huge aggregation of data, or knowledge, we still cannot predict future movements of planets and other elements of even the solar system with a high degree of certainty. Ivars Peterson, a highly trained science writer and an editor of Science News, writes in his book Newton's Clock (1993) that a surprisingly subtle chaos pervades the solar system. He states:

In one way or another the problem of the solar system's stability has fascinated and tormented asrtonomers and mathematicians for more than 200 years. Somewhat to the embarrassment of contemporary experts, it remains one of the most perplexing, unsolved issues in celestial mechanics. Each step toward resolving this and related questions has only exposed additional uncertainties and even deeper mysteries.

Similar problems pervade astronomy. The two major theories of cosmology, general relativity and quantum mechanics, cannot be stated in the same mathematical language, and thus are inconsistent with one another, as the Ptolemaic and Copernican

theories were in the sixteenth century, although both contemporary theories continue to be used, but for different calculations. Oxford mathematician Roger Penrose, in The Emperors New Mind (1989), contends that this inconsistency requires a change in quantum theory to provide a new theory he calls "correct quantum gravity."

Furthermore, the observations astronomers make with new technologies disclose a total mass in the universe that is less than about 10 percent of the total mass that mathematical calculations require the universe to contain on the basis of its observed rate of expansion. If the universe contains no more mass than we have been able to observe directly, then according to all current theories it should have expanded in the past, and be expanding now, much more rapidly than the rate actually observed. It is therefore believed that 90 percent or more of the mass in the universe is some sort of "dark matter" that has not yet been observed and the nature of which is unknown. Current theories favor either WIMPs (weakly interacting massive particles) or MACHOs (massive compact halo objects). Other similar mysteries abound and increase in number as our ability to observe improves.

The progress of biological and life sciences has been similar to that of the physical sciences, except that it has occurred several centuries later. The theory of biological evolution first came to the attention of scientists with the publication of Darwin's Origin of Species in 1859. But Darwin lacked any explanation of the causes of variation and inheritance of characteristics. These were provided by Gregor Mendel, who laid the mathematical foundation of genetics with the publication of papers in 1865 and 1866.

Medicine, according to Lewis Thomas, is the youngest science, having become truly scientific only in the 1930s. Recent and ongoing research has created uncertainty about even such basic concepts as when and how life begins and when death occurs, and we are spending billions in an attempt to learn how much it may be possible to know about human genetics. Modern medicine has demonstrably improved both our life expectancies and our health, and further improvements continue to be made as research progresses. But new questions arise even more rapidly than our research resources grow, as the host of problems related to the Human Genome Project illustrates.

From even such an abbreviated and incomplete survey of science as this, it appears that increasing knowledge does not result in a commensurate decrease in ignorance, but, on the contrary, exposes new lacunae in our comprehension and confronts us with unforeseen questions disclosing areas of ignorance of which we were not previously aware.

Thus the concept of science as an expanding body of knowledge that will eventually encompass or dispel all significant areas of ignorance is an illusion. Scientists and philosophers are now observing that it is naive to regard science as a process that begins with observations that are organized into theories and are then subsequently tested by experiments. The late Karl Popper, a leading philosopher of science, wrote in The Growth of Scientific Knowledge (1960) chat science starts from problems, not from observations, and chat every worthwhile new theory raises new problems. Thus there is no danger that science will come to an end because it has completed its task, clanks to the "infinity of our ignorance."

At least since Thomas Kuhn published The Structure of Scientific Revolutions (1962), it has been generally recognized that observations are the result of theories (called paradigms by Kuhn and other philosophers), for without theories of relevance and irrelevance there would be no basis for determining what observations to make. Since no one can know everything, to be fully informed on any subject (a claim sometimes made by those in authority) is simply to reach a judgment that additional data are not important enough to be worth the trouble of securing or considering.

To carry the analysis another step, it must be recognized that theories are the result of questions and questions are the product of perceived ignorance. Thus it is chat ignorance gives rise to inquiry chat produces knowledge, which, in turn, discloses new areas of ignorance. This is the paradox of knowledge: As knowledge increases so does ignorance, and ignorance may increase more than its related knowledge.

My own metaphor to illustrate the relationship of knowledge and ignorance is based on a line from Matthew Arnold: "For we are here as on a darkling plain...." The dark chat surrounds us, chat, indeed, envelops our world, is ignorance. Knowledge is the illumination shed by whatever candles (or more technologically advanced light sources) we can provide. As we light more and more figurative candles, the area of illumination enlarges; but the area beyond illumination increases geometrically. We know chat there is much we don't know; but we cannot know how much there is chat we don't know. Thus knowledge is finite, but ignorance is infinite, and the finite cannot ever encompass the infinite.

This is a revised version of an article originally published in COSMOS 1994. Copyright 1995 by Lee Loevinger.

Lee Loevinger is a Washington lawyer and former assistant attorney general of the United States who writes frequently for scientific c publications. He has participated for many years as a member, co-chair, or liaison with the National Conference of Lawyers and Scientists, and he is a founder and former chair of the Science and

Technology Section of the American Bar Association. Office address: Hogan and Hartson, 555 Thirteenth St. NW, Washington, DC 20004.

人类从古类人猿进化到当前的状态这个长久的进化过程中的最大成就是有关于人类自身、世界以及宇宙众多知识的获得和积聚。这些知识的产物就是那些我们总称为“文化”的所有的东西,包括语言、科学、文学、艺术、所有的物质机器、仪器、我们所用的结构以及社会所依赖的物质基础设施。我们之中大多数人认为现代社会中各种知识在不断增长,与此同时社会或群体对新知识的积累也在稳步减少我们对人类自身、世界及宇宙的未知。然而,现有的无垠的未知领域在不断提示着我们需要批判性地分析这个设想。

普遍的观点认为,智力的演变与身体的发育相似,虽然要快上许多。生物的进化经常被描述为“个体的进化重演物种的进化”,意思就是个体的胚胎在其从受精卵发展到人类胎儿的过程中经历了几个阶段,在这些阶段中个体胚胎类似人类物种的祖先形式。普遍的观点认为人类从天真无邪的状态进步的,这个状态可以比作婴儿,然后逐渐的获得越来越多的知识,就像一个小孩通过学习通过了教育体系的几个年级一样。这种观点中暗含着一种臆断,那就是种系发育类似个体发育,知识的积累最终能达到一个基本完整的阶段,至少在特定的领域中是如此,就好像社会已获得了所有的高等学位,这些学位表明它已经掌握了各个重要学科的知识。

实际上,一些杰出的科学家已经表达了这样的观点。1894年伟大的物理学家Albert Michelson在芝加哥大学的一个演讲中讲到:虽然不能断言未来的物理学不会再取得比过去更惊人的成就,但很可能大多数的重要的基本原理都已经牢固的确立了,那么,进一步的发展将可能主要是如何将这些基本原理精确地应用到我们注意的现象上去。人们很难在物理学领域再作突破。

在迈克尔逊讲述上一段话之后的一个世纪,科学家们在物理学上的发现远远超出了对小数点第六位测量的改进,而今天没有人会再进行与Michelson相似的阐述。但是仍有许多人坚持认为知识有迟早达到穷尽的可能性。英国伟大的科学家斯蒂芬·霍金在他的非常流行的<<时间简史>>一书中, 推测得出以下结论, 我们可以“发现一种终极理论,那将是人类理性的最终胜利, 那时候我们将知道上帝在想什么”。澳大利亚物理学家保罗·戴维斯附和斯蒂芬·霍金的观点,在他的书名为《上帝的智慧》一书中提出人类才智能使人类掌握一些上帝的思想的一些秘密。其他一些同时代的科学家有提及“万物之理”,也就是解释所有可以观察到的物理现象的理论。物理理论的现代标准模型的构建者之一诺贝尔奖获得者斯蒂芬·温伯格则提到他的著作《终极理论之梦》。

尽管这些科学家和现代的其他科学家做出了卓越贡献并且对知识孜孜以求,但是在科学史上没有任何事情表明任何对于科学知识体系增加的数据和理论曾经给任何领域的所有问题提供答案。相反,科学史表明,增加的知识使人们认识到新的无知的领域并带来新的问题。

天文学是最古老的科学,它的发展是其他领域知识发展的模型。自从有史记

载以来,人们一直在观察星星和天体。早在公元前3000年,巴比伦人认识了一定数量的星座。在第一个五千年或者更早一些的时间,天文学观察仅限于狭窄的可见光波长范围内。在过去的这半个世纪,天文学观察已经可以在电磁辐射波长(包括广播电波、红外、紫外、X射线、伽玛射线)范围内进行,还可以通过大气层外的卫星来观察。可以毫不夸张地说,自从第二次世界大战以来收集的天文学数据,比在人类持续的几千年历史中收集的数据还要多。

然而,虽然仪器的应用有了长足的改进,由于计算机以及大量数据和知识的积累,分析和计算的复杂程度有了大幅度的提高,但是我们仍然难以预测出行星未来的运动以及另一些原理甚至是太阳系中被高度确定的原理。一个训练有素的科普作家以及科学新闻的编辑Ivars Peterson,在他的书“牛顿的时钟”里提到一种奇妙的细微的混乱弥漫着太阳系中。他写到:

两百多年以来,太阳系的稳定性问题以一种或是另一种方式吸引着并且困扰着天文学家和数学家。而这仍然是天体力学中最为困扰并且未能解决的问题,当代的科学家们对此也感到很尴尬。每一步对于此问题以及与此相关的问题的解决都会产生而外的不确定的问题甚至是更深的奥秘。

相似的问题在天文学中中也很流行。关于宇宙的最主要的两个理论,广义相对论以及量子力学不能够用形同的数学语言来表达,因此两者是不一致的,就像16世纪时托勒密和哥白尼的理论一样,虽然当代的理论仍在被应用,但是所用的计算公式不同。牛津大学的数学家Roger Penrose在他的书“新思想的帝国”中提到由于量子论中存在不可调和的争论,因此他提出了一种名为“修正的量子重力“理论”。

生物和生命科学的发展过程与物理学的发展过程相似,只是它的发生晚了几个世纪。生物进化论第一次引起科学家的注意是在1859年达尔文的“物种起源“的出版。但是达尔文没有解释造成性状遗传和变异的原因。孟德尔在1865年和1866年发表的论文中运用了基于基因的数学理论解释了这些原因。

按照Lewis Thomas的观点,医学是最年轻的科学,二十世纪三十年代才成为真正的科学。正在进行的和将要进行的研究产生了很多不确定东西。有些是关于一些基本的概念,比如:生命是何时诞生的,是怎样诞生的,死亡会在什么时候发生;并且我们现在花费数十亿美元来设法了解我们对于人类的基因能够知道多少。现代医学显著的提高了我们的寿命和健康状况,而且随着研究过程的深入将来还会继续改善。但是新的问题的出现速度要比我们得到的研究成果的增长速度快得多,比如说在有关人类基因工程项目中所出现的大量的问题。

仅仅通过对科学如此粗略而浅显的认识来看,认识的增加并没有造成无知相称的减少,相反揭露了我们理解中的新的空缺,还使我们面临着意料之外的问题,这些问题揭开我们不可预料的未知领域。

因此,把科学作为能够包围和消除一切重要无知领域的不断扩充的知识的这种观念只不过是一种错觉。科学家和哲学家正在认识到,把科学简单的看成先观察,然后根据观察的结果总结成理论再被随后的实验验证的过程,这是很幼稚的。

已故的科学哲学先驱Karl Popper,在他1960年的著作《科学知识的发展》中提到,科学起源于问题而非观察,每个有真实价值的新科学理论都引出新的问题。因此不用担心科学会因完成它的使命而走到尽头,这归功于无穷无尽的未知。

至少自从Thomas Kuhn在1962年出版了《科学革命史》一书以来,人们普遍认为观测只不过是科学理论的结果,这种观点常常被Kuhn和其他哲学家拿来作范例,这是由于如果没有恰当的和不恰当的理论,要做什么样观察就将没有决定基础。既然没有任何人能够知道一切,那么在某一领域获得全面的了解(有时是权威的观点)只不过达到一种判断(境界),即另外的信息都不重要了,不值得去费神求证和考虑了。

进一步分析,我们必须认识到理论是问题的产物而问题是已认知的未知的产物。因此,正是未知引起了探究,探究产生知识然后反过来揭开了新的未知领域。这就是知识的矛盾之处:未知随着知识的增长而增长且有可能比其相关知识增长的更多。

我对知识和未知两者关系的形容来自Matthew的一句话:“我们如同置身于一个黑暗笼罩的平原上……”,笼罩我们并包裹着我们的世界的这片黑暗,就是未知。知识是由我们能提供的所有“蜡烛”散发出来的光芒。光照的面积随着我们点亮越来越多的“蜡烛”而扩大,但是光照之外的面积也在几何增长。因此,知识是有限的,而未知是无限的,有限囊括无限永远是不可能的。

第二课Modular Man

by Alvin Toffler

Urbanism -- the city dweller's way of life – has preoccupied sociology since the turn of the century. Max Weber pointed out the obvious fact that people in cities cannot know all their neighbors as intimately as it was possible for them to do in small communities. Georg Simmel carried this idea one step further when he declared, rather quaintly, that if the urban individual reacted emotionally to each and every person with whom he came into contact, or cluttered his mind with information about them, he would be completely atomized internally and would fall into an unthinkable mental condition.

Louis Wirth, in turn, noted the fragmented nature of urban relationships. “Characteristically, urbanites meet one another in highly segmental roles ...” he wrote,“ Their dependence upon others is confined to a highly fractionalized aspect of the other's round of activity. ”Rather than becoming deeply involved with the total personality of every individual we meet, he explained, we necessarily maintain superficial and partial contact with some. We are interested only in the efficiency of the shoe salesman in meeting our needs; we couldn't care less that his wife is an alcoholic.

What this means is that we form limited involvement relationships with most of the people around us. Consciously or not we define our relationships with most people in functional terms. So long as we do not become involved with the shoe salesman's problems at home, or his more general hopes, dreams and frustrations, he is, for us, fully interchangeable with any other salesman of equal competence. In effect, we have applied the modular principle to human relationships. We have created the disposable person: Modular Man.

Rather than entangling ourselves with the whole man, we plug into a module of his personality. Each personality can be imagined as a unique configuration of thousands of such modules. Thus no whole person is interchangeable with any other. But certain modules are. Since we are seeking only to buy a pair of shoes, and not the friendship, love or hate of the salesman, it is not necessary for us to tap into or engage with all the other modules that form his personality. Our relationship is safely limited. There is limited liability on both sides. The relationship entails certain accepted forms of behavior and communication. Both sides understand, consciously or otherwise, the limitations and laws. Difficulties arise only when one or another party oversteps the tacitly understood limits, when he attempts to connect up with some module not relevant to the function at hand.

Today a vast sociological and psychological literature is devoted to the alienation presumed to flow from this fragmentation of relationships. Much of the rhetoric of existentialism and the student revolt decries this fragmentation. It is said that we are

原文加翻译Growingpains

牛津高中英语模块一第二单元Growing pains Growing pains Many teenagers feel lonely, as if no one understands them and the changes they are going through. Day by day, everything seems different, yet the same. Life never seems to be going fast enough; yet, in other ways, like a race car, life seems to be rushing too fast and even going out of control. Has anyone else ever felt this way? These feelings are a common part of adolescence—the time of life between child and adult. And, though it may some times be difficult to believe, you are not alone—every adult has gone through adolescence, and your friends are going through it right now along with you. It is common for teenagers to feel lonely and misunderstood. These feelings can be thought of as growing pains—the difficulties that teenagers face as they grow to adults. As teenagers grow, it is normal for them to become confused with the changing world both inside and outside of them. During adolescence, teenagers go through great physical changes. They grow taller and their voices get deeper, among many other developments. Along with these physical changes, there come many psychological changes. Boys and girls tend to be different in this regard. Many boys become risk-takers—they want to find their own limits and the limits of the world around them, but may not have the wisdom to make good choices in their behavior. At the same time, girls often want someone—anyone—to talk to, as they try to deal with their strong feelings. In the social world, as teenagers get older, they struggle to depend on themselves. They may badly want and need their parents’love, yet feel distant; they may want to be part of the group, yet desire independence. Since teenagers have difficulty balancing these needs, they often question who they are and how they fit in society. The good news is that these kinds of growing pains do not last. In the end everything turns out OK—the teenager becomes a healthy adult, and this period of change and challenge is traded for the changes and challenges of grown-up life. 好在这些成长的烦恼并不会持久。最终一切都会好起来——青少年成长为健康的成年人,而青春期的变化和挑战则转变为成人生活中的种种变化和挑战。在大千社会中,随着青少年长大,他们努力地自力更生。他们或许迫切需要父母的关爱,却又感觉疏远;他们或许想要成为团体的一员,但又渴望独立。正因为青少年们在平衡这些需要时有困难,所以他们经常质疑自己到底是谁以及怎样融入社会。与这些生理变化同时而来的,还有很多心理上的变化。男孩和女孩在这方面往往有所不同。很多男孩成为危险尝试者——他们希望找到自己的局限和他们周边世界的局限,但也许并不具有对其行为作出正确抉择的智慧。而与此同时,女孩则通常需要和某个人——或任何人——进行交谈,因为她们试图面对自己强烈的情感。在青少年成长的时候,对自己无论体内还是体外的状态变化感到困惑对他们而言是正常现象。在青春期,青少年经历着身体上的巨大变化。他们个子长高,声音变低,还有很多其他的成长发育。这些感觉是青春期——介于孩童和成人之间的人生阶段——的正常组成部分。而且,虽然有时难以相信,并非只有你才是这样——每一个成年人都经历过青春期,而你的朋友和你一样正经历这个阶段。对青少年而言,感到孤独和被误解是很普遍的。这些情感可以看作是成长的烦恼——是青少年迈向成年时所面对的困难。成长的烦恼很多青少年感到孤独,好像没有人理解他们以及他们正在经历的变化。日子一天天过去,而所有事情似乎都是不同的,可又都是一成不变的。生活似乎从不过得足够快;而从别的方面看,生活似乎过得太快甚至于失控,像开赛车一样。别的人也有过同感么? Home alone Mom and Dad arrive back from vacation a day earlier than expected. The curtains are closed and the living room is dark when Mom and Dad enter. Dad: It’s so nice to be home!

大学英语精读1课文翻译

大学英语精读1课文翻译 Unit1 Some Strategies or Learning English 学习英语绝非易事。它需要刻苦和长期努力。 虽然不经过持续的刻苦努力便不能期望精通英语,然而还是有各种有用的学习策略可以用来使这一任务变得容易一些。以下便是其中的几种。 1. 不要以完全同样的方式对待所有的生词。你可曾因为简直无法记住所学的所有生词而抱怨自己的记忆力太差?其实,责任并不在你的记忆力。如果你一下子把太多的生词塞进头脑,必定有一些生词会被挤出来。你需要做的是根据生词日常使用的频率以不同的方式对待它们。积极词汇需要经常练习,有用的词汇必须牢记,而在日常情况下不常出现的词只需见到时认识即可。你会发现把注意力集中于积极有用的词上是扩大词汇量最有效的途径。 2.密切注意地道的表达方式。你可曾纳闷过,为什么我们说 "我对英语感兴趣"是"I'm interested in English",而说"我精于法语"则是"I'm good at French"?你可曾问过自己,为什么以英语为母语的人说"获悉消息或秘密"是"learn the news or secret",而"获悉某人的成功或到来"却是"learn of someone's success or arrival"?这些都是惯用法的例子。在学习英语时,你不仅必须注意词义,还必须注意以英语为母语的人在日常生活中如何使用它。 3.每天听英语。经常听英语不仅会提高你的听力,而且有助你培养说的技能。除了专为课程准备的语言磁带外,你还可以听英语广播,看英语电视和英语电影。第一次听录好音的英语对话或语段,你也许不能听懂很多。先试着听懂大意,然后再反复地听。你会发现每次重复都会听懂更多的东西。 4.抓住机会说。的确,在学校里必须用英语进行交流的场合并不多,但你还是可以找到练习讲英语的机会。例如,跟你的同班同学进行交谈可能就是得到一些练习的一种轻松愉快的方式。还可以找校园里以英语为母语的人跟他们随意交谈。或许练习讲英语最容易的方式是高声朗读,因为这在任何时间,任何地方,不需要搭档就可以做到。例如,你可以看着图片或身边的物件,试着对它们详加描述。你还可以复述日常情景。在商店里购物或在餐馆里吃完饭付过账后,假装这一切都发生在一个讲英语的国家,试着用英语把它表演出来。

5篇英语精读文章+翻译

1.Can We Know the Universe? - Reflections on a Grain of Salt Carl Sagan Science is a way of thinking much more than it is a body of knowledge. Its goal is to find out how the world works, to seek what regularities there may be, to penetrate to the connections of things - from sub-nuclear particles, which may be the constituents of all matter, to living organisms, the human social community, and thence to the cosmos as a whole. Our intuition is by no means an infallible guide. Our perceptions may be distorted by training and prejudice or merely because of the limitations of our sense organs, which, of course, perceive directly but a small fraction of the phenomena of the world. Even so straightforward a question as whether in the absence of friction a pound of lead falls faster than a grain of fluff was answered incorrectly by Aristotle and almost everyone else before the time of Galileo. Science is based on experiment, on a willingness to challenge old dogma, on an openness to see the universe as it really is. Accordingly, science sometimes requires courage-at the very least, the courage to question the conventional wisdom. But to what extent can we really know the universe around us? Sometimes this question is posed by people who hope the answer will be in the negative, who are fearful of a universe in which everything might one day be known. And sometimes we hear pronouncements from scientists who confidently state that everything worth knowing will soon be known - or even is already known. Let us approach a much more modest question: not whether we can know the universe or the Milky Way Galaxy or a star or a world. Can we know ultimately and in detail, a grain of salt? Consider one microgram of table salt, a speck just barely large enough for someone with keen eyesight to make out without a microscope. In that grain of salt there are about 1016 sodium and chlorine atoms. This is a 1 followed by 16 zeros, 10 million billion atoms. If we wish to know a grain of salt, we must know at least the three-dimensional positions of each of these atoms. (In fact, there is much more to be known - for example, the nature of the forces between the atoms - but we are making only a modest calculation.) Now, is this number more or less than the number of things which the brain can know? How much can the brain know? There are perhaps 1011 neurons in the brain, the circuit elements and switches that are responsible in their electrical and chemical activity for the functioning of our minds. A typical brain neuron has perhaps a thousand little wires, called dendrites, which connect it with its fellows. If, as seems likely, every bit of information in the brain corresponds to one of these connections, the total number of things knowable by the brain is no more than 1014, one hundred trillion. But this number is only one percent of the number of atoms in our speck of salt.

论语十二章原文加翻译

论语十二章原文加翻译 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《论语》十二章翻译 1.子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?” 翻译:孔子说:“学了,然后按一定的时间去复习它,不也是很愉快吗?有志同道合的人从远方来,不也快乐吗?人家不了解我,我却不怨恨,不也是道德上有修养的人吗?” 2.曾子曰:“吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?” 翻译:曾子说:“我每天多次反省自己:替别人办事是否尽心竭力了呢?同朋友交往是否诚实呢?老师传授给我的知识是否复习了呢?” 3.子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩。” 翻译:孔子说:“我十五岁立志学习,三十岁立足于社会,四十掌握了知识而不致迷惑,五十岁了解并顺应了自然规律,六十岁听到别人说话就能明辨是非真假,七十岁可以随心所欲,又不超出规矩” 4.子曰:“温故而知新,可以为师矣。” 翻译:孔子说:"在温习旧知识后,能有新体会,新发现,这样的人是可以当老师的." 5.子曰:“学而不思则罔,思而不学则殆。” 翻译:孔子说:"只读书却不思考,就会迷惑而无所适从;只是空想却不读书,就会有害. 6.子曰:“贤哉回也,一箪食,一瓢饮,在陋巷,人不堪其忧,回也不改其乐。贤哉回也。” 翻译:∶“颜回的品德多么高尚啊,!吃的是一小筐饭,喝的是一瓢水,住在穷陋的小房中,别人都受不了这种贫苦,颜回却仍然不改变他好学的乐趣。“颜回的品德多么高尚啊!” 7.子曰:“知之者不如好之者,好之者不如乐之者。 翻译:孔子说:“对于学习,知道怎么学习的人,不如爱好学习的人;爱好学习的人,又不如以学习为乐趣的人。” 8.子曰:“饭疏食饮水,曲肱而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。 ” 翻译:孔子说:“吃粗粮,喝白水,弯着胳膊当枕头,乐趣也就在这中间了。用不正当的手段得来的富贵,对于我来讲就像是天上的浮云一样。” 9、子曰:“三人行,必有我师焉。则其善者而从之,其不善者而改之。” 翻译:孔子说:三个人走在一起,其中必定会有我的老师。拿他们的优点来自己学习,拿他们的缺点来自己改过。 10、子在川上曰:逝者如斯夫,不舍昼夜。 翻译:孔子站在河岸上说,过去的就像这流水,白天和夜晚都在流 11、三军可夺帅也匹夫不可夺志也 翻译:军队可以被夺去主帅,男子汉却不可被夺去志气。

[实用参考]大学英语精读第三版第四册课文及课文翻译.doc

Unit1 Twocollege-ageboPs,unawarethatmakingmonePusuallPinvolveshardwork,aretemptedbPanadvertis ementthatpromisesthemaneasPwaPtoearnalotofmoneP.TheboPssoonlearnthatifsomethingseemstog oodtobetrue,itprobablPis. 一个大学男孩,不清楚赚钱需要付出艰苦的劳动,被一份许诺轻松赚大钱的广告吸引了。男孩们很快就明白,如果事情看起来好得不像真的,那多半确实不是真的。BIGBUCKSTHEEASPWAP轻轻松松赚大钱"Pououghttolookintothis,"Isuggestedtoourtwocollege-agesons."ItmightbeawaPtoavoidtheindignitP ofhavingtoaskformonePallthetime."Ihandedthemsomemagazinesinaplasticbagsomeonebadhungon ourdoorknob.AmessageprintedonthebagofferedleisurelP,lucrativework("BigBuckstheEasPWaP!")o fdeliveringmoresuchbags. “你们该看看这个,”我向我们的两个读大学的儿子建议道。“你们若想避免因为老是向人讨钱而有失尊严的话,这兴许是一种办法。”我将挂在我们门把手上的、装在一个塑料袋里的几本杂志拿给他们。塑料袋上印着一条信息说,需要招聘人投递这样的袋子,这活儿既轻松又赚钱。(“轻轻松松赚大钱!”) "Idon'tmindtheindignitP,"theolderoneanswered.“我不在乎失不失尊严,”大儿子回答说。"Icanlivewithit,"hisbrotheragreed.“我可以忍受,”他的弟弟附和道。"Butitpainsme,"Isaid,"tofindthatPoubothhavebeenpanhandlingsolongthatitnolongerembarrassesPou."“看到你们俩伸手讨钱讨惯了一点也不感到尴尬的样子,真使我痛心,”我说。TheboPssaidthePwouldlookintothemagazine-deliverPthing.Pleased,Ilefttownonabusinesstrip.BPmi dnightIwascomfortablPsettledinahotelroomfarfromhome.Thephonerang.ItwasmPwife.Shewantedt oknowhowmPdaPhadgone.孩子们说他们可以考虑考虑投递杂志的事。我听了很高兴,便离城出差去了。午夜时分,我已远离家门,在一家旅馆的房间里舒舒服服住了下来。电话铃响了,是妻子打来的。她想知道我这一天过得可好。 "Great!"Ienthused."HowwasPourdaP?"Iinquired.“好极了!”我兴高采烈地说。“你过得怎么样?”我问道。 "Super!"Shesnapped."Justsuper!Andit'sonlPgettingstarted.Anothertruckjustpulledupoutfront."“棒极了!”她大声挖苦道。“真棒!而且这还仅仅是个开始。又一辆卡车刚在门前停下。”"Anothertruck?"“又一辆卡车?” "Thethirdonethisevening.ThefirstdeliveredfourthousandMontgomerPWards.Thesecondbroughtfour thousandSears,Roebucks.Idon'tknowwhatthisonehas,butI'msureitwillbefourthousandofsomething.S incePouareresponsible,IthoughtPoumightliketoknowwhat'shappening.“今晚第三辆了。第一辆运来了四千份蒙哥马利-沃德百货公司的广告;第二辆运来四千份西尔斯-罗伯克百货公司的广告。我不知道这一辆装的啥,但我肯定又是四千份什么的。既然这事是你促成的,我想你或许想了解事情的进展。” WhatIwasbeingblamedfor,itturnedout,wasanewspaperstrikewhichmadeitnecessarPtohand-deliverth eadvertisinginsertsthatnormallPareincludedwiththeSundaPpaper.ThecompanPhadpromisedourboPs $600fordeliveringtheseinsertsto4,000housesbPSundaPmorning.我之所以受到指责,事情原来是这样:由于发生了一起报业工人罢工,通常夹在星期日报纸里的广告插页,必须派人直接投送出去。公司答应给我们的孩子六百美金,任务是将这些广告插页在星期天早晨之前投递到四千户人家去。 "Pieceofcake!"ouroldercollegesonhadshouted.“不费吹灰之力!”我们上大学的大儿子嚷道。"SiGhundredbucks!"Hisbrotherhadechoed,"Andwecandothejobintwohours!"“六百块!”他的弟弟应声道,“我们两个钟点就能干完!” "BoththeSearsandWardadsarefournewspaper-sizepages,"mPwifeinformedme."TherearethirtP-twot housandpagesofadvertisingonourporch.Evenaswespeak,twobigguPsarecarrPingarmloadsofpaperup thewalk.Whatdowedoaboutallthis?"“西尔斯和沃德的广告通常都是报纸那么大的四页,”妻子告诉我说,“现在我们门廊上堆着三万二千页广告。就在我们说话的当儿,两个大个子正各抱着一大捆广告走过来。这么多广告,我们可怎么办?”"JusttelltheboPstogetbusP,"Iinstructed."TheP'recollegemen.TheP'lldowhatthePhavetodo."“你让孩子们快干,”我指示说。“他们都是大学生了。他们自己的事得由他们自己去做。”AtnoonthefollowingdaPIreturnedtothehotelandfoundanurgentmessagetotelephonemPwife.Hervoic

英语精读第二册课文翻译

UNIT 2-1 一场关于男人是否比女人勇敢的激烈的讨论以一个意外的方式。晚宴我最初听到这个故事是在印度,那儿的人们今天讲起它来仍好像实有其事似的——尽管任何一位博物学家都知道这不可能是真的。后来有人告诉我,在第一次世界大战之后不久就出现在一本杂志上。但登在杂志上的那篇故事, 以及写那篇故事的人,我却一直未能找到。故事发生在印度。某殖民官员和他的夫人举行盛行的晚宴。跟他们一起就座的客人有——军官和他人的夫人,另外还有一位来访的美国博物学家——筵席设在他们家宽敞的餐室里,室内大理石地板上没有铺地毯;屋顶明椽裸露;宽大的玻璃门外便是阳台。席间,一位年轻的女士同一位少校展开了热烈的讨论。年轻的女士认为,妇女已经有所进步,不再像过去那样一见到老鼠就吓得跳到椅子上;少校则不以为然。“女人一遇到危急情况,”少校说,反应便是尖叫。而男人虽然也可能想叫,但比起女人来,自制力却略胜一筹。这多出来的一点自制力正是真正起作用的东西。”那个美国人没有参加这场争论,他只是注视着在座的其他客人。在他这样观察时,他发现女主人的脸上显出一种奇异的表情。她两眼盯着正前方,脸部肌肉在微微抽搐。她向站在座椅后面的印度男仆做了个手势,对他耳语了几句。男仆两眼睁得大大的,迅速地离开了餐室。在座的客人中,除了那位美国人以外论证也没有注意到这一幕,也没有看到那个男仆把一碗牛奶放在紧靠门边的阳台上。那个美国人突然醒悟过来。在印度,碗中的牛奶只有一个意思——引蛇的诱饵。他意识到餐室里一定有条眼镜蛇。他意识到餐室里一定有条眼镜蛇。他抬头看了看屋顶上的椽子——那是最可能有蛇藏身的地方——但那上面空荡荡的。室内的三个角落里也是空的,而在第四个角落里,仆人们正在等着下一道菜。这样,剩下的就只有一个地方了餐桌下面。他首先想到的是往后一跳,并向其他人发警告。但他知道这样会引起骚乱,致使眼镜索受惊咬人。于是他很快讲了一通话,其语气非常威严,竟使所有的人安静了下来。我想了解一下在座的诸位到底有多大的克制能力,我数三百下——也就五分钟——你们谁都不许动一动。动者将罚款五十卢比。准备好!”在他数数的过程中,那2 0 个人像一尊尊石雕一样端坐在那儿。当他数到“……280……”时,突然从眼然处看到那条眼镜蛇钻了出来,向那碗牛奶爬去。在他跳起来把通往阳台的门全都砰砰地牢牢关上时,室内响起了一片尖叫声。“你刚才说得很对,少校!”男主人大声说。一个男子刚刚为我们显示了从容不迫、镇定自若的范例。”“且慢”,那位美国人一边说着一边转向女主人。温兹太太,你怎么知道那条眼镜蛇是在屋子里呢?”女主人的脸上闪现出一丝淡淡的微笑,回答说:“因为它当时正从我的脚背上爬过去。” UNIT2 杰斐逊很久以前就死了,但是我们仍然对他的一些思想很感兴趣,杰斐逊的箴言, 布鲁斯.布利文、托马斯.杰斐逊美国第三任总统,也许不像乔治.华盛顿和亚伯拉罕.林肯那样著名,但大多数人至少记得有关他的一件事实:《独立宣言》是他起草的。虽然杰斐逊生活在二百多年以前,但我们今天仍可以从他身上学到很多东西。他的许多思想对当代青年特别有意义。下面就是他讲过和写到过的一些观点:自己去看。杰斐逊认为,一个自由的人除了从书本中获取知识外,还可以从许多别的来源获得知识;亲自做调查是很重要的。当他还年轻的时候,他就被任命为一个委员会的成员,去调查詹姆斯河南部支流的水深是否可以通行大型船只。委员会的其他成员都坐在州议会大厦内,研究有关这一问题的文件,而杰斐逊却跳进一只独木舟去做现场观测。你可以向任何人学习。按出身及其所受的教育,杰斐逊均属于最高的社会阶层。然而很少跟出身卑贱的人说话的年代,在那个贵人们除了发号施令以外。杰斐逊却想尽办法跟园丁、仆人和侍者交谈。有一次杰斐逊曾这样对法国贵族拉斐特说:你必须像我那样到平民百性的家里去,看看他们的烧饭锅,吃吃他们的面包。只要你肯这样做,你就会发现老百姓为什么会不满意,你就会理解正在威胁着法国的革命。”自已作判断。未经过认真的思考,杰斐逊绝不接受别人的意见。“不要相信它或拒绝它。

原文及翻译

明〕魏学洢 明有奇巧人曰王叔远,能以径寸之木为宫室、器皿、人物,以至鸟兽、木石,罔不因势象形,各具情态。尝贻余核舟一,盖大苏泛赤壁云。 舟首尾长约八分有奇,高可二黍许。中轩敞者为舱,箬篷覆之。旁开小窗,左右各四,共八扇。启窗而观,雕栏相望焉。闭之,则右刻“山高月小,水落石出”,左刻“清风徐来,水波不兴”,石青糁之。 船头坐三人,中峨冠而多髯者为东坡,佛印居右,鲁直居左。苏、黄共阅一手卷。东坡右手执卷端,左手抚鲁直背。鲁直左手执卷末,右手指卷,如有所语。东坡现右足,鲁直现左足,各微侧,其两膝相比者,各隐卷底衣褶中。佛印绝类弥勒,袒胸露乳,矫首昂视,神情与苏黄不属。卧右膝,诎右臂支船,而竖其左膝,左臂挂念珠倚之,珠可历历数也。 舟尾横卧一楫。楫左右舟子各一人。居右者椎髻仰面,左手倚一衡木,右手攀右趾,若啸呼状。居左者右手执蒲葵扇,左手抚炉,炉上有壶,其人视端容寂,若听茶声然。 其船背稍夷,则题名其上,文曰“天启壬戌秋日,虞山王毅叔远甫刻”,细若蚊足,钩画了了,其色墨。又用篆章一,文曰“初平山人”,其色丹。 通计一舟,为人五,为窗八,为箬篷,为楫,为炉,为壶,为手卷,为念珠各一;对联、题名并篆文,为字共三十有四。而计其长,曾不盈寸。盖简桃核修狭者为之。 魏子详瞩既毕,诧曰:嘻,技亦灵怪矣哉!《庄》《列》所载,称惊犹鬼神者良多,然谁有游削于不寸之质,而须麋瞭然者?假有人焉,举我言以复于我,亦必疑其诳。乃今亲睹之。由斯以观,棘刺之端,未必不可为母猴也。嘻,技亦灵怪矣哉! ——选自文学古籍刊行社排印本《虞初新志》 明朝有个手艺奇妙精巧的人叫王叔远,他能用直径一寸左右的木头雕刻成宫室、器皿、

大学英语精读课文翻译

大学英语精读课文翻译 Unit 1 How to Improve Your Study Habits 你也许是个智力一般的普通学生。你在学校的学习成绩还不错,可你也许会觉得自己永远也成不了优等生。然而实际情况未必如此。你要是想取得更好的分数,也还是能做到的。是的,即使中等智力水平的学生,在不增加学习负担的情况下,也能成为优等生。其诀窍如下:1.仔细安排你的时间。把你每周要完成的任务一一列出来,然后制定一张时间表或时间分配图。先把用于吃饭、睡觉、开会、听课等这样一些非花不可的时间填上,然后再选定合适的固定时间用于学习。一定要留出足够的时间来完成正常的阅读和课外作业。当然,学习不应把作息表上的空余时间全都占去,还得给休息、业余爱好和娱乐活动留出一定的时间,这一点很重要。这张周作息表也许解决不了你所有的问题,但是它会使你比较清楚地了解你是怎样使用你的时间的。此外,它还能让你安排好各种活动,既有足够的时间工作,也有足够的时间娱乐。 2.寻找一个合适的地方学习。选定某个地方作为你的“学习区”。这可以是家里或者学校图书馆里的一张书桌或者一把椅子,但它应该是舒适的,而且不该有干扰。在你开始学习时,你应能够全神贯注于你的功课。 3.阅读之前先略读。这就是说,在你仔细阅读一篇文章之前,先把它从头至尾迅速浏览一遍。在预习材料时,你就对它的内容及其结构有了大致的了解。随后在你正式开始阅读时,你就能辨认出不太重要的材料,并且可以略去某些章节不读。略读不仅使你的阅读速度提高一倍,还有助于提高你的理解能力。< 4.充分利用课堂上的时间。上课时注意听讲意味着课后少花力气。要坐在能看得见、听得清的地方。要作笔记来帮助自己记住老师讲课的内容。 5.学习要有规律。课后要及早复习笔记。重温课堂上提到的要点,复习你仍然混淆不清的

大学英语精读第一册课文翻译全

Unit1 课程开始之际,就如何使学习英语的任务更容易提出一些建议似乎正当其时。 Some Strategies or Learning English 学习英语绝非易事。它需要刻苦和长期努力。 虽然不经过持续的刻苦努力便不能期望精通英语,然而还是有各种有用的学习策略可以用来使这一任务变得容易一些。以下便是其中的几种。 1. 不要以完全同样的方式对待所有的生词。你可曾因为简直无法记住所学的所有生词而抱怨自己的记忆力太差?其实,责任并不在你的记忆力。如果你一下子把太多的生词塞进头脑,必定有一些生词会被挤出来。你需要做的是根据生词日常使用的频率以不同的方式对待它们。积极词汇需要经常练习,有用的词汇必须牢记,而在日常情况下不常出现的词只需见到时认识即可。你会发现把注意力集中于积极有用的词上是扩大词汇量最有效的途径。 2.密切注意地道的表达方式。你可曾纳闷过,为什么我们说我对英语感兴趣是I'm 湩整敲瑳摥椠?湅汧獩屨,而说我精于法语则是???潧摯愠?牆湥档?你可曾问过自己,为什么以英语为母语的人说获悉消息或秘密是汜慥湲琠敨渠睥?牯猠捥敲屴,而获悉某人的成功或到来却是汜慥湲漠?潳敭湯?环猠捵散獳漠?牡楲慶屬?这些都是惯用法的例子。在学习英语时,你不仅必须注意词义,还必须注意以英语为母语的人在日常生活中如何使用它。 3.每天听英语。经常听英语不仅会提高你的听力,而且有助你培养说的技能。除了专为课程准备的语言磁带外,你还可以听英语广播,看英语电视和英语电影。第一次听录好音的英语对话或语段,你也许不能听懂很多。先试着听懂大意,然后再反复地听。你会发现每次重复都会听懂更多的东西。 4.抓住机会说。的确,在学校里必须用英语进行交流的场合并不多,但你还是可以找到练习讲英语的机会。例如,跟你的同班同学进行交谈可能就是得到一些练习的一种轻松愉快的方式。还可以找校园里以英语为母语的人跟他们随意交谈。或许练习讲英语最容易的方式是高声朗读,因为这在任何时间,任何地方,不需要搭档就可以做到。例如,你可以看着图片18 / 1 或身边的物件,试着对它们详加描述。你还可以复述日常情景。在商店里购物或在餐馆里吃完饭付过账后,假装这一切都发生在一个讲英语的国家,试着用英语把它表演出来。 5.广泛阅读。广泛阅读很重要,因为在我们的学习环境中,阅读是最重要、最可靠的语言输入来源。在选择阅读材料时,要找你认为有趣的、不需要过多依赖词典就能看懂的东西。开始时每天读一页是个好办法。接下去,你就会发现你每天可以读更多页,而且能对付难度更高的材料。6.经常写。写作是练习你已经学会的东西的好方法。除了老师布置的作文,你还可以找到自己要写的理由。有个笔友可以提供很好的动力;与某个跟你趣味相投但来自不同文化的人进行交流,你会学到很多东西。经常写作的其他方式还有记日记,写小故事或概述每天的新闻。 语言学习是一个积累的过程。从读和听中吸收尽量多的东西,然后再试着把学到的东西通过说和写加以运用,定会大有收益。 Unit2 弗朗西斯·奇切斯特在六十五岁时开始了只身环球航行。本文记述的就是这一冒险故事。 Sailing Round the Word 弗朗西斯·奇切斯特在独自驾船作环球航行之前,已有好几次让他的朋友们感到吃惊了。他曾试图作环球飞行,但没有成功。那是1931年。 好多年过去了。他放弃了飞行,开始航海。他领略到航海的巨大乐趣。奇切斯特在首届横渡大西洋单人航海比赛中夺魁时,已经五十八岁。他周游世界的宿愿重又被唤起,不过这一次他是要驾船环游。由于他患有肺癌,朋友们和医生们都认为他不该去,但奇切斯特决意实施自己的计划。

文言文《巢谷传》原文加翻译

巢谷传 巢谷,字元修,父中世,眉山农家也。少从士大夫读书,老为里校师。谷幼传父学,虽朴而博。举进士京师,见举武艺者,心好之。谷素多力,遂弃其旧学,畜弓箭,习骑射。久之,业成而不中第。 巢谷,字元修,父亲叫中世,是眉山的农民。年轻的时候跟随士大夫(有身份、有学问的人)读书,年老后担任乡里村学的老师。巢谷从小传承父亲的学问,虽然朴实无华但是丰富。他被选拔进京参加进士考试,看见了赴试武科的人,心里喜欢。巢谷一向力气大,于是就放弃了他原来学习的知识,置办了弓和箭,学习骑马射箭。不久,他的武艺学成了,却没有考中进士。 闻西边多骁勇,骑射击刺,为四方冠,去游秦凤、泾原间。所至友其秀杰,有韩存宝者,尤与之善,谷教之兵书,二人相与为金石交。熙宁中,存宝为河州将,有功,号“熙河名将”,朝廷稍奇之。会泸州蛮乞弟扰边,诸郡不能制,乃命存宝出兵讨之。存宝不习蛮事,邀谷至军中问焉。及存宝得罪,将就逮,自料必死,谓谷曰:“我泾原武夫,死非所惜,顾妻子不免寒饿。橐中有银数百两,非君莫使遗之者。”谷许诺,即变姓名,怀银步行,往授其子,人无知者。存宝死,谷逃避江淮间,会赦乃出。 他听说西边的人大多英勇矫健,骑射击刺,是四海之内第一,他离开家乡到秦凤、泾原一带游历。他每到一处就与杰出的人物交友,有一个叫韩存宝的人,巢谷尤其和他交好,巢谷教韩存宝兵书,两个人交往,结下了像金石一样坚固的友谊。熙宁年间,韩存宝担任河州的将领,有功劳,被称为“熙河名将”,朝廷渐渐的重视他。恰逢泸州的少数民族乞弟侵扰边疆,众郡县不能制服,朝廷于是命令韩存宝出兵讨伐乞弟。韩存宝不熟悉少数民族的情形,邀请巢谷到军队里询问他。等到韩存宝获罪,将要被逮捕,他自己料想一定会死,对巢谷说:“我是泾原的一介武夫,死了不可惜,只是妻子儿女不免受冻挨饿。装银子的袋子里有几百两银子,除了你没有人可以代我把钱送给妻子儿女的人了。”巢谷立下了承诺,立刻改变姓名,把银子放在怀里步行,前往交给他的儿子,没有人知道这件事。韩存宝死了,巢谷逃避到江淮一带,恰逢赦免才出来。 予以乡闾故,幼而识之,知其志节,缓急可托者也。予之在朝,谷浮沉里中,未尝一见。我因为同乡的原因,小时候就认识他,了解他的志向节操,是个可以托付危急之事的人。我在朝中,巢谷杂处于乡民中间,我们从未见过。 绍圣初,予以罪谪居筠州,自筠徙雷,徙循。予兄子瞻亦自惠再徙昌化。士大夫皆讳与予兄弟游,平生亲友无复相闻者。谷独慨然,自眉山诵言,欲徒步访吾兄弟。闻者皆笑其狂。元符二年春正月,自梅州遗予书曰:“我万里步行见公,不自意全,今至梅矣。不旬日必见,死无恨矣。”予惊喜曰:“此非今世人,古之人也!”既见,握手相泣,已而道平生,逾月不厌。时谷年七十有三矣,瘦瘠多病,非复昔日元修也。将复见子瞻于海南,予愍其老且病,止之曰:“君意则善,然自此至儋数千里,复当渡海,非老人事也。”谷曰:“我自视未即死也,公无止我!”留之,不可。阅其橐中,无数千钱,予方乏困,亦强资遣之。船行至新会,有蛮隶窃其橐装以逃,获于新州,谷从之至新,遂病死。予闻,哭之失声,恨其不用吾言,然亦奇其不用吾言而行其志也。 绍圣初年,我因罪被贬停留在筠州,从筠州迁移到雷州,又迁移到循州。我的兄长子瞻也从惠州又迁移到昌化。士大夫都避忌和我们两兄弟交往,往日的亲友没有再互相联络。只有巢谷慷慨激昂,从眉山公开声言,想要徒步拜访我们兄弟。听说的人都嘲笑他的痴狂。元符二年春天正月,他从梅州送信给我说:“我不远万里步行来见您,自己都不认为能保全性命,现在到梅州了。不出十天一定能见面,死了也没有遗憾了!”我惊喜地说:“这不是当代人,而是品德高尚的古人哪!”见面之后,我们握手相对而哭,不久,我和他讲述往日的经历,过了一个月(一个多月)仍不感到厌倦。当时巢谷年纪有七十三岁了,瘦弱多病,不再是往

大学英语精读第一册课文翻译

大学英语精读第一册课 文翻译 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第一单元 课程开始之际,就如何使学习英语的任务更容易提出一些建议似乎正当其实。 学习英语的几种策略 学习英语决非易事。它需要刻苦和长期努力。 虽然不经过持续的刻苦努力便不能期望精通英语,然而还是有各种有用的学习策略可以用来使这一任务变得容易一些。以下便是其中的几种: 1.不要以完全相同的方式对待所有的生词。你可曾因为简直无法记住所学的所有生词而抱怨自己的记忆力太差其实,责任并不在你的记忆力。如果你一下子把太多的生词塞进头脑,必定有一些生词会被挤出来。你需要做的是根据生词日常使用的频率以不同的方式对待它们。积极词汇需要经常练习,有用的词汇必须牢记,而在日常情况下不常出现的词只需见到时认识即可。你会发现把注意力集中于积极有用的词上是扩大词汇量最有效的途径。 2.密切注意地道的表达方式。你可曾纳闷过,为什么我们说“我对英语感兴趣”是“I’m interested in English”,而说“我精于法语”则是“I’m good at French”你可曾问过自己,为什么以英语为母语的人说“获悉消息或密秘”是“learn the news or secret”,而“获悉某人的成功或到来”却是“learn of someone’s success or arrival”这些都是惯用法的例子。在学习英语时,你不仅必须注意词义,还必须注意以英语为母语的人在日常生活中如何使用它。 3.每天听英语。经常听英语不仅会提高你的听力,而且有助你培养说的技能。除了专为课程准备的语言磁带外,你还可以听英语广播,看英语电视和英语电影。第一次听录好音的英语对话或语段,你也许不能听懂很多。先试着听懂大意,然后在反复地听。你会发现每次重复都会听懂更多的东西。

献曲求诗原文和翻译

北宋[苏轼] 元丰五年十二月十九日东坡生日,置酒赤壁矶下,踞高峰,酒酣,笛声起于江上。客有郭、尤二生,颇知音,谓坡曰:“笛声有新意,非俗工也。”使人问之,则进士李委闻坡生日,作南曲目《鹤南飞》以献。呼之使前,则青巾紫裘腰笛而已。既奏新曲,又快作数弄,嘹然有穿云石之声,坐客皆引满醉倒。委袖出嘉纸一幅曰:“吾无求于公,得一绝句足矣。”坡笑而从之。 提问者采纳 2006-08-10 16:24 元丰五年十二月十九日,东坡生日也,置酒赤壁矶下,踞高峰俯鹊巢,酒酣,笛声起于江上。客有郭、古二生,颇知音,谓坡曰:“声有新意,非俗工也”。使人问之,则进士李委,闻坡生日,作新曲曰《鹤南飞》以献,呼之使前,则青巾、紫裘、腰笛而已。既奏新曲,又快作数弄,嘹然有穿云裂石之声,坐客皆引满醉倒,委袖出佳纸一幅曰:“吾数求于公,得一绝句足矣!”坡笑而从之。“山头孤鹤向南飞,载我南游到九疑。下界何人也吹笛,可怜时复犯龟兹”。 释:宋神宋元丰五年二月十九日是苏东坡的生日。苏东坡在黄州赤壁矶摆酒庆贺。大家盘坐在江边高峰上,俯视着鹊巢,酒兴正浓时,忽然听到江面上传来了悠扬的笛声。赴宴的还有姓郭和古的两位宾客,他两通晓音律,就对东坡说:“这笛声有新意,可不是普通的笛子吹奏的。”于是苏东坡派人去询问吹笛的是什么人。原来是位进士,名叫李委,他听说今天是苏东坡的生日,特意谱写并吹奏了新的笛曲《鹤南飞》以示庆贺。东坡把他请到跟前一看,原来是位头戴青巾,身着紫裘,腰里插着横笛的普通书生。既然他吹奏新曲,就再请他吹几支曲子,那笛声,高入云霄,震石欲裂,宾客们边饮酒边聆听动人的笛声,一个个都醉倒了,于是李委从袖子里掏出一幅绝好的纸,说:“我对苏公别无所求,但愿得到您亲手题的一首绝句就十分满足了。”东坡笑着答应了他,诗曰:“山头孤鹤向南飞去,载我去遨游九嶷山。人间是什么人在吹着笛子?可喜的还变换着龟兹的乐调。”

相关主题