搜档网
当前位置:搜档网 › 液态树脂在玻璃纤维表面上的浸润性对复合材料...

液态树脂在玻璃纤维表面上的浸润性对复合材料...

液态树脂在玻璃纤维表面上的浸润性对复合材料...
液态树脂在玻璃纤维表面上的浸润性对复合材料...

不饱和树脂及玻璃纤维增强复合材料

不饱和树脂及玻璃纤维增强复合材料(玻璃钢)的制备 实验目的 1、 了解线形不饱和聚酯树脂及玻璃纤维复合材料的制备原理和影响因素。 2、 掌握线形不饱和聚酯树脂合成和增强复合材料制备实验的操作技能;熟悉树脂的特性测 试和玻璃钢试样的性能实验方法。 实验原理 不饱和聚酯树脂主要是有不饱和二元酸(酐)、饱和二元酸(酐)和二元醇,以一定的摩尔比在惰性气氛保护下,经酯化缩聚而制得线型聚合物,其聚酯主链上具有重复的酯键制制品及不饱和双键,即称不饱和树脂,化学结构式如下: O R C O O R O C CH 制得的不饱和树脂和聚酯树脂主要用于制造玻璃纤维增强复合材料,也制造装饰涂料和油 漆、压塑粉与片状和块状模压复合材料制品。 仪器安装 图1:手糊成型 图2:浇注成型剖面图

主要设备一览表 表1:室温固化凝胶时间测定方法 名称/序号 树脂理论量 g 树脂实际量 g 引发剂理论量g 引发剂实际量g 促进剂理论量g 促进剂实际 量g 1 2 3 4 5 50 50 50 50 50 50.35 49.74 50.39 49.61 49.99 2.014 1.9896 2.0156 1.9844 1.9996 2.01 1.99 2.01 2.00 2.03 1.007 0.4974 0.3524 0.2481 0.1499 1.01 0.50 0.35 0.26 0.15 表2:浇注成型配方 表3:手糊成型配方 表4:室温固化凝胶时间测定设备 表5:浇注成型设备 表6:手糊成型设备 名称 理论用量g 实际用量g 树脂 引发剂 促进剂 100 4 1.02 100.33 4.01 1.01 名称 理论用量g 实际用量g 树脂 引发剂 促进剂 41.88 1.6724 0.1881 41.81 1.69 0.19 序号 名称 规格 数量 1 2 3 4 5 铁板 玻璃纸 橡胶管 玻璃棒 夹子 180*180 150*350 2个 1张 1根 1根 6个 序号 名称 数量 1 2 3 纸杯 玻璃棒 手表 5个 5根 1块 序号 名称 规格 数量 1 2 3 4 铁板 玻璃纸 玻璃布 刷子 180*180 200*200 180*180 2块 2张 10张 1个

(新)环氧树脂玻璃纤维防水施工工法

环氧树脂玻璃纤维(环氧玻璃钢)防水施工工法 完成单位:四川省第六建筑有限公司第五工程分公司 主要完成人: 赵剑芳何云华易建辉凌红杨勇 1 前言 1.0.1 近年来随着城市建设的发展,高层建筑物超深地下室工程防水(地下水位压力过大)及各种对防水有特殊要求【耐碱(酸)性、耐久性、抗腐蚀、与基层粘结强度高、工艺性能好等】的工程越来越多,传统的卷材、涂膜防水不能满足这些工程的特殊使用要求;随着环氧类材料与玻璃纤维复合材料(俗称环氧类玻璃钢)防水技术的日渐成熟,在高层建筑地下室、地铁工程、工业厂房水池、海洋馆大洋水池等工程中大量使用了环氧类防水材料。 1.0.2 2007年6月华西集团四川省第六建筑有限公司第五工程分公司承建成都市虎豹海洋世界水族馆工程,针对该工程工期紧、质量要求高、结构异形、技术难度大等特点及首次承接相应大洋展示池、珊瑚池环氧类玻璃纤维防水工程的不利因素,我单位成立技术小组针对环氧类玻璃纤维防水进行了技术攻关,与相关协作单位一起,成功的解决了相关环氧类防水施工中的诸多难题,取得了良好的经济和社会效益。为了使环氧类玻璃纤维防水施工工艺更趋规范化、标准化,我单位在工程实践的基础上经过不断研究、探索,编制了本工法。 2 特点 2.0.1 该工法充分利用了电动磨光机(平板、角磨)、空压搅拌机、台秤等设备,并在精确的配制环氧树脂胶料(按配合比)和技术熟练操作人员的精心施工下,达到了施工快捷、质量保证、经济节约的目的。 2.0.2 该工艺流程合理且程序化、工效高、工程质量和施工安全容易控制、施工成本较低、适用范围广。 3 适用范围 3.0.1 本工法适用于高层建筑超深地下室、地铁工程、工业厂房水池、海洋馆海水池等对防水有耐久性要求的防水工程;本工法也适用于对防水质量要求高的屋面、卫生间防水工程(Ⅰ~Ⅳ级)。 4 工艺原理 4.0.1 环氧树脂与玻璃纤维复合材料所用原料有环氧树脂、增强用玻璃纤维、固化剂、增韧剂、稀释剂、填料。 4.0.2 环氧树脂底涂层具有高渗透性,它能通过混凝土或砂浆基层的微细裂缝和毛细管渗入

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

树脂基玻璃纤维复合材料注塑成型工艺研究

树脂基玻璃纤维复合材料注塑成型工艺研究树脂基玻璃纤维复合材料一种性能优异的轻量化材料,其材料的收缩率小,产品的比强度高,精度好,能很好的满足汽车轻量化需求。树脂基短切玻璃纤维复合材料很大程度上可以满足我们轻量化及性能要求,但是如何有效的控制纤维取向,为优化产品中的纤维分布,得到性能更好的产品,成为了新的挑战,本文在传统注塑成型工艺的基础上,提出了动态注塑成型方案,来优化成型过程中的纤维取向,从而获得更优性能的产品。 本文提出了新的生产工艺,在工艺设计、模具设计、工艺优化及实验验证方面做出了大量研究,本论文所做的具体研究如下:(1)根据树脂基短切玻璃纤维复合材料的特性,为优化玻璃纤维在产品中取向和分布,本文提出了动态注塑成型工艺,并阐述了动态注塑成型工艺的基本原理及过程,根据动态注塑成型的原理,动态注塑模具需要在合模状态下,使模腔空间根据需要变化,根据这一需求,本文引入活动型芯机构来进行模腔拓展,分析了动态注塑模具的工作过程,并根据模具的设计要点对动态注塑模具的整体结构设计。(2)利用Moldflow软件对16组不同工艺参数组合的成型过程分别进行了模拟,得到了纤维取向张量和翘曲量两个质量指标结果,并采用正交试验方法,对模拟结果进行了统计分析,结果显示初始型腔厚度对纤维分布有着显著影响,注射时间对产品的翘曲有着显著影响,得出了最佳的工艺参数设置,验证了动态注射成型工艺及模具的正确性。 (3)进行了生产实验,并生产过程中需注意的问题进行介绍和分析。试件注塑完成后,对试件进行了拉伸测试,弯曲测试以及断面组织观测,总结了在动态注塑成型工艺下各参数对塑件机械性能的影响,发现经动态注塑成型工艺优化后,产品的内部组织更加均匀,试件的拉伸强度得以提升,但弯曲强度略有提升。

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

玻璃纤维

玻璃纤维 玻璃纤维应用知识 作者: 赵工来源: 聚和成日期: 2009-4-18 点击数: 74 第一部分:玻纤知识: 1、玻纤分类 从长度分类分可以分连续玻纤、短玻纤(定长玻纤)和长玻纤(LET),连续玻纤是国内目前应用最广的玻纤,就是通常说的“长纤”,代表厂家有巨石,泰山、兴旺等。定长玻纤就是通常说的“短纤”,一般是外资改性厂与国内部分企业在用,代表厂家有PPG,OCF及国内的CPIC,巨石泰山也有少部分,但质量不如人意。LET是最近在国内兴起的,代表厂家有PPG,CPIC及巨石,目前国内金发,浙江俊尔,南京聚隆产量较大。 从碱金属含量分可分为无碱,低中高,通常改性增强用无碱,也就是E玻纤,国内改性一般使用E玻纤。 2、玻纤的应用 玻纤增强塑料的原理主要是由于玻纤/树脂界面上连接必然是使作用到模塑件上的力传导到玻纤上,因此玻纤的长度被充分利用,起到树

脂增强的目的,但玻纤在树脂基体中长度必须满足一定的要求,这就是临界玻纤长度,玻璃纤维的临界纤维长度(即可将力从基材传递给纤维的最小长度)在0.3~0.6mm之间,临界长度只与剪切力与玻纤单丝直径有关,上面的临界长度是指玻纤在最终产品里的长度,如是果是塑料粒子里话,此长就就在0.6~0.8mm之间,从理论上讲,临界长度与玻纤的原始长度没有关系,如果增强产品把玻纤的长度都控制在这个范围的话,此时产品的力学性能与表面外观都是最好的,最平衡的,如果长度过长,力学性能上升,但制品表面会变粗糙与翘曲,如果长度过短,就会导致力学性能不足。要控制玻纤的长度应该从调整螺杆结构及转速入手,如果玻纤长径控制在400效果最佳。 3、评价玻纤好坏的主要指标 第一个指标:玻纤在拉丝过程中所使用的表面活性处理剂。表面活性处理剂也就是通常所说的浸润剂,浸润剂主要是偶联剂与成膜剂,另外还有一些润滑剂、抗氧剂、乳化剂、抗静电剂等,成膜剂的成分与其它助剂的种类对玻纤有决定性的影响,所以在选择玻纤时就根据基料与成品要求选择合适的玻纤。像PPG、CPIC等公司短纤牌号较多,就是因为表面浸润剂不一样,这样就针对性比较强。 第二个指标:单丝直径。以前介绍过临界玻纤长度只与剪切力和单丝直径有关,从理论上讲,如果单丝直径越小,产品的力学性能与表面外观越佳。目前国内玻纤直径一般都在10μm,13μm,像CPIC就有开发7μm的玻纤。 4、浮纤原因分析

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

树脂性能对比以及玻璃纤维介绍

树脂性能介绍以及玻璃纤维简介 不饱和聚酯树脂 不饱和聚酯是不饱和二元羧酸(或酸酐)或它们和饱和二元羧酸(或酸酐)组成的混合酸和多元醇缩聚而成的,具有酯键和不饱和双键的线型高分子化合物。通常,聚酯化缩聚反应是在190~220℃进行,直至达到预期的酸值(或粘度)。在聚酯化缩反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂。 物理性质 1、相对密度在1.11~1.20左右,固化时体积收缩率较大 2、耐热性。绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃ 3、力学性能。不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度 耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、稀碱的性能较好, 4、耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。 5、介电性能。不饱和聚酸树脂的介电性能良好。 化学性质 不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基。 乙烯基树脂 乙烯基树脂又称为环氧丙烯酸树脂,是60年代发展起来的一类新型树脂,其特点是聚合物中具有端基不饱和双键。 乙烯基树脂具有较好的综合性能:①由于不饱和双键位于聚合物分子链的端部,双键非常活泼,固化时不受空间障碍的影响,可在有机过氧化物引发下,通过相邻分子链间进行交联固化,也可和单体苯乙烯其聚固化;②树脂链中的R基团可以屏蔽酯键,提高酯键的耐化学性能和耐水解稳定性;③乙烯基树脂中,每单位相对分子质量中的酯键比普通不饱和聚酯中少35%~50%左右,这样就提高了该树脂在酸、碱溶液中的水解稳定性; ④树脂链上的仲羟基和玻璃纤维或其它纤维的浸润性和粘结性从而提高复合材料的强 度;⑤环氧树脂主链,它可以赋和乙烯基树脂韧性,分子主链中的醚键可使树脂具有优异的耐酸性。 环氧树脂 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环 氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子 结构中含有活泼的环氧基团,使它们可和多种类型的固化剂发生交联反应而形成不 溶、不熔的具有三向网状结构的高聚物。 环氧树脂的性能和特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种使用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的

玻璃纤维国内外现状

玻璃纤维国内外现状 近年来中国玻璃纤维工业发展迅速,我国玻纤工业发展速度远高于世界平均水平。玻纤的产量占世界产量比重从2000年不到10勉高到2010年的54%成为世界头号玻纤生产大国和出口大国。目前,世界玻纤产业已形成从玻纤、玻纤制品到玻纤复合材料的完整产业链,其上游产业涉及采掘、化工、能源,下游产业涉及建筑建材、电子电器、轨道交通、石油化工、汽车制造等传统工业领域及航天航空、风力发电、过滤除尘、环境工程、海洋工程等新兴领域。 除了我们熟知的一些应用领域外,玻璃纤维在特殊领域的运用也是很广泛的。新型玻纤制品主要有:特种玻璃纤维、表面改性玻璃纤维、玻璃纤维复合纱、玻璃纤维浸渍纱。同时,玻璃纤维也被用作过滤材料和催化剂载体材料。 由于现在环境污染日趋严重,已经威胁到了人类的生活与健康发展。为了实现空气净化的效果,新型优质的过滤材料成为近年来科研工作者研究开发的热点。经试验发现玻璃纤维及其复合材料是优质的高温、防腐过滤材料。因此,以玻璃纤维原料为主抄造而成的玻璃纤维空气过滤纸越来越受到人们的青睐。 玻纤空气过滤纸是以玻璃纤维原料为主掺配其它纤维或丝,使用化工原材料赋予特殊性能,利用传统的造纸技术抄造成,作为过滤介质使用的多孔性纸、厚纸乃至纸板。它主要作为过滤材料,其作用相当于三滤纸中的空滤纸,只不过性能更优,用途更广。玻璃纤维空气过滤纸用途广泛,它的主要用途是作为气体、液体的净化滤纸。玻纤空气过滤纸能够从气体中除去有害粉尘、烟雾、毒雾等 , 还能阻隔细菌,微生物和病毒,这对国防装备的改进,环境保护,人类的健康,机械设备的保养,精细加工产品及电子产品的保证是必不可少的,对国防建设和国民经济的发展具有重要的意义。 目前国内外日本在这方面的研究是比较前沿的。日本已经有多个公司成功研发出不同种类的玻璃纤维空气过滤纸,可用于净化空气、过滤粉尘等。美国一公司也开发成功一种玻璃纤维复合空气过滤材料。这种玻璃纤维复合空气过滤材料滤除粉尘和固体微料的过滤效率很高。 玻璃纤维纸目前主要是用于过滤材料的制备。通过分析我们可以看到,一般玻璃纤维过滤纸都有一个共同的弱点,即容尘量低,使用寿命短,高效滤器的使用寿命一般为1年,半年,短的只有几个月,甚至十多天就得更换,而这些滤器的更换程序很麻烦,且价格也贵。有时我们可以在高效滤器前装上一个中效或初效滤器,以延长高效滤器使用寿命,但是仍然存在装拆更换麻烦,占地面积大等一系列问题。 因此今后玻璃纤维过滤纸的发展,应该做好如下的研制工作:(1)研制容尘能力较大的高效过滤纸。(2)研制高容尘量的中效过滤纸以满足现代化建筑空调系统中的使用。(3)研制具有瓦楞形的波高的无隔板滤纸。(4)研制特种滤纸如灭菌滤纸等满足特殊环境中使用。

复合材料题库

一.填空题: 1.玻璃钢材料由(基材)与(增强材料)组成,其中(各类树脂)和(凝胶材料)为玻璃钢的常用基材。 2.常见可以拉制成纤维的玻璃种类主要分为(无碱玻璃)、(中碱玻璃)、(高碱玻璃)、(高强玻璃),其中(无碱玻璃纤维)是应用最多的玻纤。 3.连续玻璃纤维纺织制品就起产品形态而言可分为(纱线)(织物)两大类别。 4. 预浸料的制备方式可分为(湿法)(干法)及(粉末法)。 5. 结构胶粘剂一般以(热固性树脂)为基体,以(热塑性树脂)或(弹性体)为增韧剂,配以固化剂等组成。 6. 按照材料成分分类主要分为(环氧树脂胶粘剂)(聚酰亚胺胶粘剂)(酚醛树脂胶粘剂)(硅酮树脂胶粘剂)。 7. 玻璃钢制品的生产过程可大致分为(定型)(浸渍)(固化)三个要素。 8. 环氧树脂是分子中含有两个或两个以上(环氧基团)的一类高分子化合物。 9. 按适用于玻璃钢手糊成型的模具结构形式分为:(单模)及(敞口式对模)。 10. 叶片制造常用的基体树脂有(不饱和聚酯树脂),(环氧乙烯基树脂)及(环氧树脂)三类。 二.名词解释: 1.热固性树脂:这种树脂在催化剂及一定的温度、压力作用下发生不可逆的化学反应,是线性有机聚合物链相互交联后形成的三维结构体。 2.预浸料:将定向排列的纤维束或织物浸涂树脂基体,并通过一定的处理后贮存备用的中间材料。 3.不饱和聚酯树脂:是由饱和的或不饱和的(二元醇)与饱和的及不饱和的(二元酸或酸酐)缩聚而成的线性高分子化合物。 4.单位面积质量:一定大小平板状材料的质量和它的面积之比。 5. 含水率:在规定条件下测得的原丝或制品的含水量。即试样的湿态质量和干态质量的差数与湿态质量的比值,用百分率表示。 6. 拉伸断裂强度:在拉伸试验中,试样单位面积或线密度所承受的拉伸断裂强力。单丝以Pa 为单位,纱线以N/tex为单位。 7. 弹性模量:物体在弹性限度内,应力与其应变的比例数。有拉伸和压缩弹性模量(又称杨氏弹性模量)、剪切和弯曲弹性模量等,以Pa(帕斯卡)为单位。 8. 偶联剂:能在树脂基体与增强材料的界面间促进或建立更强结合的一种物质。

特殊玻璃纤维套管规格书

丙烯酸酯玻璃纤维套管KL-2740 Polyurethanes fiberglass sleeving 丙烯酸酯玻璃纤维软管是由无碱玻璃纤维编织成坯管,再涂以丙烯酸酯乳胶经加热烘干而成的B 级绝缘软管。具有可靠的耐热性,良好的电性能,较好的的柔软性和弹性,以及耐苯、耐油等特性,适用于电机、电器、仪器、仪表、无线电、电视机及空调、风扇、洗衣机等家用电器的布线绝缘和机械保护。 外观:表面光洁,端部整齐。 耐油:软管在105±2℃的变压器油中浸24小时,漆膜不应与玻璃丝管脱开或产生开裂,允许漆管颜色变深。 耐苯:漆管在常温甲苯液体中浸4小时,漆膜不发粘贴或脱落。 Acrylic glass fiber hose is woven E-glass fiber blank tube, coated with acrylic latex is made by heating and drying of the Class B insulation hose. Reliable heat resistance, good electrical properties, good softness and flexibility, and resistance to benzene, oil and other properties, for electrical, electronics, instruments, meters, radio, TV and air-conditioning, fans, washing machines, etc. appliance wiring insulation and mechanical protection. Appearance: smooth surface, the ends neatly. Oil: hose at 105 ± 2 ℃ transformer oil immersed for 24 hours, the film should not be torn off or cracking glass tube, allowing the paint tube darker. Resistance to benzene: toluene liquid paint tube immersed at room temperature 4 hours, the

木塑复合材料界面改性

木塑复合材料界面改性 摘要:介绍了聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯制备的木塑复合材料界面改性的研究进展,阐述了界面改性对木塑复合材料性能的影响,并对木塑复合材料的应用前景进行了展望。 木塑复合材料是近年来兴起的环保型复合材料,由聚合物基体和木纤维(木粉、竹粉、稻壳、秸秆等)按一定比例加工而成。制备木塑复合材料的聚合物基体有热固性聚合物和热塑性聚合物,而热塑性聚合物可回收利用、连续生产,是制备木塑复合材料的主要聚合物基体。常用的热塑性聚合物有聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。由于热塑性木塑复合材料中木纤维的填充量较高,聚合物基体与木纤维之间的界面相容性较差,影响了木塑复合材料的力学性能;此外,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散。因此如何改善聚合物基体与木纤维之间的界面相容性是制备性能优良的木塑复合材料的关键。木塑复合材料的界面改性主要通过改性木纤维或添加界面改性剂的方法进行。木纤维的改性包括物理改性和化学改性。物理改性(如干燥、交联)的主要作用是增强纤维素表面与聚合物基体的啮合;化学改性主要是将纤维素表面的羟基反应掉,形成化学键,如将木纤维表面的羟基进行乙酰化以降低木纤维的表面活化能,或利用相容剂的羧基或酰基与纤维素中的羟基发生酯化反应[1],如马来酸酐接枝PP(PP-g-MAH)、异氰酸酯、氯化苯甲酰等。从改性效果来看,化学改性方法明显优于物理改性方法。添加界面改性剂改善木塑复合材料界面相容性是使用较多的方法。界面改性剂通常一端含有极性基团,另一端含有非极性基团。极性基团能与木纤维的极性部分亲和,而非极性基团则和极性较弱的聚合物基体亲和。界面改性剂主要是起桥梁的作用,通过降低两相间的界面能,促进木纤维在树脂相中的分散,降低木纤维之间的凝聚力,提高聚合物基体的分散能力;并且加强了高分子链与木纤维间的机械缠结以增强两者的界面亲和力,从而提高复合材料的力学性能。常用的界面改性剂有马来酸酐接枝聚烯烃、硅烷偶联剂、钛酸酯、铝酸酯等[2]。木塑复合材料的界面改性方法多种多样。木纤维的改性或界面改性剂的合成可以在加工木塑复合材料之前独立进行,也可以在加工过程中原位进行,从工业化生产的角度来看,越简单的界面改性方法越有利于降低成本和推广应用。 1热塑性木塑复合材料界面改性的研究进展 1.1PP基木塑复合材料的界面改性 PP是常用的制备木塑复合材料的聚合物之一,但它是非极性聚合物,与木纤维的界面相容性较差。PP-g-MAH是常见的PP基木塑复合材料的界面改性剂[3-5],因为马来酸酐价格便宜,界面改性效果良好,而且PP-g-MAH可采用反应性挤出,生产效率高。PP-g-MAH能降低木纤维的表面自由能并降低纤维之间的吸附力,增强聚合物基体的渗透能力,改善纤维的分散和取向,通过机械啮合提高界面黏合力。PP-g-MAH与木纤维表面的羟基在碱性催化剂作用下能发生酯化反应,在聚合物与木纤维之间形成桥梁,从而提高界面黏合力[6]。此外,采用马来酸酐对木纤维进行接枝改性也是改善木塑复合材料界面相容性的重要方法。Nenkova等[7]在含有10%马来酸酐的丙酮溶液中采用过氧化二苯甲酰(BPO)和过氧化二异丙苯(DCP)引发马来酸酐对木纤维进行表面改性,木纤维和马来酸酐发生化学反应,增加了界面黏合力,制得的PP基木塑复合材料的力学性能有了较大的提高。Demir等[8]分别采用3-氨基丙基三乙氧基硅烷(AS)、三甲氧基甲硅烷基丙硫醇(MS)和PP-g-MAH作为PP/丝瓜纤维复合材料的界面改性剂,改善了聚合物与丝瓜纤维的相容性,提高了其力学性能和抗吸湿性。AS和MS改性后的复合材料界面黏合力增强,其中MS改性的复合材料力学性能较高。近年来也有研究者采用固相接枝法[9]或熔融接枝法[10]开发出多种单体的PP接枝共聚物,其具有接枝率高、界面改性效果好等优点,是木塑复合材料优良的界面改性剂。

玻璃纤维增强环氧树脂基复合材料的制备

综合实验研究 玻璃纤维增强环氧树脂基复合材料的制备 院系:航空航天工程学部 专业:高分子材料与工程专业 指导教师:于祺 学生姓名:王娜

目录 第1章概述 1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法 第2章手糊法制备玻纤/环氧树脂复合材料 2.1实验原料 2.1.1环氧树脂 2.1.2玻璃纤维 2.1.3咪唑固化剂 2.1.4活性稀释剂 2.2手糊成型简介 2.4实验部分 2.4.1实验仪器 2.4.2实验步骤 第3章力学性能测试 3.1剪切强度 3.2弯曲强度 3.3实验数据的分析 3.3.1 浸胶的用量及均匀度 3.3.2 固化时间与温度的影响 3.3.3 活性稀释剂的用量 第4章结论与展望 4.1结论与展望 参考文献

第1章概述 1.1 玻璃纤维增强环氧树脂复材的研究现状 EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。 1.2 本次试验的目的及方法 实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。目的在于1,了解材料科学实验所涉及到的设备的基本使用。 2,掌握环氧树脂固化体系的配置及设计。 3,对手糊成型操作了解,及查找文献完成论文的能力。 就此要求我们第2组采用环氧树脂E-44,20cm×20cm的玻璃纤维布15张,用咪唑固化剂并加入稀释剂防止体系过粘。通过查阅相关文献,确定咪唑固化环氧树脂的最佳固化条件:60℃/2h+80℃/2h,制备了玻璃纤维增强环氧树脂复合材料,之后将制备的样品进行力学性能测试,其层间剪切强度为5.750Mpa,弯曲强度为127.64Mpa。

磨碎玻璃纤维新用途

磨碎玻璃纤维新用途 磨碎玻璃纤维是采用锤磨机或球磨机等粉碎设备将玻璃纤维原丝粉磨后制成。纤维的平均长度在 30~100微米,在显微镜下观察,其截面积呈圆柱状。我国磨碎玻璃纤维通常用纤维长度和纤维直径来标定。如EMF-200是指无碱玻璃纤维,平均直径为7.5微米,平均长度在80~110微米的磨碎纤维。 国外磨碎玻璃纤维随着科技的飞跃发展,应用领域的不断拓宽,年产量也在不断增长,目前有 20多家公司在生产,其中美国欧文斯科宁公司年生产能力达3300吨,在国际市场上占主导地位。 目前,我国磨碎玻璃纤维主要用作高性能摩擦材料。 摩擦材料的传统填充料为石棉。但国外报道石棉有致癌危险,因国际市场近几年抵制含石棉的摩擦材料,为磨碎玻璃纤维提供了广阔的市场。 用作摩擦材料的磨碎玻璃纤维经过表面化学处理,加快树脂的浸透,满足特殊的成型性能和制品性能的要求。其规格有 EMF-200、EMF-250及EMF-300三种,其对应的纤维长度波动范围为110~80微米、80~50微米及50~30微米。 添加了磨碎玻璃纤维的摩擦材料不仅摩擦系数高,而且具有耐久性、热稳定性,在与贴紧部位(如转子)作摩擦接触时,只产生轻微的噪音,并使被摩擦部件的磨损量降低到最低限度。 这种高性能摩擦材料可广泛用作汽车的刹车片及离合器片,客、货车辆,铁路机车及各种钻机的闸瓦,冲压设备及工程矿山机械的摩擦块,还有起重机械的锥形制动环等。 磨碎玻璃纤维还可用作 ABS塑料的功能填料,使ABS塑料改性,满足塑料加工及制品应用性能的要求。 某厂在生产全自动洗衣机的程序控制器底板及盖板等零部件时,因为采用纯 ABS塑料制造,结果底板与盖板的板面严重翘曲变形,零部件尺寸不稳定,螺孔钉滑牙,使不少成品因无法组装而报废。后来采用磨碎玻璃纤维填充ABS 塑料,使塑料改性:收缩率由原来的1%~2%降低到0.4%~0.5%,在拧自攻螺钉时,不滑牙、不开裂,同时制造出来的板面及零部件平整、挺括、不翘曲变形,塑料的加工性能良好。 此外,在层压板中加入磨碎玻璃纤维,可以改善层压板的抗裂纹性和耐磨性,

关于耐高温玻纤管和硅树脂玻纤管的区别

关于耐高温玻纤管和硅树脂玻纤管的区别(YC)(2008/03/08 16:00) 最近经常接到询问有关耐高温玻纤管和普通玻纤管的区别,今天又接到一个来自江苏的电话同样是问这个问题的,现根据我的一点经验来说明下这两种绝缘套管的区别所在。 耐高温玻纤管(又称定纹管),是一种用玻璃纤维编织成管后,经高温定型工艺处理而成的特殊玻璃纤维套管。这种套管是没有上硅树脂(硅油)的绝缘管,具有优良的柔软性,表面光滑,无毛刺,来回弯曲不变行等优点。可以耐400~600℃高温,绝缘破坏电压:800V-1000V。这种绝缘管的最大优点是耐高温,但耐电压却不能超过1000V,还有一个小缺点是,所剪端部容易起毛,没有普通玻纤管那么平整,如果所用长度较短的话,还有可能会散掉。这种管的规格范围是Φ1mm~Φ35mm,比较适用于对温度要求较高的电器绝缘保护。 普通玻纤管,硅树脂玻璃纤维套管(也称矽质套管或自熄管)是以无碱玻璃纤维编织成管状后浸涂有机硅树脂,并加热固化而成。它具有较强的介电性能,较高的耐热性,良好的自熄性及柔软性。这种绝缘套管耐压最高可达2500V,所剪端口比较平整,不会出现绽温管所出现的小毛病。但这种管耐温最高只能达到260℃,正常情况下耐温是200℃。这种管的规格范围是Φ1mm~Φ35mm,被广泛用于H级绝缘电机、家用电器、灯饰、电热制品、电器设备及耐热电器等产品的绝缘保护。 如果您还需要更高的耐电压绝缘保护的话,请采用硅橡胶玻纤编织管。硅橡胶玻纤编织管由优质硅胶层和玻纤编织层组成。分为内胶外纤

和内纤外胶两种,由于该产品具有硅橡胶的耐高低温特性又有玻纤增强保护,性能优异。此种绝缘管最高耐电压可达10000V,但耐温最高仍然只有260℃,正常情况下耐温是200℃,且价格要比耐高温玻纤管和硅树脂玻纤管偏高。这种管的规格范围是Φ1mm~Φ12mm,被广泛用于各种家用电器、照明灯具、工业设备、电热制品、线束制品等组件的高温绝缘保护。 以上几种玻纤管标准颜色:白、黑、红、蓝、灰、黄、绿色,可按要求定做。这几种绝缘管各有不同、各有优点,请选择最适合您产品需 要的绝缘玻纤管。 点图进入相册

环氧树脂复合材料的分类组成特性以及应用

环氧树脂复合材料的分类组成特性以及应用 日期: 2008-03-03 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及

相关主题