搜档网
当前位置:搜档网 › 极化曲线测量金属的腐蚀速度

极化曲线测量金属的腐蚀速度

极化曲线测量金属的腐蚀速度

一、 目的和要求

1. 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。

2. 讨论极化曲线在金属腐蚀与防护中的应用。

二、 根本原理

当金属浸于腐蚀介质时,假设金属的平衡电极电位低于介质中去极化剂〔如H +或氧分子〕的平衡电极电位,那么金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生复原。以金属锌在盐酸体系中为例:

阳极反响: Zn-2e=Zn 2+

阴极反响: H ++2e=H 2

阳极反响的电流密度以 i a 表示, 阴极反响的速度以 i k 表示, 当体系到达稳定时,即金属处于自腐蚀状态时,i a =i k =i corr 〔i corr 为腐蚀电流〕,体系不会有净的电流积累,体系处于一稳定电位c ϕ。根据法拉第定律,体系通过的电流和电极上发生反响的物质的量存在严格的一一对应关系,故可阴阳极反响的电流密度代表阴阳极反响的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。

极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以提醒腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。

在活化极化控制下,金属腐蚀速度的一般方程式为:

其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂复原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂复原的自然对数塔菲尔斜率。假设以十为底的对数,那么表示为b a 、b k 。

这就是腐蚀金属电极的极化曲线方程式,令 ∆E 称为腐蚀金属电极的极化值,∆E =0时,I =0;∆E>0时,是阳极极化,I>0,体系通过阳极电流。∆E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进展阴极极化。因此外测电流密度也称为极化电流密度

测定腐蚀速度的塔菲尔直线外推法

当对电极进展阳极极化,在强极化区,

阴极分支电流i k =0,

)]ex p()[ex p(k c a c corr k a i i i I βϕϕβϕϕ---=-=c

E ϕϕ-=∆)]ex p()[ex p(k a corr E E i I ββ∆--∆=)ex p(a

corr a E i i I β∆==

改写为对数形式:

当对电极进展阴极极化,∆E <0, 在强极化区,阳极分支电流i a =0

改写成对数形式:

强极化区,极化值与外测电流满足塔菲尔关系式,假设将极化曲线上的塔菲尔区外推到腐蚀电位处,得到的交点坐标就是腐蚀电流。

图 1 塔菲尔外推法求金属腐蚀电流的根本原理

三、仪器药品和实验装置

CHI660A 电化学工作站1台;

corr a corr a i I b i I E lg ln ==∆β)ex p(k

corr E i I β∆--=corr k corr k i I b i I E lg ln ==∆-β

烧杯一个;

饱和甘汞电极〔参比电极〕1支

Pt 片电极〔辅助电极〕1支。

45号钢〔圆柱体〕

松香

石腊

分析纯氯化钠

蒸馏水

铜导线

图2 极化曲线测量示意图

四、 操作步骤

1. 电极处理:用金相砂纸将45号钢电极外表打磨平整光亮,测量试样的直径,将45号钢试样和铜导线连接。

2. 将松香、石腊融化,用来封装外表清洗干净的试样〔用蒸馏水清洗、酒精去油〕,电极处理得好坏对测量结果影响很大。

3.测量极化曲线:

〔1〕翻开CHI660A 工作站的窗口。

〔2〕将三电极分别插入电极夹的三个小孔中,使电极进入电解质溶液中。将CHI 工 作站的绿色夹头夹Fe 电极,红色夹头夹Pt 片电极,白色夹头夹参比电极。

〔3〕测定开路电位。点击“T 〞〔Technique 〕选中对话框中“Open Circuit Potential -Time 〞实验技术,点击“OK 〞。点击“░〞〔parameters 〕选择参数,可用仪器默认值,点击“OK 〞。点击“►〞开始实验,测得的开路电位即为电极的自腐蚀电势Ecorr 。

〔4〕开路电位稳定后,测电极极化曲线。点击“T 〞选中对话框中“Tafel 〞实验技术,点击辅助电极 极化电解池 工作电极 参比电极 参比电池 盐桥 恒电位仪

“OK〞初始电位〔Init E〕设为比E corr低“-0.5V〞,终态电位〔Final E〕设为比Ecorr高“1.25V〞,扫描速率〔Scan Rate〕设为“0.001V/s〞灵敏度〔sensivitivty〕设为“自动〞,其它可用仪器默认值,极化曲线自动画出。

〔5〕自腐蚀电流的拟合,翻开CHI660A的控制软件,利用自带的软件求得自腐蚀电流密度4. 实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。

五、考虑与讨论

〔1〕平衡电极电位、自腐蚀电位有何不同。

〔2〕为什么可以用自腐蚀电流i corr来代表金属的腐蚀速度?

极化曲线测量金属的腐蚀速度

极化曲线测量金属的腐蚀速度 一、 目的和要求 1. 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的 极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。 2. 讨论极化曲线在金属腐蚀与防护中的应用。 二、 基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属锌在盐酸体系中为例: 阳极反应: Zn-2e=Zn 2+ 阴极反应: H ++2e=H 2 阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。 在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。若以十为底的对数,则表示为b a 、b k 。 这就是腐蚀金属电极的极化曲线方程式,令 ?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法 当对电极进行阳极极化,在强极化区, 阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

湖南大学材料化学电化学实验报告

实验一线性极化法测定金属Fe在稀H2SO4中的腐蚀速度 一、基本要求 1.掌握动电位扫描法测定电极极化曲线的原理和实验技术。通过测定Fe在 0.1M 硫酸溶液中的极化曲线,求算Fe的自腐蚀电位,自腐蚀电流。 2.讨论极化曲线在金属腐蚀与防护中的应用。 二、实验原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H+或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属铁在盐酸体系中为例:阳极反应: Fe-2e=Fe2+ 阴极反应: H++2e=H 2 阳极反应的电流密度以 i a 表示,阴极反应的速度以 i k 表示,当体系达到稳 定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净 的电流积累,体系处于一稳定电位 c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。 在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度, β a 、β k 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数 )] ex p( ) [ex p( k c a c corr k a i i i I β ? ? β ? ?- - - = - =

电化学腐蚀

2)电化学腐蚀速率的测定 金属的腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。在电化学腐蚀过程中,一般以自腐蚀电流密度i corr的大小来衡量金属的腐蚀速度。测定腐蚀电流密度的方法很多,本实验用塔费尔直线外推法来测定金属电化学腐蚀过程中的腐蚀电流密度,来衡量金属的腐蚀速度。如图2-1为塔费尔直线。 图2-1极化曲线外延法测得金属腐蚀速度 极化曲线的这一区段称为塔费尔区,也叫强极化区。在极化曲线中,塔费尔直线延长线的交点处,金属阳极溶解的速度和阴极的去极化反应的速度相等。金属的腐蚀达到相对稳定,这时的电位即是自腐蚀电位,自腐蚀电位的高低反应了材料发生腐蚀的难易程度,自腐蚀电位越高,材料越不容易发生腐蚀,自腐蚀电位越低,材料就越容易发生腐蚀;所对应的电流就是金属腐蚀电流,腐蚀电流反应了金属发生腐蚀的快慢程度,腐蚀电流越大,金属发生腐蚀的速度就越大,腐蚀电流越小,金属发生腐蚀的速度就越小。根据这一原理,测定金属的极化曲线。将阳极或者阴极的塔费尔直线外推到与过电位为零的直线相交,交点对应的电流为腐蚀速度。 3)实验设备及条件 ①实验设备 实验采用电化学测量系统对各试样进行电化学腐蚀性能测试实验。其装置如图2-2所示:

图2-2 电化学极化曲线测量装置示意图 实验装置中三电极体系中以饱和甘汞(SCE)电极作为参比电极(reference electrode);Pt 电极作为辅助电极(auxiliary electrode);代测试样为研究电极(research electrode)。参比电极和研究电极间用盐桥连接,鲁金毛细管(capiliary)距研究电极1~2毫米。 电化学工作站部分参数如下: 初始电位(V):-2;终止电位(V):2.2;扫描段数:1;终止电位处保持时间:0;静置时间:2s;电流灵敏度(A/V):1.e-0.04。 ②实验条件 a.腐蚀试样:对1#到12#试样进行蜡封,即:在试样上用油性笔取1cm×1cm 的面积,并在其上放置橡皮,而后将烧化的蜡汁快速滴于试样表面,即蜡封处理。 b.腐蚀溶液:3.5%的NaCl水溶液(与浸泡实验相对应)

极化曲线腐蚀电流与腐蚀电位

极化曲线腐蚀电流与腐蚀电位 介绍 极化曲线是研究腐蚀电流与腐蚀电位之间关系的重要工具。本文将从极化曲线的定义、测量方法以及与腐蚀电流、腐蚀电位的关系等方面进行详细探讨。 一、极化曲线的定义 极化曲线是指在某一刺激作用下,随着刺激量的变化,所得到的反应物性质与刺激量间的关系曲线。在腐蚀研究中,极化曲线描述的是电流与电位之间的关系。 二、极化曲线的测量方法 1. 三电极系统 为了测量极化曲线,通常使用一个工作电极、一个参比电极和一个对电极组成的三电极系统。工作电极是被测样品,参比电极提供参比电位,对电极则是为了维持电路的稳定性。 2. 实验条件 在测量极化曲线时,需要控制一些实验条件,比如溶液的组成、温度、电极表面的状态等。这些条件的变化会对极化曲线产生影响,所以在测量过程中要保持这些条件的稳定性。 3. 电位扫描 在测量极化曲线时,常用的方法是通过改变工作电极的电位来扫描整个电位范围。通过记录工作电极的电流响应,可以得到不同电位下的腐蚀电流。

三、极化曲线与腐蚀电流的关系 极化曲线中的腐蚀电流对应着电位上的表面腐蚀速率。当电位越正时,腐蚀电流也越大,表示腐蚀速率增加。而当电位越负时,腐蚀电流较小,腐蚀速率减小。 1. 极化曲线的形状 极化曲线的形状可以反映出腐蚀行为的特点。常见的极化曲线形状有Tafel曲线、线性极化曲线和非线性极化曲线等。 2. 极化曲线的参数 极化曲线可以通过一些参数来描述。常见的参数有Tafel斜率、交流阻抗和腐蚀电位等。这些参数可以用来研究腐蚀行为及其机制。 3. 极化曲线的应用 极化曲线在腐蚀研究和工程实践中有着重要的应用。通过分析极化曲线,可以评估材料的腐蚀性能、预测腐蚀速率以及设计腐蚀防护措施等。 四、腐蚀电位与腐蚀电流的关系 腐蚀电位是触发腐蚀过程的电位,而腐蚀电流是腐蚀过程中产生的电流。腐蚀电位与腐蚀电流之间有一定的关系。 1. 过电位理论 过电位理论是解释腐蚀电位与腐蚀电流关系的一种理论模型。根据该理论,腐蚀过程中的电位是由电化学反应的阻抗决定的,而腐蚀电流则是由电化学反应的速率决定的。 2. 腐蚀动力学 腐蚀动力学研究腐蚀过程中的速率与驱动力之间的关系。腐蚀电位是驱动力,而腐蚀电流则表示腐蚀速率。通过研究腐蚀动力学,可以了解腐蚀行为及其发展规律。

动电位极化曲线 计算腐蚀速率

主题:动电位极化曲线计算腐蚀速率 目录 1. 动电位极化曲线的概念及原理 2. 腐蚀速率的计算方法 3. 实际案例分析 4. 结论与展望 1. 动电位极化曲线的概念及原理 动电位极化曲线是一种常用的腐蚀分析方法,它通过测定金属在一定电位范围内的极化曲线,来研究金属的腐蚀行为。在动电位极化曲线中,横轴表示电位,纵轴表示电流密度。通过测定金属在极化曲线上的拐点,可以得到金属的腐蚀电位和腐蚀电流密度,进而计算腐蚀速率。 动电位极化曲线的测定可以在自然环境下进行,也可以在实验室中通过电化学方法进行。通过对动电位极化曲线的分析,可以了解金属在具体环境中的腐蚀行为,为腐蚀预防提供重要参考。 2. 腐蚀速率的计算方法 腐蚀速率是描述金属在一定环境条件下腐蚀程度的重要指标。根据动

电位极化曲线的测定结果,可以采用以下方法来计算金属的腐蚀速率。 (1)泊松方程法 泊松方程法是一种常用的计算腐蚀速率的方法。它通过测定金属在不 同电位下的动电位极化曲线,并利用泊松方程建立腐蚀速率和电流密 度之间的关系,来计算腐蚀速率。 (2)球形极化曲线法 球形极化曲线法是一种基于动电位极化曲线的计算腐蚀速率的方法。 它利用金属在球形电极下的动电位极化曲线,通过对曲线的分析,来 计算金属的腐蚀速率。 (3)Tafel斜率法 Tafel斜率法是一种通过测定金属在不同电位下的动电位极化曲线,利用Tafel斜率和Tafel方程来计算腐蚀速率的方法。通过对Tafel斜率和Tafel方程的运用,可以较准确地计算金属的腐蚀速率。 3. 实际案例分析 以某海洋评台上使用的钢结构为例进行分析,该钢结构在海水中进行 了腐蚀测试,得到了相应的动电位极化曲线。通过对曲线的测定和分析,得到了钢结构在海水中的腐蚀电位和腐蚀电流密度。

(整理)镍等金属钝化曲线的测定及腐蚀行为评价

物理化学实验报告镍等金属钝化曲线的测定及腐蚀行 为评价 学院: 班级: 学号: 姓名:

指导教师: 一、实验目的 (1)掌握用线性电位扫描法测定镍在硫酸溶液中的阳极极化曲线和钝化行为。 (2)了解金属钝化行为的原理和测量方法。 (3)测定C1-浓度对Ni钝化的影响。 二、实验原理 (一)金属的钝化 金属处于阳极过程时会发生电化学溶解,其反应式为: M →Mn+ + ne- 在金属的阳极溶解过程中,其电极电势必须大于其热力学电势,电极过程才能发生。这种电极电势偏离其热力学电势的行为称为极化。当阳极极化不大时,阳极过程的速率(即溶解电流密度)随着电势变正而逐渐增大,这是金属的正常溶解。但当电极电势正到某一数值时,其溶解速率达到最大,而后,阳极溶解速率随着电势变正,反而大幅度降低,这种现象称为金属的钝化。 金属钝化一般可分为:化学钝化和电化学钝化。 金属之所以由活化状态转变为钝化状态,目前对此问题有着不同看法: (1)氧化膜理论:在钝化状态下,溶解速度的剧烈下降,是由于在金属表面上形成了具有保护性的致密氧化物膜的缘故。

(2)吸附理论:这是由于表面吸附了氧,形成氧吸附层或含氧化物吸附层,因而抑制了腐蚀的进行。 (3)连续模型理论:开始是氧的吸附,随后金属从基底迁移至氧吸附膜中,然后发展为无定形的金属-氧基结构。各种金属在不同介质或相同介质中的钝化原因不尽相同,因此很难简单地用单一理论予以概括。 (二)影响金属钝化过程的几个因素 (1)溶液的组成 溶液中存在的H+、卤素离子以及某些具有氧化性的阴离子对金属钝化现象起着显著的影响。在中性溶液中,金属一般是比较容易钝化的,而在酸性或某些碱性溶液中要困难得多。 (2)金属的化学组成和结构 各种纯金属的钝化能力均不相同,以Fe、Ni、Cr种金属为例,易钝化的顺序Cr>Ni>Fe。 (3)外界因素 当温度升高或加剧搅拌,都可以推迟或防止钝化过程的发生。这显然是与离子的扩散有关。在进行测量前,对研究电极活化处理的方式及其程度也将影响金属的钝化过程。 (三)研究金属钝化的方法 电化学研究金属钝化通常有两种方法:恒电流法和恒电势法。由于恒电势法能测得完整的阳极极化曲线,因此,在金属钝化研究中比恒电流法更能反映电极的实际过程。用恒电势法测量金属钝化可有下

实验报告-极化曲线测量金属的腐蚀速度

一、目的和要求 1、 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲 线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。在本实验中,镁合金和钢分别与L 的NaCl 溶液构成腐蚀体系。 镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Mg= Mg 2++2e 阴极: 2H 2O+2e=H 2+2OH - 钢与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Fe= Fe 2+ +2e 阴极: 2H 2O+2e=H 2+2OH - @ 腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别 为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。 令?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法:当对电极进行阳极极化,在强极化区,阴极分支电流i k =0, ! 改写为对数形式: 当对电极进行阴极极化,?E <0, 在强极化区,阳极分支电流i a =0 )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β ?==corr a corr a i I b i I E lg ln ==?β

极化曲线在电化学腐蚀中的应用

极化曲线在电化学腐蚀中的应用 娄浩 (班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图 据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。其中电化学腐蚀是金属腐蚀的一种最普遍的形式。论文分析了电化学腐蚀的机理以及极化曲线的理论基础。利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。 1.金属腐蚀的电化学原理 金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。 电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即 阳极反应:Fe - 2e →Fe2+ 阴极反应:2H+ + 2e →H2 总反应:Fe + 2H+ →Fe2+ + H2 与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可

极化曲线测试实验

极化曲线的测试与分析 一.实验目的: 掌握测定金属极化曲线的方法; 二.实验装置及实验材料 1.电化学测量系统(PS-268A型)1台2.计算机1台3.三电极系统(研究电极:试样;参比电极:甘汞;辅助电极;铂)1套 4. 低碳钢电化学试样1个 5.碳钢挂片试样4个 6.过饱和KCl、蒸馏水、丙酮、脱脂棉、砂纸等若干 7.量尺、分析天平、量杯、烧杯、毛刷等。 三.实验原理 1、电化学腐蚀原理 金属腐蚀按腐蚀机理可分为化学腐蚀,电化学腐蚀两类。电化学腐蚀是指金属表面与电解质溶液发生电化学反应而引起的破坏。其特点是反应过程中金属构成电极,整个系统有阳极失去电子和阴极获得电子及电子流动的产生。电化学腐蚀服从电化学动力学的基本规律。 当金属浸入电解质溶液时,由于水分子极性的静电作用,或由于金属电子的吸附作用。在两相界面的两侧将形成由电子层与正离子层组成的双电层。由于双电层的存在而产生的电位差称为金属―溶液体系的电极电位。不同的金属在不同的溶液体系中有不同的电极电位。 至今还没有可靠的方法可以测定金属电极电位的绝对值,但可以求其相对值。通常是指定某一电位稳定的电极为基准电极也叫参比电极或参考电极,人为规定其电位值;再把它与被研究电极组成原电池;测定出原电池的电动势,则被研究电极的电极电位就被测出。通常采用的参比电极是标准氢电极,但在实际工作中常常采用更方便、更结实的参比电极,如甘汞电极,银-氯化银电极等。 实际上,金属大多是含有杂质的或者以合金的形态存在。因此,金属浸入电解质溶液后,其界面不是存在单一电极而是存在着几个电极,测得的电位也

是其混合值,金属与电解质溶液接触一定时间后,达到的稳定电位值称为该金属在该电解质溶液中的腐蚀电位或自然腐蚀电位,又叫开路电位或混合电位。腐蚀电位决定于金属材料的成分,金相组织结构,表面状态以及电解质溶液的成分,浓度,温度和PH值等。 腐蚀电位的大小与金属腐蚀速度之间没有简单的对应关系,但其可以大致指出金属的耐腐蚀性。腐蚀电位越负,金属被介质腐蚀的趋势越大;反之,腐蚀电位越正,金属在该介质中越稳定,受腐蚀倾向越小,特别是腐蚀电位随时间变化的E k-t曲线常常能说明金属表面保护膜的形成过程和稳定性,以及腐蚀速度是否恒定,是否出现局部腐蚀等等。所以测定腐蚀电位及E k-t曲线对于研究腐蚀机理和控制过程有很大意义。 金属腐蚀电位越负,腐蚀倾向越大,但腐蚀的可能性大,并不等于腐蚀速度大,因为腐蚀速度的大小除与金属腐蚀电位有关外,还与金属极化现象有关。 极化作用实际上是环境因素对腐蚀电池反应的阻碍作用,原电池的极化是指原电池两极接通后,由于两极间有电流通过,而同时引起阳极电位向负电位方向移动(阳极极化),与阴极电位向正电位方向移动(阴极极化),两极电位差减小,原电池电流强度减小,腐蚀速度也随之减缓的现象。 外加电流可加剧原电池的极化,给一金属电极通以阳极电流,则金属电极 图1 I-E曲线图2 logI-E曲线 的电流强度I与其相对应的电极电位E之间的变化关系曲线—E-I曲线,或表示为E-logI曲线叫极化曲线,如图1、图2所示。根据极化时金属电极电位与电流强度的关系,可以把极化曲线分为三个区域:微极化区、弱极化区、强极化区。在微极化区,施加的是微量级极化电流,△E很小时(约±10mv),E-I 极化曲线呈线性关系,故此区又称线性极化区,直线的斜率称为极化电阻R P

金属腐蚀与防护期末复习

金属腐蚀期末复习 1、测量腐蚀速度电化学方法 塔菲尔腐蚀法:将金属样品制成电极浸入腐蚀介质中,测量稳态的伏安(E~I )数据,作log|I|~E 图,将阴、阳极极化曲线的直线部分延长,所得交点对应的即为logIcor,由腐蚀电流Icor 除以事先精确测量的样品面积S0,即得腐蚀速率。 该法的优点是无需知道塔菲尔斜率ba,bk 的值,实验操作简单。 缺点是用大电流极化到塔菲尔区,金属电极表面的状态会发生改变,与外加极化前的自腐蚀情况有所不同,测得的腐蚀速度不能真实地代表原来的自腐蚀速度,且体系的控制机理有可能发生变化 线性极化法:当极化电位很小时(通常小于10mV ),此时称极化曲线的微极化区,公式的指数项按级数展开,可以略去高次项,公式变为Stern-Geary 公式 p corr R B i /= I E R p /∆= 优点在于能快速测出金属的瞬时腐蚀速度,因属于微极化,因此不会引起金属表面状态的变化及腐蚀控制机理的变化。 缺点在于塔菲尔斜率ba 、bk 需另外测定或从文献选取,准确度不高,且该法不适于电导率低的体系。 弱极化区的极化测量法:有适用于活化极化控制的腐蚀体系的三点法和四点法, 阳极活化控制而阴极由浓度控制的截距法等。该类方法的极化测量范围一般在距离腐蚀电位为±20~70mV 之间,其优点是可以避免塔菲尔外推法中强极化引起的金属表面状态、溶液成分以及控制机理的改变,又可避免线性极化法中塔菲尔斜率选取或测定以及近似线性区范围选择等引起的误差 2、腐蚀电池由哪几份构成 阳极、阴极、电解质溶液和电子回路 3、解释并画出孔蚀闭塞电池原理图 点腐蚀(孔蚀)是一种腐蚀集中在金属表面数十微米范围内且向纵深发展的腐蚀形式,简称点蚀。 蚀孔内的金属表面出于活态,电位较负;蚀孔外的金属表面出于钝态,电位较正,于是孔内和孔外构成了一个活态—钝态微电偶腐蚀电池,电池具有大阴极—小阳极的面积比结构,阳极电流密度很大,蚀孔加深很快。孔外金属表面同时讲受到阴极保护,可继续维持钝态 随着腐蚀的进行,孔口戒指的pH 值逐渐升高,水中的可溶性盐将转化为沉淀,结果锈层和垢层一起在孔口沉积形成一个闭塞电池。 4、阳极保护的必要条件 将被保护设备与外加直流电源的正极相联,使之成为阳极,进行阳极极化;如果在此电位下金属能够建立钝态并维持钝态,则阳极过程受到抑制,而是金属的腐蚀速度降低,这时设备得到保护,这种方法称为阳极保护。 判断一个腐蚀体系能否采用阳极保护,首先要根据恒电位法测得的阳极极化曲线来分析,若曲线没有钝化特征,则不能使用阳极保护。 对金属通以对应于b 点的电流,使其表面生成一层钝化膜,电位进入钝化区(c-d 区),再用维钝电流将其电位维持在这个区域内,保持其表面的钝化膜不消失,则金属的腐蚀速度会大大降低,这就是阳极保护的基本原理

钢样在磷酸钠溶液中氯离子存在的极化曲线与腐蚀曲线_概述说明

钢样在磷酸钠溶液中氯离子存在的极化曲线与腐蚀曲线概 述说明 1. 引言 1.1 概述 本文旨在研究钢样在磷酸钠溶液中存在氯离子的情况下,其极化曲线和腐蚀曲线的变化趋势。钢材广泛应用于工业领域,并常受到环境中不同离子物质的影响,其中氯离子是一种主要的腐蚀因素之一。通过分析钢样在磷酸钠溶液中的实验结果,我们将探讨氯离子对钢样腐蚀的影响以及极化曲线与腐蚀曲线的原理。 1.2 文章结构 本文结构分为引言、正文、结论三个部分。在引言部分,我们将对本研究的背景和目的进行介绍。接下来,在正文部分,将详细阐述钢样在磷酸钠溶液中氯离子存在时所呈现出的极化曲线和腐蚀曲线,并解释这些曲线所反映出来的现象及其原理。最后,在结论部分,我们将总结实验结果并展望未来可能进行的相关研究方向。 1.3 目的 本文的目的是探究钢样在磷酸钠溶液中存在氯离子时的极化曲线和腐蚀曲线,以提供对钢材腐蚀行为及其机制的深入理解。通过实验结果与分析,我们将评估氯

离子对钢样腐蚀性能的影响,并为进一步研究不同条件下钢材腐蚀过程提供参考。这将有助于优化钢材的防护和工业应用,在延长其使用寿命、减少损坏和降低维修成本方面具有重要意义。 正文部分是对研究问题进行详细阐述和论证的地方。根据文章题目和目录,我会在这一部分讨论钢样在磷酸钠溶液中氯离子存在的极化曲线与腐蚀曲线的相关内容。 钢样在磷酸钠溶液中暴露给氯离子时,会发生腐蚀行为,并产生相应的极化曲线。本章将探讨氯离子对钢样的腐蚀影响以及通过极化曲线来分析此过程的方法和原理。 3. 钢样在磷酸钠溶液中氯离子存在的极化曲线 3.1 氯离子对钢样腐蚀的影响 在磷酸钠溶液中,氯离子可以加速钢样的腐蚀过程。其主要机制包括电化学反应和物理吸附。氯离子能够改变阳极和阴极上反应物种的活性,使其达到更易发生或缓慢进行反应的状态。此外,氯离子还能直接参与一些不可逆反应,导致材料表面结构的破坏和腐蚀产物的生成。 3.2 极化曲线分析方法及原理 极化曲线是通过改变电流密度记录系统的极化状态。常用的实验方法包括线性

极化曲线实验报告

腐蚀金属电极稳态极化曲线测量和数据处理 一、实验目的: 1、掌握恒电位测定极化曲线的原理和方法 2、巩固金属极化理论,确定金属实施阳极保护的可能性。初步了解阳极保护参数及其确 定方法。 3、了解恒电位仪器及相关电化学仪器的使用。 4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。 实验原理 铁在酸溶液中,将不断被溶解,同时产生H2,即: Fe + 2H+ = Fe2+ + H2 (a) Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b) 2H+ + 2e H2 (c) 反应(b)、(c)称为共轭反应。正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。 当电极不与外电路接通时,其净电流I总为零。在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即: (1) IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。

图12-1 Fe的极化曲线 图12-1是Fe在H+中的阳极极化和阴极极化曲线图。当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。此时,电化学过程以Fe的溶解为主要倾向。通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。。由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即: (2) 直线的斜率为bFe。 当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。同理,可获得阴极极化曲线rdc。由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即: (3) 当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。 恒电势方法和恒电流方法的简单线路如图12-3所示:

用Tafel曲线外推法测定金属材料的腐蚀速度

用T a f e l曲线外推法测定金属材料的腐蚀速度(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

用Tafel曲线外推法测定金属材料的腐蚀速度 一、实验目的 1.了解测定金属材料腐蚀速度的电化学方法。 2.掌握Tafel曲线外推法的原理与方法。 3.熟悉LK98BⅡ型微机电化学分析系统(天津市兰力科化学电子高技术有限公司制造)。 二、实验原理 在使用金属的过程中,人们不仅关心它是否会发生腐蚀(热力学可能性),更关心其腐蚀速度的大小(动力学问题)。腐蚀速度表示单位时间内金属腐蚀的程度。迄今为止,普遍应用的测定腐蚀速度方法仍然是经典的失重法。失重法的优点是准确可靠,但由于实验周期长,需要做多组平行实验并且操作麻烦,所以满足不了快速的要求。电化学方法的优点是快速简便并有可能用于现场监控,因而得到了人们的重视。 测定金属材料腐蚀速度的电化学方法有塔菲尔曲线外推法、线性极化法、三点法、恒电流暂态法、交流阻抗法等。本实验采用塔菲尔(Tafel)曲线外推法测定其腐蚀速度。 1905年,塔菲尔(Tafel)提出了塔菲尔关系式,也即:在过电位足够大( >50mv)时,过电位与电流密度有如下的定量关系,称为塔菲尔公式:

η b = i + a ln 式中i是电流密度;b a,是常数。常数a是电流密度i等于1A·cm-2时的超电势值,它与电极材料、电极表面状态、溶液组成以及实验温度等密切相关。b的数值对于大多数的金属来说相差不多,在常温下接近于0.050V。如用以10为低的对数,b约为0.116V。这意味着,电流密度增加10倍,则过电位约增加0.116V。 i Tafel曲线外推法求 corr 如用η为纵坐标,i lg为横坐标作图,塔菲尔关系是一条直线(如上图所示)。这个关系在电流密度很小时不能与事实相符合。因为按照该公式,当 i→0时,η应趋向-∞,这当然是不对的。当i→0时,电极上的情况接近于可逆电极,η应该是零而不应该是-∞。实际上,在低电流密度时,过电位不遵守塔菲尔公式而出现了另外一种性质的关系,即过电位与通过电极的电流密度成η=。 正比,可表示为iω

腐蚀过程的极化曲线分析

极化曲线分析钢筋的腐蚀过程

极化曲线分析钢筋的腐蚀过程 摘要:为了确定混凝土中钢筋锈蚀速率的控制因素,运用腐蚀极化曲线图分析活化钢筋阴阳极极化曲线和腐蚀电流随环境相对湿度的变化规律,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程。结果表明,有锈蚀产物存在时,锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程的阴极去极化剂,钢筋的总腐蚀电流为氧去极化和锈蚀产物去极化产生的腐蚀电流的加和。钢筋的总腐蚀电流随着环境相对湿度的提高而增大,和氧在混凝土中的扩散速率的变化趋势截然相反,从而证明氧仅是混凝土内钢筋开始的锈蚀的必备条件,但却不是混凝中钢筋锈蚀过程控制素。 关键词:混凝土;钢筋;极化曲线;氧;腐蚀产物 混凝土中钢筋的锈蚀是一个非常复杂的电化学过程,目前国内外学者在建立钢筋锈蚀速率模型时,普遍借鉴了金属腐蚀学的研究成果,假定混凝土中钢筋的锈蚀速率受氧扩散速率所控制[1-7],这种假定的正确和合理性直接决定了由此建立的理论模型的适用程度.由于金属腐蚀学研究的对象,大都是金属处于溶液、水或土壤中,整个腐蚀过程受氧扩散控制已为无数的研究所证实。然而大气环境混凝土中钢筋的腐蚀和前几种不同,目前已有的研究发现钢筋的锈蚀速率随混凝土湿含量增大而增大,直至混凝土饱水,钢筋锈蚀速率也没有出现下降[8-9],和混凝土中氧扩散速率的变化趋势[10]截然相反,这是上述假定所无法解释的.姬永生等[11]通过试验研究和钢筋锈蚀产物物相组成的变化分析证明锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程阴极反应的新的去极化剂,传统的氧作为单一阴极去极化剂的锈蚀机理面临着严峻的挑战。因此,探究高湿供氧困难情况下混凝土内钢筋仍高速锈蚀的内在机理,对于建立正确、合理钢筋锈蚀速率模型具有重要的意义。 腐蚀极化曲线图是进行金属腐蚀机理分析的重要工具之一。本文在文献[11]研究的基础上,运用腐蚀极化曲线图全面解释混凝土中钢筋锈蚀过程,探究混凝土由干燥到饱水变化过程混凝土内钢筋锈蚀速率变化的内在机理,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程,为预测钢筋混凝土的使用寿命奠定基础。 1.金属腐蚀极化曲线图简介 1.1腐蚀电池的极化曲线图 腐蚀电池的极化曲线图如图1所示。图中曲线A和C分别表示腐蚀电池的阳极

实验-金属腐蚀速度的测量分析

金属腐蚀速度的测量分析 一、金属腐蚀速度的测量方法 1、重量法 重量法是根据腐蚀前后试件质量的变化来测定金属腐蚀速度的,分为失重法和增重法两种。当金属表面上的腐蚀产物容易除净且不至于损坏金属本体时常用失重法;当腐蚀产物完全牢靠地附着在试件表面时,则采用增重法。 对于失重法可由下式计算腐蚀速度: 式中 V 失——金属的腐蚀速度,g·m-2·h-1; m 0——试件腐蚀前的质量,g ; m 1——试件腐蚀后的质量,g ; S ——试件的面积,m 2; t ——试件腐蚀时间,h 。 对于增重法,即当金属表面的腐蚀产物全部附着在上面,或者腐蚀产物脱落下来可以全部收集起来时,可用下式计算腐蚀速度: 式中 V 增——金属的腐蚀速度,g·m-2·h-1; m 2——带有腐蚀产物的试件质量,g ; 对于密度相同的金属,可以用上述方法比较其耐腐蚀性能,对于密度不同的金属,尽管单位表面上的质量变化相同,其腐蚀深度却不一样,对此,应用腐蚀深度来表示更为合适。应当指出,重量法也有其局限和不足。首先,它只考虑均匀腐蚀的情况,而没有考虑局部腐蚀的情况。其次,对于失重法很难将腐蚀产物完全除去,如果用重量法测定其腐蚀速度,肯定不能说明实际情况。另外,失重法的实验周期较长,短则几小时,多则数年乃至数十年,对于重量法要想做出腐蚀速度(V 增)-时间(t )曲线需要大量的样品和冗长的时间。 2、容量法 对于伴随析氢或吸氧的腐蚀过程,通过测定一定时间内的析氢量或吸氧量来计算金属的腐蚀速度的方法即为容量法。 St m m V 1 0-= 失St m m V 0 2-= 增

许多金属在酸性溶液中,某些电负性较强的金属在中性甚至于碱性溶液中都会发生氢去极化作用而遭到腐蚀,其中: 阳极过程M→Mn++ne 阴极过程nH+ +ne→(n/2)H2↑在阳极上金属不断失去电子而溶解的同时,溶液中的氢离子与阴极上过剩的电子结合而析出氢气。金属溶解的量和析氢出的量相当。即有一克当量的金属溶解,就有一克当量的氢析出。由实验测出一定时间内的析氢体积VH(毫升),由气压计读出大气压力P(毫米汞柱)和用温度计读出室温,并查出该室温下的饱和水蒸气的压力PH2O(毫米汞柱)。根据理想气体状态方程式:PV=NRT, 可以计算出所析出氢气的摩尔数: 为了得到更准确的结果,还应考虑到氢在该实验介质中的溶解量VH′,即由表查出室温下氢在该介质中的溶解度(cm3 /cm3 ),(可用氢在水中的溶解量近似计算,并略去氢在量气管的水中的溶解量)乘以该介质的体积(cm3 )。则金属的腐蚀速度: 式中N—金属的氧化还原当量,g; S—金属的暴露面积,m 2; t—金属腐蚀的时间,h; R—气体状态常数62.36ml·毫米汞柱×103/摩尔·度。 3、极化曲线法 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H+或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属锌在盐酸体系中为例: 阳极反应: Zn-2e=Zn2+阴极反应: H++2e=H 2 阳极反应的电流密度以 i a 表示,阴极反应的速度以 ik表示,当体系达到稳 定时,即金属处于自腐蚀状态时,i a =i k =icorr(icorr为腐蚀电流),体系不会有净的 电流积累,体系处于一稳定电位c 。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在

实验一失重法试样制备及腐蚀速率测定

实验一失重法试样制备及腐蚀速率测定 一、实验目的 1 掌握金属腐蚀失重试样的制备方法 2 掌握失重法测定金属腐蚀速率的原理和方法 3 熟悉腐蚀产物膜的去除方法和腐蚀实验的基本过程 4 测定碳钢在稀硫酸中的腐蚀速率 二、基本原理 测定金属腐蚀速率的方法有重量法、容量法、极化曲线法、电阻法。 重量法是根据腐蚀前后金属试件重量的变化来测定金属的腐蚀速率。分为失重法和增重法。当金属表面上的腐蚀产物较容易除净且不会因为清除腐蚀产物而损害金属本体时常用失重法;腐蚀产物牢固地吸附在试件表面则采用增重法。 把金属做成一定形状和大小的试件,放在腐蚀环境中,经过一定时间后,取出并测量其重量和尺寸的变化,计算其腐蚀速率。 失重法增重法 —腐蚀前的重量; —腐蚀并除去腐蚀产物的重量; —带有腐蚀产物的试件的重量; —暴露在腐蚀环境中的表面积; —腐蚀时间。 三、仪器与药品 1 仪器设备:电子天平、游标卡尺、锈蚀腐蚀试验器、电吹风 2 药品与材料:硫酸、盐酸、六次甲基四胺、丙酮、乙醇、碳钢 四、操作步骤 (一)腐蚀试样的制备 1 试样的加工:外形力求简单。表面积对其重量之比要大,边缘面积对总面积之比要小,重量法通常采用矩形和圆盘形的试件。 2 试样的打磨:采用不同型号的砂纸从粗磨到细磨,使表面达到一定的光洁

度。 3 试样的清洗和干燥:将打磨好的试样先用蒸馏水洗干净,然后依次用丙酮和无水乙醇擦洗(用脱脂棉醮取擦拭),再用电吹风吹干。 (二)腐蚀试样的安装 1 将处理好的试样分别在电子天平上称量,精确到0.1mg;用游标卡尺测量试样的尺寸,分别测三个数据点,求平均值。 2 在烧杯中缓慢倒入质量浓度为10%的硫酸水溶液,将试样系于长约10cm 的尼龙线的一端。另一端用夹具夹牢,将试样浸泡在溶液液面以下10mm,要求试样间无接触,也不接触容器壁。 3 设置所需浴温值,放入烧杯。 3 同一试验通常采用3~5个平行试件。在同一容器中只可以进行一个或几个同一材质的平行试样的腐蚀试验。 (三)腐蚀产物膜的去除 将试样浸泡一定时间后,及时取出,用自来水冲洗。清除腐蚀产物要最大限度地除净试件上的腐蚀产物而又尽可能不损伤试件的基体。 清除腐蚀产物的方法:

碳钢极化曲线测定

碳钢极化曲线测定 实验项目性质:设计性 所属课程名称:化工装备腐蚀与防护 计划学时:4学时 一、实验目的及任务 通过本实验的学习,使学生能从金属腐蚀的基本理论出发,学生亲自进行常见的金属腐蚀实验的操作,进一步理解金属腐蚀的基本理论,掌握金属腐蚀的研究方法和手段。本实验是以测定碳钢腐蚀极化曲线来研究和分析金属电化学腐蚀的腐蚀机理、腐蚀速度。通过本实验的学习,应达到以下目的: 1. 使学生掌握电化学腐蚀测试方法的基本操作技术,使学生了解电化学腐蚀的成因和机理; 2. 培养学生具有科学的思维方法、科学的工作态度和协作精神; 3. 对于设计性实验,初步学会设计电化学腐蚀实验方案;通过学生的独立设计,使学生对实验的研究方法和设计方案有较深入的理解;从而培养综合设计能力和大胆创新的思想。 二、实验内容及要求 本实验项目为设计性实验,由学生自行设计或选择恰当的电化学腐蚀实验方法和装置,自己确定实验步骤,拟定实验方案,通过对碳钢极化曲线进行电化学解析,最后得出实验的结论。具体要求如下: 1. 掌握腐蚀实验室研究的基本实验技能; 2. 对于设计性实验,初步学会设计电化学腐蚀实验方案; 3. 熟悉常用电化学腐蚀实验设备的使用方法; 4. 掌握实验数据的处理及实验报告撰写; 5. 实验中存在的问题及解决方法,实验收获体会。 三、实验条件 1. 仪器设备条件 PAR2273腐蚀电化学测试系统,corrTest电化学系统,电解池为三电极电化学测试体系,辅助电极为25mm×25mm的铂片,参比电极为饱和甘汞电极(SCE)。

2. 物质条件 实验中所用铁电极为碳钢。(处理方法:加工为直径6mm,高为5mm的小圆柱体,真空炉中900℃退火8小时,随炉降至室温,消除铁电极的晶体缺陷。)电极用环氧+固化剂(顺丁烯二酸酐,比例为100:25~30,温度为130~140℃,恒温8小时)或用松香+石蜡(比例1:1)。电极表面依次用400#,800#水砂纸在预磨机上打磨。然后用丙酮清洗电极表面除油。放置在干燥器中备用。溶液为HCl溶液或NaCl溶液(浓度自定)及HCl(浓度自定)+0.3%六次甲基四胺(乌洛托品),溶液最好在实验前用高纯氮或氩除氧8小时以上。 3. 注意事项 实验前,应预先做电位时间曲线Ecorr-t,从Ecorr-t曲线可知电极在何时稳定,这样每次实验前必须将电极浸泡在实验体系中一段时间直至电位稳定,可以进行实验,为节省时间可预先进行这个准备实验。 4. 相关文献资料 [1] 高护生. 腐蚀与防护. 西安:陕西科学技术出版社,1994 [2] 曹楚南. 腐蚀电化学原理. 北京:化学工业出版社,2004 [3] 曹楚南. 腐蚀试验数据的统计分析. 北京:化学工业出版社,1988 [4] 宋诗哲. 腐蚀电化学研究方法. 北京:化学工业出版社,1994 [5] E.海兹等著,曹楚南等译. 腐蚀实验指南. 北京:化学工业出版社,1991 [6] corrTest电化学系统使用说明书 [7] PAR2273腐蚀电化学测试系统使用说明书 四、实验设计及注意事项 1. 实验设计 一般地,碳钢极化曲线测定可以利用动电位扫描,测量材料在不同介质中的极化曲线。扫描可从阴极极化开始,根据参比电极回路的阻抗,可以打开恒电位仪设置中的模拟低通滤波和数字滤波,延迟时间可设定为10~30 秒。在动电位扫描中可以设置初始电位:-100mV, 终止电位: 100mV(均相对开路电位),扫描速率为0.5mV/s。 先在一定溶液中测量一条极化曲线,随后改变不同浓度后,在相同的测试条件下重新进行动电位扫描,然后利用参数拟合中的弱极化区拟合方法来计算不同

塔菲尔外推法测定镁合金的腐蚀速率

用塔菲尔外推法测定镁合金的腐蚀速率 石志明刘明 Andrej Atrens 关键词:镁腐蚀失重法塔菲尔外推法析氢法 摘要:利用极化曲线塔菲尔外推法来充分估计镁合金的腐蚀的假说,在这里称为镁的电化学测量假设。原则上,可以用一个有效的反例反驳。宋和Atrens在2003年的镁腐蚀的论文就表明,关于镁合金,塔菲尔外推法不能可靠地测定腐蚀速率。本文考察了近期文献,进一步研究镁的电化学测量假设。文献表明,利用极化曲线的塔菲尔外推法所测定的镁合金腐蚀速率与失重法和析氢法腐蚀速率不同。典型的偏差介于50%-90%,这些远大于精确测量方法的误差,同时也表明,需要对镁的塔菲尔外推法仔细的审查。但本文研究并不打算用塔菲尔外推法说明镁的腐蚀及相关应用,强烈建议这些测量应由至少两个其它三个简单的测量方法使用补充:(一)重量损失率,(二)析氢速率,(三)镁离子离开金属表面速率。这个方法比没有补充的好很多。 1.简介 因镁合金密度低,有足够的强度重量比和良好的铸造性,镁合金常常应用于交通运输(如汽车制造),然而它的防腐性能差[1–5]。。因此,目前有许多关于镁腐蚀应用的研究,这些研究是依赖于极化曲线的塔菲尔外推法测定的腐蚀速率。这样关于镁的研究依赖于此处称之为电化学测量假设,即用极化曲线的塔菲尔外推法可充分估计镁合金的腐蚀速率。原则上,这样的假设可以用一个有效的反例推翻,宋和Atrens的镁腐蚀的文章就表明,塔菲尔外推法并没有可靠的估计镁合金腐蚀速率。本文的范围是检验最近进一步探讨镁电化学测量假说的文献,一个辅助的目的是方便镁合金的开发和理解镁应用的腐蚀,从而确保这类研究尽可能有效。 2.腐蚀速率测定方法 最简单、最根本的腐蚀速率的测量方法是测量金属的腐蚀速率,PW (mg/cm2 /d),这可以使用[6-9]公式(1)转换为平均腐蚀速度(mm / y) =3.65△W/ρ(1)P W ρ是金属的密度(g/cm3),镁合金的密度ρ是1.74 g/cm3。(1)就变为:

相关主题