搜档网
当前位置:搜档网 › 专题复习:证明角相等的方法

专题复习:证明角相等的方法

专题复习:证明角相等的方法
专题复习:证明角相等的方法

《专题复习:证明角相等的方法》导学案

学习目标

1、系统归纳已经学习过的结论是“角相等”的几何定理;

2、能够初步应用这些定理证明角相等;

3、养成执果索因的习惯,提高分析、解决问题的能力。

学习重、难点熟悉几何定理的文字、符号表述,依据问题的条件恰当选择证明方法。

问题引入证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。

一、自主学习:

归纳已经学习过的结论是“角相等”的几何定理(能结合图形用符号语言表述)

(1)对顶角;

(2)角的余角(或补角)相等;

(3)两直线平行,相等、错角;

(4)凡直角都;

(5)角的平分线分得的两个角;

(6)等腰三角形的两个底角 (简称 )

(7)等腰三角形底边上的高(或中线)顶角(三线合一);

(8)三角形外角和定理:三角形外角等于的角之和;

(9)全等三角形的对应角;

二、典例精析

1、利用平行线的判定与性质证明角相等

例1、如右图在△ABC中,EF⊥AB,CD⊥AB,G在AC边上并且∠GDC=∠EFB,

求证:∠AGD=∠ACB

注:如果要证相等的两角是两条直线被第三条直线所截得的同位角或错角,可考虑用此方法。

2、利用“等(同)角的补角相等”证明角相等

例2、如右图,AB∥CD,AD∥BC,求证:∠A=∠C

3、利用“等(同)角的余角相等”证明角相等

例3、如右图,在锐角△ABC 中,BD 、CE 是它的两条高,求证:∠ABD=∠ACE

变式:若果∠A 是钝角,其它条件不变,仍然有∠ABD=∠ACE ?为什么?

4、利用全等△性质证明角相等

例4、 已知:如图,AC 和BD 相交于点O ,DC AB =,DB AC =。 求证:C B ∠=∠。

注:这种方法很普遍,如果要证相等的两角分别在不同的三角形中,而且能够说明它们全等,可考虑用这种方法。

5、利用“等边对等角”证明角相等

例5、如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .

求证:∠OAB =∠OBA

注:如果要证相等的两角是一个△的两角,可考虑用此方法。 6、利用“三线合一”证明两角相等

例6、如图,∠A=∠D=90°,AB=CD ,AC 与BD 相交于点F ,E 是BC 的中点. 求证:∠BFE=∠CFE.

7、利用“角平分线的判定”证明角相等

例7、如图,AC=BD,S△PAC=S△PBD。求证:OP平分∠AOB

8、利用等式性质(如“相等角加减后仍然相等”)证明角相等

例8、如图,∠BAD=∠CAD,DE∥AC,EF⊥AD交BC于F

求证:∠B=∠FAC

9、利用等量代换证明两角相等.

例9、如图,△ABC是等腰Rt△,∠ACB=90°,AD是BC边上的中线,过C

作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.

三、归纳总结

证明相等相等的方法适用围证明步骤

三、课后作业

1、如图,直线AC BD ∥,连结AB ,直线AC BD ,及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连结PA PB ,,构成PAC ∠,APB ∠,PBD ∠三个角.(提示:有公共端点的两条重合的射线所组成的角是0角.)

(1)当动点P 落在第①部分时,求证:APB PAC PBD ∠=∠+∠;

(2)当动点P 落在第②部分时,APB PAC PBD ∠=∠+∠是否成立(直接回答成立或不成立)?

(3)当动点P 在第③或④部分时,全面探究PAC ∠,APB ∠,PBD ∠之间的关系,并写出动点P 的具体位置和相应的结论.选择其中一种结论加以证明.

2、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF

3、如图,在四边形ABCD 中,AB=AD ,BC=DC

求证:∠B=∠D

A B

C D

② ③

A B C D P

① ②

③ ④ A B C D

① ② ③ ④

4、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C

5、如图,已知BE ⊥AC 于E ,CD ⊥AB 于D ,BE 、CD 相交于点O ,若BD=CE 求证:AO 平分∠BAC.

6、已知:⊿ABC 的三个角平分线相交于点O , 过O 作OG ⊥BC 垂足为G 求证:∠BOD=∠COG

7、如图,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D.求证:∠DBC =21

∠BAC

8、已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD,D 为垂足,AB>AC 。 求证:∠1=∠2+∠B

9、已知:如图,AB=AC,∠1=∠2.求证:∠3=∠4

10、如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

11、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

12、如图,AC⊥CB,DB⊥CB,AB=DC,

求证:(1)∠A=∠D;(2)∠ABD=∠ACD(提示:先证∠ABC=∠BCD)

专题复习证明线段相等角相等的基本方法(一).docx

v1.0可编辑可修改 专题复习证明线段相等角相等的基本方法( 一) 一、教学目标: 知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个 三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法. 过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法 过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生 的学习经验;培养学生推理论证能力 . 情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习 惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的 发展 . 二、教学重点: 掌握根据角和线段位置关系确定证明角相等线段相等的基本方法. 教学难点: 分析图形的形状特征,识别角或线段的位置关系,确定证明方法. 三、教学用具:三角板、学案等 四、教学过程: (一)引入: 相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要 依据;运用三角形全等证明线段相等角相等,常出现在中考 15 题左右的位置,是 北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形 与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中. (二)例题: 例 1 已知:如图 1,△ ABC中, AB=AC,BC为最大边,点 D、 E 分别在 BC、AC上, BD=CE,F 为 BA延长线上一点, BF=CD. 求证:∠ DEF=∠ DFE . 分析:要证在一个三角形中的两角相等,考虑用等腰三角形的性质(等边对

v1.0可编辑可修改 段相等. 证明:∵ AB=AC∴∠ B=∠C. 在△ BDF和△ CED中, BD CE, B C,图 1 BF CD , BDF CED. DF ED.点拨:抓住图形的特征(两角在一个图形中) DEF DFE . 常用等边对等角证明,这是证两角相等的常用方法. 例 2 已知:如图 1,在△ ABC中,∠ ACB=90, CD AB 于点 D, 点 E 在 AC 上, CE=BC,过 E 点作 AC的垂线,交 CD的延长线于点 F .求证 AB=FC. 分析:观察 AB与 FC在图形中的位置,发现这两条线段分别位于两个三角形中,考虑用三角形全等来证明.准备三角形全等的条件时,已知一对角一对边对应相等,还需证另一对对应角相等;已知条件有直角,故利用同角的余角相等来证. 证明:∵ FE ⊥ AC 于点 E,ACB90°,∴FECACB 90°, 易证A F . ∴ △ ABC ≌ △ FCE . ∴AB FC . 点拨:根据图形特征,要证明相等的两边分别在两 F D B A C E 图1 个三角形中,常利用证明两边所在的两个三角形全等来证.在证明两角相等时, 利用了同角的余角相等证明,也可用等角的余角相等来证,但较复杂.例 3 两个大小不同的等腰直角三角板如图1-1 所示放置,图1-2 是由它抽象出的几何图形, B,C,E 在同一条直线D 上,连结 DC .求证:∠ ABE=∠ ACD.

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

证明全等三角形找角相等的方法文档

证明三角形全等找角相等的方法 1、利用平行直线性质 两直线平行的性质定理:1. 两直线平行,同位角相等 2. 两直线平行,内错角相等 例1.如图所示,直线AD 、BE 相交于点C ,AC=DC ,BC=EC. 求证:AB=DE 已知:如图所示,A 、B 、C 、D 在同一直线上,AD =BC ,AE =BF ,CE =DF ,试说明:(1)DF ∥CE ;(2)DE =CF . A B C D E F 1 2 2、巧用公共角 要点:在证两三角形全等时首先看两个三角形是不是有公共交点,如果有公共交点,在看他们是否存在公共角 例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE 10. 已知:如图,AD =AE,AB =AC,BD 、CE 相交于O. 求证:OD =OE .

三、利用等边对等角 要点:注意相等的两条边一定要在同一个三角形内才能利用等边对等角 例1.在△ABC 中,AB=AC ,AD 是三角形的中线. 求证:△ABD ≌△ACD 四、利用对顶角相等 例1、已知:四边形ABCD 中, AC 、BD 交于O 点, AO=OC , BA ⊥AC , DC ⊥AC .垂 足分别为A , C . 求证:AD=BC 已知:如图,在AB 、AC 上各取一点,E 、D ,使AE=AD ,连结BD ,CE ,BD 与CE 交于O ,连结AO ,∠1=∠2, 求证:∠B=∠C 五、利用等量代换关系找出角相等 (1)=A B ∠+∠+公共角公共角,则可以得出=A B ∠∠ 例1. 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 求证:△EAD ≌△CAB . 已知:如图,AB=AC,AD=AE,∠BAC=∠DAE. 求证 :BD=CE A C B E D 图13-4

证明两角相等的方法20170727

徐老师模型数学20170727 证明两角相等的方法 百汇学校徐国纲 一、相交线、平行线 1、对顶角相等; 2、同角或等角的余角(或补角)相等; 3、两直线平行,同位角相等、内错角相等; 4、两边分别对应平行(或垂直)的两角相等或互补; 5、凡直角都相等; 6、角的平分线分得的两个角相等; 二、三角形 7、等腰三角形的两个底角相等; 8、三线合一:等腰三角形底边上的高(或中线)平分顶角; 9、三角形外角和定理:三角形外角等于和它不相邻的内角之和; 10、全等三角形的对应角相等; 11、相似三角形的对应角相等; 12、角平分性质定理的逆定理:到角的两边的距离相等的点在这个角的平分线上; 三、四边形 13、平行四边形的对角相等; 14、菱形的每一条对角线平分一组对角; 15、等腰梯形在同一底上的两个角相等; 四、圆 16、同弧或等弧(或两条相等的弦)所对的圆心角相等; 17、同弧或等弧所对的圆周角相等; 18、圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半; 19、圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角; 20、三角形的内心的性质:三角形的内心与角顶点的连线平分这个角; 21、弦切角定理:弦切角等于它所夹弧所对的圆周角; 22、从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 五、三角函数 23、如果两个锐角的同名三角函数值相等,则这两个锐角相等; 六、等式性质 24、等量代换:若∠1=∠2,且∠2=∠3,则∠1=∠3; 25、等式性质:等量加等量,其和(或差)相等:若∠1=∠2,则∠1+∠3=∠2+∠3或∠1-∠3=∠2-∠3. 第1 页共1 页

证明角相等的方法

证明两角相等的方法 黄冈中学初三数学备课组【重点解读】 证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。在教学中总结了一些定理(或常见结论)以及几种处理方法,仅供参考。 【相关定理或常见结论】 1、相交线、平行线: (1)对顶角相等; (2)等角的余角(或补角)相等; (3)两直线平行,同位角相等、内错角相等; (4)凡直角都相等; (5)角的平分线分得的两个角相等. 2、三角形 (1)等腰三角形的两个底角相等; (2)等腰三角形底边上的高(或中线)平分顶角(三线合一); (3)三角形外角和定理:三角形外角等于和它不相邻的内角之和 (4)全等三角形的对应角相等; (5)相似三角形的对应角相等. 3、四边形 (1)平行四边形的对角相等; (2)菱形的每一条对角线平分一组对角; (3)等腰梯形在同一底上的两个角相等. 4、圆 (1)在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等;(2)在同圆或等圆中,同弧或等弧所对的圆周角相等. ,圆心角相等.

(3)圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半. (4)圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角. (5)三角形的内心的性质:三角形的内心与角顶点的连线平分这个角. (6)正多边形的性质:正多边形的外角等于它的中心角. (7)从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 5、利用等量代换、等式性质 证明两角相等. 6、利用三角函数计算出角的度数相等 【典题精析】 (一) 利用全等相关知识证明角相等 例1 已知:如图,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点O ,且BD CE =. 求证:AO 平分BAC ∠. 分析:要证AO 平分BAC ∠,因为CD AB ⊥于点D ,BE AC ⊥于点E ,所以只要证明OD=OE ;若能证明若能证△OBD ≌△OCE 即可,因为可证 ∠ODB=∠OEC=90°,∠BOD=∠COE ,而BD=CE ,故问题得到解决. 证明:∵CD AB ⊥于点D ,BE AC ⊥于点E ∴∠ODB=∠OEC=90° 在△O BD 和△OCE 中 ∠ODB=∠OEC ∠BOD=∠COE BD=CE ∴△OBD ≌△OCE ∴OD=OE ∵CD AB ⊥于点D ,BE AC ⊥于点E ∴AO 平分BAC ∠. 说明:本例的证明运用了对顶角相等,角的平分线性质的逆定理 例2 如图,在梯形ABCD 中,AD ∥BC ,E 是梯形内一点,ED ⊥AD ,BE=DC ,∠ECB=45 o . 求证:∠EBC =∠EDC 分析:要证明∠EBC =∠EDC ,容易想到证全等,而图中没有全等的三角形,如果

专题复习:证明角相等的方法

《专题复习:证明角相等的方法》导学案 学习目标 1、系统归纳已经学习过的结论是“角相等”的几何定理; 2、能够初步应用这些定理证明角相等; 3、养成执果索因的习惯,提高分析、解决问题的能力。 学习重、难点熟悉几何定理的文字、符号表述,依据问题的条件恰当选择证明方法。 问题引入证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。 一、自主学习: 归纳已经学习过的结论是“角相等”的几何定理(能结合图形用符号语言表述) (1)对顶角; (2)角的余角(或补角)相等; (3)两直线平行,相等、内错角; (4)凡直角都; (5)角的平分线分得的两个角; (6)等腰三角形的两个底角 (简称 ) (7)等腰三角形底边上的高(或中线)顶角(三线合一); (8)三角形外角和定理:三角形外角等于的内角之和; (9)全等三角形的对应角; 二、典例精析

1、利用平行线的判定与性质证明角相等 例1、如右图在△ABC 中,EF ⊥AB ,CD ⊥AB ,G 在AC 边上并且∠GDC=∠EFB , 求证:∠AGD=∠ACB 注:如果要证相等的两角是两条直线被第三条直线所截得的同位角或内错角,可考虑用此方法。 2、利用“等(同)角的补角相等”证明角相等 例2、如右图,AB ∥CD ,AD ∥BC ,求证:∠A=∠C 3、利用“等(同)角的余角相等”证明角相等 例3、如右图,在锐角△ABC 中,BD 、CE 是它的两条高,求证:∠ABD=∠ACE 变式:若果∠A 是钝角,其它条件不变,仍然有∠ABD=∠ACE 为什么 4、利用全等△性质证明角相等 例4、 已知:如图,AC 和BD 相交于点O ,DC AB =,DB AC =。 求证:C B ∠=∠。

专题复习证明线段相等角相等的基本方法

专题复习证明线段相等角相等的基本方法(一) 一、教学目标: 知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法. 过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生的学习经验;培养学生推理论证能力. 情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的发展. 二、教学重点: 掌握根据角和线段位置关系确定证明角相等线段相等的基本方法. 教学难点: 分析图形的形状特征,识别角或线段的位置关系,确定证明方法. 三、教学用具:三角板、学案等 四、教学过程: (一)引入: 相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要依据;运用三角形全等证明线段相等角相等,常出现在中考15题左右的位置,是北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中. (二)例题: 例1已知:如图1,△ABC中,AB=AC,BC为最大边,点D、 E分别在BC、AC上,BD=CE,F为BA延长线上一点,BF=CD.求证:∠DEF=∠DFE . 分析:要证在一个三角形中的两角相等,考虑用等腰三角形的性质(等边对等角)来证;因要证的两条相等的边在两个三角形中,故利用三角形全等来证线段相等. 证明:∵AB=AC∴∠B=∠C. 图1

在△BDF 和△CED 中, 点拨:抓住图形的特征(两角在一个图形中)常用等边对等角证明,这是证两角相等的常用方 法. 例2 已知:如图1,在△ABC 中,∠ACB=,于点D,点E 在 AC 上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F .求证AB=FC. 分析:观察AB 与FC 在图形中的位置,发现这两条线段分别位于两个三角形中,考虑用三角形全等来证明.准备三角形全等的条件时,已知一对角一对边对应相等,还需证另一对对应角相等;已知条件有直角,故利用同角的余角相等来证. 证明:∵于点, ∴, 易证. ∴. ∴. 点拨:根据图形特征,要证明相等的两边分别在两个三角形中,常利用证明两边所在的两个三角形全等来 证.在证明两角相等时,利用了同角的余角相等证明,也可用等角的余角相等来证,但较复杂. 例3 两个大小不同的等腰直角三角板如图1-1所示放置,图1-2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .求证:∠ABE=∠ACD . 分析:图1-2是由两个大小不同的等腰直角三角板构成的旋转图形,分别从一个等腰三角形取一条腰,夹角为等角加同角,就 ,,,... BD CE B C BF CD BDF CED DF ED DEF DFE =?? ∠=∠??=? ∴???∴=∴∠=∠图1 图1-2 图1-1

证明角相等的方法 (黄冈中学)

O A E C D B 证明两角相等的方法 黄冈中学 初三数学备课组 【重点解读】 证明两角相等是中考命题中常见的一种题型,此类证明看似简单,但方法不当也会带来麻烦,特别是在中考有限的两个小时中。恰当选用正确的方法,可取得事半功倍的效果。在教学中总结了一些定理(或常见结论)以及几种处理方法,仅供参考。 【相关定理或常见结论】 1、相交线、平行线: (1)对顶角相等; (2)等角的余角(或补角)相等; (3)两直线平行,同位角相等、内错角相等; (4)凡直角都相等; (5)角的平分线分得的两个角相等. 2、三角形 (1)等腰三角形的两个底角相等; (2)等腰三角形底边上的高(或中线)平分顶角(三线合一); (3)三角形外角和定理:三角形外角等于和它不相邻的内角之和 (4)全等三角形的对应角相等; (5)相似三角形的对应角相等. 3、四边形 (1)平行四边形的对角相等; (2)菱形的每一条对角线平分一组对角; (3)等腰梯形在同一底上的两个角相等. 4、圆 (1)在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等; (2)在同圆或等圆中,同弧或等弧所对的圆周角相等. ,圆心角相等. (3)圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半. (4)圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角. (5)三角形的内心的性质:三角形的内心与角顶点的连线平分这个角. (6)正多边形的性质:正多边形的外角等于它的中心角. (7)从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 5、利用等量代换、等式性质 证明两角相等. 6、利用三角函数计算出角的度数相等 【典题精析】 (一) 利用全等相关知识证明角相等 例1 已知:如图,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点O ,且BD CE =. 求证:AO 平分BAC ∠. 分析:要证AO 平分BAC ∠,因为CD AB ⊥于点D ,BE AC ⊥于 点E ,所以只要证明OD=OE ;若能证明若能证△OBD ≌△OCE 即

专题复习证明线段相等角相等的基本方法(一)剖析

专题复习证明线段相等角相等的基本方法(一) 一、教学目标: 知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法?过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生的学习经验;培养学生推理论证能力. 情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的发展? 二、教学重点: 掌握根据角和线段位置关系确定证明角相等线段相等的基本方法? 教学难点: 分析图形的形状特征,识别角或线段的位置关系,确定证明方法? 三、教学用具:三角板、学案等 四、教学过程: (一)引入: 相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要依据;运用三角形全等证明线段相等角相等,常出现在中考15题左右的位置,是北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中?(二)例题: 例1已知:如图1,^ ABC中,AB=AC, BC为最大边,点D、E分别在 BC、AC 上, BD=CE,F 为BA延长线上一点,BF=CD .求证:/ DEF=Z DFE . 分析:要证在一个三角形中的两角相等,考虑用等腰三角形的性质(等边对等角)来证;因要证的两条相等的边在两个三角形中,故利用三角形全等来证线段相等. 证明:??? AB=ACB= / C. 在厶BDF和厶CED中, 迟 B

证明角相等的方法

证明角相等的方法 (一)相交直线及平行线: ①二直线相交,对顶角相等。 ②二平行线被第三直线所截时,同位角相等,内错角相等,外错角相等。 ③同角或等角的余角相等,同角或等角的补角相等,凡直角都相等。 ④角的平分线分得的两个角相等。 ⑤自两个角的顶点向角内看角的两边,若有一角的左边平行(或垂直)于另一角左边,一角的右边平行(或垂直)于另一角的右边,则此二角相等(图1、2)。 (二)三角形中: ①同一三角形中,等边对等角。(等腰三角形两底角相等、等边三角形三内角相等) ②等腰三角形中底边上的高或中线平分顶角。 ③有一角为60°的等腰三角形是等腰三角形是等边三角形(三内角都相等) ④直角三角形中,斜边的中线分直角三角形为两个等腰三角形(图3)。 (三)四边形中: ①平行四边形对角相等。 ②菱形的对角线平分一组对角。 ②矩形的四角相等,且均为直角。 ③等腰梯形同一底上的两角相等。 (四)正多边形中: ①正多边形的各内角相等、外角相等,且内角= (n-2)180°/ n,外角=360°/ n ②正多边形的中心角相等,且中心角αn=360°/ n 。 (五)圆中: ①同圆或等圆中,等弧或等弦或等弦心距所对的圆心角相等、圆周角相等。 ②同圆或等圆中,含等弧或等弦的弦切角相等,且与所对的圆周角相等。 ③同圆或等圆中,所夹二弧或二弦相等的圆内角相等、圆外角相等。 ④自圆外一点所作圆的两切线,二切线所夹的角被过该点的连心线平分。 ⑤两相交或外切或外离的圆中,二外公切线所夹的角被二圆的连心线平分;两外离的圆中,二内公切线所夹的角也被二圆的连心线平分(图4)。

⑥圆的内接四边形中,任一外角与其内对角相等。 (六)全等形中: ①全等形中,一切对应角都相等。 (七)相似形中: ①相似形中,一切对应角都相等。 (八)角的运算: ①对应相等角的和相等;对应相等角的差相等。 ②对应相等角乘以的相等倍数所得的积相等;对应相等角除以的相等倍数所得的商相等。 ③两角的大小具有相同的数学解析式,或二解析式相减为零,或相除为1,则此二角相等。 ④两锐角或两钝角的正弦具有相同的数学解析式,此二角相等;两角的余弦、正切具有相同的数学解析式,此二角相等

证明角相等的方法

添辅助线的规律 (一)添辅助线的目的: 解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。这种思路可称为条件集中法。 为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。 添加什么样的辅助线,总由以下三方面决定: ⑴由所求决定:问什么,先要作什么。 ⑵由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。 ⑶由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。 (二)添辅助线的规律: (1)三角形中: ①等腰Δ:常连底边上的中线或高或顶角的平分线(构造两个全等的直角Δ,或便于运用等腰Δ三线合一的性质。如图1) ②直角Δ斜边上有中点:连中线(构造两个等腰Δ,或便于运用直角Δ斜边上的中线的特殊性质。如图2) ③斜Δ有中点或中线:连中线(构造两个等底同高的等积Δ。如图

3);或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。如图4);或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似Δ,或便于运用Δ中位线定理。如图5、6);或延长中位线或中线的一倍(构造两个全等Δ或补全为一个平行四边形。如图7、8)。或延长中线的1/3(构造两个全等Δ或补全为一个平行四边形。如图9)。 ④有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角Δ。如图10)或一边或两边的平行线(构造一个或两个等腰Δ或一菱形。如图11)。 ⑤有角平分线:在此角的一边上自顶点取一段等于另一边并作相关连线(构造两个全等Δ。如图12、13) ⑥有角平分线遇垂线:常延长垂线(构造等腰Δ。如图14)。 (二)梯形: ①延长两腰交于一点(构造两相似Δ。如图15), ②由小底的一端作一腰的平行线(构造一集中有两腰及上下两底差的Δ和一平行四边形。如图16)。 ③由小底的两端作大底的垂线(构造两直角Δ和一矩形。如图17)。 ④有对角线时:由小底的一端作另一对角线的平行线(构造一集中有两对角线及上下两底和的Δ和一平行四边形。如图18)。

证明两角相等的方法

证明两角相等的方法 四川 侯国兴 证明两角相等与证明两线段相等都是证明题中的常见题型,本文将举例介绍证明两角相等的常用方法,供学习参考. 一. 利用平行线的性质证明 例1.已知:如图1,12,C D ∠=∠∠=∠.求证:A F ∠=∠ 图1 图2 简析:可考虑由AC ∥DF 而得到结论.. 证明:因为 12,32∠=∠∠=∠(对顶角相等) 所以 13∠=∠ 所以 BD ∥CE (同位角相等,两直线平行) 所以 D B A C ∠=∠(两直线平行,同位角相等) 又因为 C D ∠=∠,所以 DBA D ∠=∠ 所以 AC ∥DF (内错角相等,两直线平行) 所以 A F ∠=∠ (两直线平行,内错角相等) 二. 利用全等三角形的性质证明 例2.已知,如图2,在ABC 中,90ACB ∠= ,AC=BC ,AD 为BC 边的中线,CE AD ⊥ 于E ,交AB 于F ,求证:ADC BDF ∠=∠. 简析:考虑ABC 为等腰直角三角形,其典型辅助线是作底边上的高(作CH AB ⊥于H ,交AD 于G ),也是底边上的中线,这样,可设法证CGD BFD ? 而得到结论. 证明:作CH AB ⊥于H ,交AD 于G , 则45ACG B ∠=∠= 因为 CE AD ⊥,所以 CAG BCF ∠=∠ 又因为 AC=BC 所以 AGC CFB ? (ASA ) 所以 CG=BF (全等三角形的对应边相等) 又因为 45DCG B ∠=∠= ,CD=BD 所以 C G D B F D ? (SAS ) 所以 A D C B D F ∠=∠ (全等三角形对应角相等). 三. 利用等腰三角形的性质证明 例3. 已知 :如图3,AB=AC ,,,CE AB AD BC ⊥⊥且DEB B ∠=∠,求证:12∠=∠.

(完整)《证明线段相等,角相等,线段垂直》的方法总结,推荐文档

《线段相等,角相等,线段垂直》方法总结 一.证明线段相等的方法: 1.中点 2.等式的性质性质1:等式两边同时加上相等的数或式子,两边依然相等。 若a=b 那么有a+c=b+c 性质2:等式两边同时乘(或除)相等的非零的数或式子,两边依然相等若a=b 那么有a·c=b·c 或a÷c=b÷c (a,b≠0 或a=b ,c≠0) 3.全等三角形 4借助中介线段(要证a=b,只需要证明a=c,c=b即可) 二.证明角相等的方法 1.对顶角相等 2.等式的性质 3.角平分线 4垂直的定义 5.两直线平行(同位角,内错角) 6.全等三角形 7.同角的余角相等 8等角的余角相等 9.同角的补角相等 10等角的补角相等 11.三角形的外角等于与它不相邻的两内角之和 三.证明垂直的方法 1.证明两直线夹角=90° 2.证明邻补角相等 3.证明邻补角的平分线互相垂直

4证明三角形两内角之和=90° 5.垂直于平行线中的一条直线,必定垂直于另一条 6.证明此角所在的三角形与已知的直角三角形全等 《线段相等,角相等,线段垂直》经典例题 1.利用角平分线的定义 例题1.如图,已知AB=AC,AD//BC,求证 2、基本图形“双垂直” 本节常用辅助线是围绕角平分线性质构造双垂直(需对其对称性形成感觉)。 例题2.如图,,与的面积相等.求证:OP平分. 例题3、如图,,E是BC的中点,DE平分.求证:AE是的平分线. 3.利用等腰三角形三线合一 例题4.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF平分∠DAE。

4.利用定理 定理:到一个角的两边距离相等的点,在这个角的平分线上。 例5.如图,已知ΔABC的两个外角∠MAC、∠NCA的平分线相交于点P,求证点P在∠B的平分线上。 5..和平行线结合使用,容易得到相等的线段。 基本图形: P是∠CAB的平分线上一点,PD∥AB,则有∠1=∠2=∠3,所以AD=DP。 例6.如图,ΔABC中,∠B的平分线与∠C外角的平分线交于D,过D作BC的平行线交AB、AC于E、F,求证EF=BE-CF。 6.利用角平分线的对称性。 例7.如图,已知在ΔABC中,AB>AC,AD是ΔABC的角平分线,P是AD上一点,求证AB-AC>PB-PC。 7.角平分线与垂直平分线综合 例题8、如图,在△ABC中,AD平分∠BAC,DG⊥BC,且平分BC于G,DE⊥AB于E,DF⊥AC延长线于F.(1)求证:BE=CF.

证明角相等的方法

证明角相等的方法 The Standardization Office was revised on the afternoon of December 13, 2020

证明角相等的方法 (一)相交直线及平行线: ①二直线相交,对顶角相等。 ②二平行线被第三直线所截时,同位角相等,内错角相等,外错角相等。 ③同角或等角的余角相等,同角或等角的补角相等,凡直角都相等。 ④角的平分线分得的两个角相等。 ⑤自两个角的顶点向角内看角的两边,若有一角的左边平行(或垂直)于另一角左边,一角的右边平行(或垂直)于另一角的右边,则此二角相等(图1、2)。 (二)三角形中: ①同一三角形中,等边对等角。(等腰三角形两底角相等、等边三角形三内角相等) ②等腰三角形中底边上的高或中线平分顶角。 ③有一角为60°的等腰三角形是等腰三角形是等边三角形(三内角都相等) ④直角三角形中,斜边的中线分直角三角形为两个等腰三角形(图3)。 (三)四边形中:

①平行四边形对角相等。 ②菱形的对角线平分一组对角。 ②矩形的四角相等,且均为直角。 ③等腰梯形同一底上的两角相等。 (四)正多边形中: ①正多边形的各内角相等、外角相等,且内角= (n-2)180°/ n,外角=360°/ n ②正多边形的中心角相等,且中心角αn=360°/ n。 (五)圆中: ①同圆或等圆中,等弧或等弦或等弦心距所对的圆心角相等、圆周角相等。 ②同圆或等圆中,含等弧或等弦的弦切角相等,且与所对的圆周角相等。 ③同圆或等圆中,所夹二弧或二弦相等的圆内角相等、圆外角相等。 ④自圆外一点所作圆的两切线,二切线所夹的角被过该点的连心线平分。 ⑤两相交或外切或外离的圆中,二外公切线所夹的角被二圆的连心线平分;两外离的圆中,二内公切线所夹的角也被二圆的连心线平分(图4)。 ⑥圆的内接四边形中,任一外角与其内对角相等。 (六)全等形中: ①全等形中,一切对应角都相等。 (七)相似形中: ①相似形中,一切对应角都相等。

证明线段相等的常用方法

~ A C B D P Q B 证明线段相等的常用方法 1.证明两线段是全等三角形的对应边 如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角 形看似全等,可考虑这种方法。 例1.如图, B 、C 、D 在一直线上,△ABC 与△ECD 都是等边三角形,BE 、AD 分别交AC 、EC 于点G 、F 。(1)求证:AE=BD (2)求证 CG=CF 。 例2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. 求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ . ¥ 例3.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧CD ,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E . . (1)试说明:DE =BF ; $

& 二、利用等腰三角形的判定(等角对等边)证明线段相等 如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法 例1.如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。 ] 例2. 如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G. (1)求证:AG=C′G; 、 例3.如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC,D 是弧AC 的中点,连接BD交AC 于G , 过D 作DE⊥AB于E,交AC于F.求证:FD=FG (

相关主题