搜档网
当前位置:搜档网 › 高三数学解析几何知识整理

高三数学解析几何知识整理

高三数学解析几何知识整理
高三数学解析几何知识整理

江苏省启东中学高三数学回归书本知识整理(解析几何)

直线部分

一、直线的倾斜角和斜率:

(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线

重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

注意:规定当直线和x 轴平行或重合时,其倾斜角为o

0,所以直线的倾斜角αo o

(2)直线的斜率:倾斜角不是o

90的直线,它的倾斜角的正切叫做这条直线的斜率,

①斜率是用来表示倾斜角不等于o

90的直线对于x 轴的倾斜程度的。

②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。 ③斜率计算公式: 设经过

),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21

x x ≠时,2

121tan x x y y k --=

=α;当21

x x =时,o 90=α;斜率不存在;

二、直线方程的几种形式:

(1)点斜式:过已知点),(00y x ,且斜率为k 的直线方程:

)(00x x k y y -=-;

注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为0x x

=;

k x x y y =--0

表示:)(00x x k y y -=-直线上除去),(00y x 的图形 。

(2)斜截式:若已知直线在

y 轴上的截距为b ,斜率为k ,则直线方程:b kx y +=;

注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

(3)两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121

,y y x x ≠≠)

,则直线的方程:1

21

121x x x x y y y y --=

--; 注意:①不能表示与x 轴和

y 轴垂直的直线;

②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何

一条直线。

(4)截距式:若已知直线在x 轴,

y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:

1=+b

y

a x ; 注意:不能表示与x 轴垂直的直线,也不能表示与

y 轴垂直的直线,特别是不能表示过原点的直线,要谨慎使

用。

(5)参数式:???+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,),(2222b

a b b a a ++; a b k =;2

2

||||b

a t PP o +=;

点21,P P 对应的参数为21,t t ,则2

2

2121||||

b

a t t P P +-=

?

??+=+=αα

sin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率为αtan ;倾斜

角为)0(παα<≤。

(6)一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;

(B A ,不同时为零);反之,任何一个二元一次 方程都表示一条直线。

注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都能化为特殊形式,这要看系数

C B A ,,是

否为0才能确定。

②指出此时直线的方向向量:),(A B -,),(A B -,),

(

2

2

2

2

B

A A B

A B +-+ (单位向量)

;直线的法向量:),(B A ;(与直线垂直的向量) 三、两直线的位置关系:

位置关系

2221

11::b x k y l b x k y l +=+=

:0:22221111=++=++C y B x A l C y B x A l 平行

? 21k k =,且21b b ≠ 212121C C B B A A ≠= 重合

? 21k k =,且21b b =

2

12121C C B B A A == 相交

? 21k k ≠ 2

121B B A A ≠ 垂直

?

121-=?k k

02121=+B B A A

设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0

:0:22221111=++=++C y B x A l C y B x A l ;当21

k k ≠或1221B A B A ≠时它们相交,交点

坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00222

111C

y B x A C y B x A 解; 注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ=

对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=?B A B A

②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率为 0 ,则两直线垂直。 ③对于0212

1=+B B A A 来说,无论直线的斜率存在与否,该式都成立。因此,此公式使用起来更方便.

④斜率相等时,两直线平行(重合);但两直线平行(重合)时,斜率不一定相等,因为斜率有可能不存在。

四、两直线的交角

(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范围是; 注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;③绕“定点”是指两直线的交点。 (2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),它的取值范围是0πθ<≤;

(3)设两直线方程分别为:

222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l

①若θ为1l 到2l 的角,121tan k k k k +-=θ或1221tan B B A A B A B A +-=θ;

②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;

③当012

1=+k k 或02121=+B B A A 时,o

90=θ;

注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一条直线斜率不存在

时,用数形结合法处理。

②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2

(πθθπα>-=;

五、点到直线的距离公式:

设点),(00y x P 和直线0:=++C By Ax l ,点P 到l 的距离为:2

200||B A C By Ax d +++=;

两平行线0:1111=++C y B x A l ,0:2222=++C y B x A l 的距离为:2

221||B A C C d +-=;

六、直线系:

(1)设直线0:1111=++C y B x A l ,

0:2222=++C y B x A l ,经过21,l l 的交点的直线方程为

0)(=+++++C y B x A C y B x A λ(除去2l )

; 如:①011=--?+=kx y kx y ,即也就是过01=-y 与0=x

的交点)1,0(除去0=x 的直线方程。

②直线5)12()1(:-=-+-m y m x m l 恒过一个定点 。 注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ; (2)与0:=++C By Ax l 平行的直线为0'=++C By Ax ; (3)与0:=++C By Ax l 垂直的直线为0'=+-C Ay Bx ; 七、对称问题: (1)中心对称:

①点关于点的对称:

该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点)2,2(b d a c --

②直线关于点的对称:

Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21

//l l 由点斜式得出直线方程;

Ⅲ、利用点到直线的距离相等。求出直线方程。 如:求与已知直线0632:1

=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。

(2)轴对称:

①点关于直线对称:

Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。

Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。 如:求点

)5,3(-A 关于直线0443:=+-y x l 对称的坐标。

②直线关于直线对称:(设b a ,关于l 对称)

Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离相等。 Ⅱ、求出a 上两个点

B A ,关于l 的对称点,在由两点式求出直线的方程。

Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a 的方程。 如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。

八、简单的线性规划: (1)设点),(00y x P 和直线0:

=++C By Ax l , ①若点P 在直线l 上,则000=++C By Ax ;

②若点P 在直线l 的上方,则0)(00>++C By Ax B ;③若点P 在直线l 的下方,则0)(00<++C By Ax B ;

(2)二元一次不等式表示平面区域:

对于任意的二元一次不等式)0(0<>++C By Ax ,

①当0>B

时,则0>++C By Ax 表示直线:=++C By Ax 上方的区域;

0<++C By Ax 表示直线:=++C By Ax 下方的区域;

②当0

时,则0>++C By Ax 表示直线:=++C By Ax 下方的区域;

0<++C By Ax 表示直线0:=++C By Ax l 上方的区域;

注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。

(3)线性规划:

求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。 满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。生产实际中有许多问题都可以归

结为线性规划问题。

注意:①当0>B

时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大;

直线

0=+By Ax 向下平移,则By Ax z +=的值越来越小;

②当0

直线

0=+By Ax 向下平移,则By Ax z +=的值越来越大;

如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),

目标函数

ay

x z +=取得最小值的最优解有无数个,则

a

为 ;

圆部分

一、曲线和方程:

在直角坐标系中,如果某曲线C 上的点与一个二元方程0),(=y x f 的实数解建立了:

①曲线上的点的坐标都是这个方程的解;(纯粹性) ②以这个方程的解为坐标的点都是曲线上的点;(完备性) 那么这个方程叫做曲线方程,这条曲线叫做方程的曲线。 二、圆的定义及其方程.

(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,

半径是定型条件)

(2)圆的标准方程:)0()()

(222

>=-+-r r b y a x ;圆心),(b a r

圆的参数方程:?

?+=+=θ

θθ(sin cos r b y r a x 为参数);理解θ的含义;

圆的一般方程:)04(02222

>-+=++++F E D F Ey Dx y x

;圆心),(E D --,半径为F

E D 42

122-+;

一般方程的特点:①2

x 和

2y 的系数相同,且不等于零;②没有xy 这样的二次项;③0422>-+F E D ;

特别地,圆心在坐标原点,半径为r 的半圆的方程是222r y x =+;?

?

?==θθsin cos r y r x ;

),(),(2211y x B y x A ,,则以线段AB 为直径的圆的方程是:0))(())((=--+--y y y y x x x x ;

三、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)

设),(00y x P 与圆222

)()(r b y a x =-+-;若P 到圆心之距为d

①P 在在圆C 外22020)()(r b y a x r d

>-+-?>?;

②P 在在圆C 内22020)()(r b y a x r d <-+-?

y a x r d =-+-?=?;

四、直线与圆的位置关系:

设直线0:

=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d

,由直线l 和圆C 联

立方程组消去x (或

y )后,所得一元二次方程的判别式为?,则它们的位置关系如下:

相离0?

r d ;相切0=??=?r d ;相交0>??

注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用?判定称为代数法,对

讨论直线和二次曲线的位置关系都适应。

五、两圆的位置关系:

(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相

同的实数解,则两圆相切;若无实数解,两圆相离。

(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r

①两圆外离2121||r r O O +>?; ②两圆外切2121||r r O O +=?;

③两圆相交212112

||||r r O O r r +<<-?;④两圆内切||||1221r r O O -=?;

⑤两圆内含||||122

1r r O O -

六、与圆的切线有关的问题: (1)若点),(00y x P 在圆222

r y x

=+;则过点P 点的切线方程为:2r yy xx =+;

若点),(00y x P 在圆222)()(r b y a x =-+-;则过点P 点的切线方程为:200))(())((r b y b y a x a x =--+--; 若点),(00y x P 在圆022=++++F Ey Dx y x ;则过点P 点的切线方程为:0000

0=++++++F y y E x x D yy xx ;

(2)斜率为k 且与圆222

r y x

=+相切的切线方程为:2

1k r kx y +±=;

斜率为k 且与圆222

)()

(r b y a x =-+- 相切的切线方程的求法,可设切线为m kx y +=,然后利用圆心到切

线的距离等于半径列出方程求m ; (3)当点),(00y x P 在圆外面时,可设切方程为

)(00x x k y y -=-,利用圆心到直线之距等于半径即r d =,求出k

即可,或利用0=?

,求出k ,若求得k 只有一值,则还应该有一条斜率不存在的直线0x x =,此时应补上。

(4)当直线l 和圆C 相切时,切点的坐标为l 的方程和圆C 的方程联立的方程组的解,或过圆心与切线l 垂直的直线与切

线l 联立的方程组的解。 (5)若点),(00y x P 在圆222

r y x

=+外一点;则过点P 点的切线的切点弦方程为:200r yy xx =+; 若点

)

,(00y x P 在圆

2

22)()(r b y a x =-+-;则过点

P

点的切线的切点弦方程为:

2))(())((r b y b y a x a x =--+--;

七、圆的弦长的求法:

(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则有:222)(r d l

=+;

(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||2

2B

A B A y y k x x k AB -+=-+=

(其中|||,|

2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解。

) 八、圆系方程:

(1)经过两个圆011122=++++F y E x D y x 与022222=++++F y E x D y x 的交点的圆系方程是

0)(2222=+++++++++F y E x D y x F y E x D y x λ;当1-=λ时,表示过两个圆交点的直线;

(2)经过直线0=++

C By Ax l :与圆022=++++F Ey Dx y x 的交点的圆系方程是

0)(22=+++++++C By Ax F Ey Dx y x λ;

圆锥曲线部分

一、椭圆:

(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||

21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)10(<

常数叫做离心率。

注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:

中心在原点,焦点在x 轴上

中心在原点,焦点在

y 轴上

标准方程 )0(122

22>>=+b a b

y a x )0(12

2

22>>=+b a b x a y 参数方程

?

?

?==θθθ(sin cos b y a x 为参数)

?

?

?==θθθ(sin cos a y b x 为参数)

图 形

顶 点 ),0(),,0()0,(),0,(2121b B b B a A a A -- ),0(),,0()0,(),0,(2121a B a B b A b A --

对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2

焦 点 )0,(),0,(21c F c F -

),0(),,0(21c F c F -

焦 距

)0(2

||21>=c c F F 222b a c -=

离心率

)10(<<=

e a

c

e (离心率越大,椭圆越扁) 准 线

c a x 2

±

=

c

a y 2

±

=

通 径

ep a

b 222

=(p 为焦准距) 焦半径

0201||||ex a PF ex a PF -=+= 0201||||ey a PF ey a PF -=+=

焦点弦

)(2||B A x x e a AB ++=

仅与它的中点的横坐标有关

)(2||B A y y e a AB ++=

仅与它的中点的纵坐标有关

焦准距

c

b c c a p 22=

-=

二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||

21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e

e 的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意:a PF PF 2||||

21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;

(2)双曲线的标准方程、图象及几何性质:

中心在原点,焦点在x 轴上

中心在原点,焦点在

y 轴上

标准方程

)0(122

22>>=-b a b

y a x )0(122

22>>=-b a b

x a y 图 形

顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B -

对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2

焦 点 )0,(),0,(21c F c F -

),0(),,0(21c F c F -

焦 距 )0(2||21>=c c F F 222

b a c

+=

离心率

)1(>=

e a

c

e (离心率越大,开口越大)

准 线

c a x 2

±

=

c a y 2

±

=

渐近线 x a

b y ±

= x b

a y ±

= 通 径

ep a

b 222

=(p 为焦准距)

焦半径

P 在左支0

201||||ex a PF ex a PF -=--=

P 在右支0

20

1||||ex a PF ex a PF +-=+=

P 在下支0

201||||ey a PF ey a PF -=--=

P 在上支0

20

1||||ey a PF ey a PF +-=+=

焦准距

c

b c a c p 22=

-=

(3)双曲线的渐近线:

①求双曲线12

2

22=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到。

②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22

2

2b

y a x ; (4)等轴双曲线为222

t y x =-,其离心率为2

三、抛物线:

(1)抛物线的定义:平面内与一个定点的距离等于到一条定直线的距离点的轨迹。

其中:定点为抛物线的焦点,定直线叫做准线。

(2)抛物线的标准方程、图象及几何性质:

0>p

焦点在x 轴上,

开口向右

焦点在x 轴上,

开口向左

焦点在

y 轴上,

开口向上 焦点在

y 轴上,

开口向下

标准方程

px y 22= px y 22-= py x 22= py x 22-=

图 形

顶 点 )0,0(O

对称轴 x 轴

y 轴

焦 点 )0,2

(p F )0,2

(p F -

)2

,0(p F

)2

,0(p F -

离心率 1=e

准 线 2

p x -

= 2

p x =

2

p y -

= 2

p y =

通 径

p 2

焦半径 2

||||0p x PF +

= 2

||||0p y PF +

=

焦点弦 θ

2

21sin 2p p x x =

++(当2π

θ=时,为p 2——通径) 焦准距

p

如:AB 是过抛物线

)0(22>=p px y 焦点F

的弦,M 是AB 的 中点,l 是抛物线的准线,l MN ⊥,N

为垂足,

l BD ⊥,l AH ⊥,D ,H

为垂足,求证:

(1)DF HF

⊥; (2)BN AN ⊥; (3)AB FN ⊥;

(4)设MN 交抛物线于Q ,则Q 平分MN ;

(5)设),(),,(2211y x B y x A ,则2

21p y y -=,2214

1p x x =; (6)

p

FB FA 2

||1||1=+; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME

交x 轴于E ,求证:||2

1||AB EF =,||||

||2

FB FA ME ?=;

四、圆锥曲线的统一定义:

若平面内一个动点M 到一个定点F 和一条定直线l 的距离之比等于一个常数)0(>e e ,则动点的轨迹为圆锥曲线。

其中定点F 为焦点,定直线l 为准线,e 为离心率。 当10

<e 时,轨迹为双曲线。

五、轨迹方程的求法:

(1)直接法:如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只需

把这种关系“翻译”成含y x ,的等式就得到曲线的轨迹方程。

如:已知ABC ?底边BC 的长为8,两底角之和为o

135,求顶点且的轨迹方程。

(2)定义法:其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程。

如:已知圆1622

=+y x

,定点)0,2(A ,若P 是圆上的动点,AP 的垂直平分线交OP

于R ,求R 的轨

迹方程。

(3)几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,

再代人点的坐标较简单。 如:

AB 是O 的直径,且a AB 2||=,M 为圆上一动点,作AB MN ⊥,垂足为N ,在OM 上取点P ,

使||||MN OP =,求点P 的轨迹。

(4)相关点法(代人法):有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而

运动的;如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程。

如:在双曲线)0,0(12222>>=-b a b

y a x 的两条渐近线上分别取点A 和B ,使2

||||c OB OA =?(其中O 为

坐标原点,C 为双曲线的半焦距),求

AB

中点的轨迹。

(5)交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)

的坐标,再消去参数得出所求轨迹的方程。常与参数法并用。 如:己知两点)2,2(-P ,)2,0(Q 以及一直线x y l

=:,设长为2的线段AB 在直线l 上运动,求直线PA 和

QB 的交点M

的轨迹方程。

(6)整体法(设而不求法):当探求的轨迹较复杂时,可扩大考察视角,将问题中的条件、结论的各种关系看成一个整体,

从整体出发运用整体思想,注重整体结构的挖掘和分析。 如:以)2,2(P 为圆心的圆与椭圆m y x

=+22

2交于B A ,两点,求AB 中点M

的轨迹方程。

(7)参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的

运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标),

(y x 中的y x ,分别随

另一变量的变化而变化,称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法, 如果需要得到轨迹的普通方程,只要消去参数即可;

在选择参数时,选用的参变量要以具有某种物理或几何的性质,如时间、速度、距离、角度,有向线段的数量、直线的斜率,点的横、纵坐标等,也可以没有具体的意义,选定参变量还要特别注意它的取值范围的对动点坐标取值范围的影响。

注意:所有的求轨迹的问题都要根据题意,求其中y x ,的取值范围。 六、直线与圆锥曲线的位置关系:

(1)会利用方程组解的状况确定直线与圆锥曲线的位置关系;解此类问题一般从直线与圆锥曲线联立的方程组的解的个数

来入手。(要注意考虑二次项系数为零,思考此时几何意义),也通过图形进行讨论。(要注意的是:与对称轴、渐近线平行的情况) 如:试确定实数

A 的不同取值,讨论直线)1(+=x k y 与双曲线4422=-y x 的公共点的个数。

(2)会求直线被圆锥曲线所截的弦长,弦的中点坐标:解决此类问题时,由于直线和圆锥曲线相交,故其方程组的0>?

(尤其含有待定的系数是否则会增解);涉及到中点坐标,要注意韦达定理的应用,而韦达定理的前提条件是0≥?。

如:设抛物线经过两点)6,1(-和)2,1(--,对称轴与x 轴平行,开口向右,直线72+=x y 被抛物线截得的线

段长是104

,求抛物线方程。

(3)当直线与圆锥曲线相交时,求在某些给定条件下地直线线方程;解此类问题,一般是根据条件求解,但要注意0

>?

条件的应用。 如:已知抛物线方程为

x y 22=在y 轴上截距为2

的直线l 与抛物线交于N M ,两点,且以N M ,为径的圆过原

点,求直线l 的方程。

(4)圆锥曲线上的点关于某一直线的对称问题,解此类题的方法:圆锥曲线上的两点所在直线与已知直线垂直,则圆锥曲

线上两点的中点一定在对称直线上,得到关系式而求解。 如:抛物线)0(12≠-=a ax y 上有关于0=+y x 对称的相异两点,求a 的取值范围。

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高三数学复习专题之一解析几何

高三数学复习专题之一 ----解析几何高考题目的分析 解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征: (1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位 置关系等题目,多以选择题、填空题形式出现; (2)中心对称与轴对称、充要条件多为基本题目; (3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出 现; (4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识 特别是圆的知识,便于简化运算和求解; ②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用; ③要注意圆锥曲线定义的活用. 另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系. . , ),0,1()3 ,)2 )1 , ,)0,(1:.122 222 22中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值; 的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C a e b b ax y C e C PQF F Q P l e b a b y a x C +=? ?>=-

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

解析几何常用知识点总结

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--= =∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点 111(,) P x y ,且斜率为k ). (2)斜截式 y k x b =+(b 为直线l 在y 轴上的截距). (3)一般式 0A x B y C ++=(其中A 、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 1122(,)(,)A x y B x y A B =点点 (2)00(,)x y P 到直线0A x B y C ++= 的距离为d = 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-. (3). 两平行线间的距离公式:设1122:0,:0,l A x B y C l A x B y C d ++=++==则4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A (x ,y )、22B (x ,y )、33C (x ,y ),则△ABC 的重心的坐标是123 123 (, )3 3 x x x y y y G ++++. b y k x b =+0x =0x x m y x =+m 0y =00(,) x y 00 ()y k x x y =-+0 x x =???1±1 2121212121()0 l l k k k k A A B B ⊥?=-?+=、都存在时{ { 12 1221121212 1221 //()k k A B A B l l k k b b A C A C ==? ? ≠≠、都存在时

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高三数学一轮复习解析几何(解析版)

数 学 H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3 . 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5 , 故|PM |=4105,所以△POM 的面积为16 5 . 21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2 =a 2-b 2.

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x =; (6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2|||| 21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2 -ny 2 =1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22 =-b y a x 的渐近线,可令其右边的1为0,即得022 22=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念: ①焦准距:b 2 c ; ②通径:2b 2 a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22 221x y a b -=焦点三角形的面积:b 2 cot θ2 (其中∠F 1PF 2=θ); ⑤弦长公式:c 2 =a 2 -b 2 ,而在双曲线中:c 2 =a 2 +b 2 ,

高三数学解析几何解题技巧

高三数学解析几何解题技巧 解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。能顺利解答解析几何题是数学分数跃上新台阶的重要条件。在解决此类问题时的要点主要有:用运动观点看待条件;挖掘出其中隐含的几何量之间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。其中对能力的要求主要体现在如何选择变量和合理的运算路径上。三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理,而是根据经验获得的合情推理。 解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。一经转化,解析几何问题就转化为方程或函数问题。如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。 常见翻译方法: 距离问题:距离公式212212)()(||y y x x AB -+-= 几个特殊转换技巧: ①若一条直线上有若干点,如D C B A ,,,等,它们之间距离存在比例关系,如满足条件,||||||2BC CD AB =?则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:,)(||||2C B D C B A x x x x x x -=-?-当然也可转化为向量关系再转换为坐标关系等。 ②利用向量求距离。 ③角度问题:若条件表述为所目标角A 是钝角、直角或锐角,则用向量转化为简洁,即AC AB ?的值分别是小于零、等于零或大于零。一般角度问题转化为向量夹角公式即:| |||cos b a ?= θ④面积问题:主要是三角形面积公式:在OAB ?中(O 是原点) )2 ())()((21sin 21c b a p c p b p a p p ah C ab S O ++=---=== ||2 1A B B A y x y x -== ⑤特殊地,若三角形中有某条线段是定值,则可把三角形分解为两个三角形来分别求面积。如椭圆12 2=+b y a x 的左右焦点分别为,,21F F 过左焦点直线交椭圆于),,(11y x A ),,(22y x B 则|||)||(|||2 121212121212y y c y y F F S S S F BF F AF ABF -=+=+=??? ⑥三点共线问题:一般来说,可直接写出过其中两点的直线方程,再把另一点的坐标代入即可,但在具体问题中,用两点之间斜率相等(有时是用向量共线,可不用讨论斜率存在情况)更合适。 最后,针对广东高考命题特点,请同学们记住一句话:心中有数,不如心中有图,心中有图,不如会用图。 【例题训练】 1.(本小题满分14分)

相关主题