搜档网
当前位置:搜档网 › 第2章 电化学热力学

第2章 电化学热力学

第2章 电化学热力学
第2章 电化学热力学

第2章电化学热力学

2.1 相间电位和电极电位

2.1.1 相间电位

两相接触时,荷电粒子(含偶极子)在界面层中的非均匀分布使两相界面层中存在电位差,这种电位差称为相间电位。引起相间电位的可能有以下四种情形:

(a)带电粒子在两相间的转移或利用外电源向界面两侧充电使两相中出现剩余电

荷,形成“双电层”。

(b)阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷.

在界面的溶液一侧形成吸附双电层。

(c)溶液中极性分子在界面溶液一侧定向排列,形成偶极子层。

(d)金属表面因各种短程力作用而形成的表面电位差。

在电化学体系,离子双电层是相间电位的主要来源,同一种粒子在不同相中所具有的能量状态是不同的,当两相接触时,该粒子就会自发地从高能态相向低能态相转移。对于不带电的粒子i相间稳态分布的条件是

即该粒子在两相中的化学位相等,

对于带电粒子来说,在两相间转移时,除了引起化学能的变化外,还有随电荷转移所引起的电能变化。假设孤立相M是一个由良导体组成的球体,因而球体所带的电荷全部均匀分布在球面上。

(1)将单位正电荷e从无穷远处移至离良导体球M 104~10-5cm处时所做的功,

电荷与球体之间只有长程力(库仑力)作用,称为M相(球体)的外电位,用ψ表示,有:

(2)从10-4 ~ 10-5cm处越过表面层到达M相内界面短程力做电功称为M的表面电位χ:

χ

(3)克服物相M与试验电荷之间短程力所作的化学功:

μ

对于单位正电荷情况:任一相的表面层中,由于界面上的短程力场(范德瓦耳斯力、共价键力等)引起原子或分子偶极化并定向排列,使表面层成为一层偶极子层。单位正电荷穿越该偶极子层所作的电功称为M相的表面电位χ。所以将一个单位正电荷从无穷远处移入M相所作的电功是外电位ψ与表面电位χ之和,即

Ф称为M相的内电位。如果进入M相的不是单位正电荷,而是1摩尔的带电粒

子,则其化学功等于该粒子在M相中的化学位μ

。若该粒子荷电量为ne0,则1

i

摩尔粒子所作的电功为nFΦ。因此,将1摩尔带电粒子移入M相所引起的全部

能量变化为:

Φ

对于两个互相接触的相来说,带电离子在相间转移时,建立相间平衡的条件就

是带电粒子在两相中的电化学位相等。即:

=

同样道理,对离子的吸附、偶极子的定向排列等情形,在建立相间平衡之后,

这些粒子在界面层和该相内部的电化学位也是相等的。

2.1.2 金属接触电位

当两种金属相互接触时,由于电子逸出功不等,相互逸入的电子数目不相等,因此在界面层形成了双电层结构:在电子逸出功高的金属相一侧电子过剩,带负电;在电子逸出功低的金属相一侧电子缺乏,带正电;这一相间双电层的电位差就是金属接触电位。

2.1.3 电极电位

电极体系中,两类导体界面所形成的相间电位,即电极材料和离子导体(溶液)的内电位差称为电极电位。电极电位的形成主要决定于界面层中离子双

电层的形成。

2.1.4 绝对电位和相对电位

1.绝对点位与相对电位的概念

电极电位就是金属(电子导电相)和溶液(离子导电相)之间的内电位差,其

数值为电极的绝对电位。处理电化学问题时,绝对电位并不重要,有用的是绝

对点位的变化值,如果选择一个电极电位不变的电极(参比电极)作基准,将参

比电位与被测电极组成一个原电池回路,所测得电池端电位E叫做该被测电极

的相对电位。原电池端电位E可表示为:

为被测电极的相对电位,为参比电极的相对电位,如果认为规定参比电极的相对电位为零,那么测得电池端电位E就是该被测电极的相对电位数值

2.绝对点位符号的规定

通常把溶液深处看作是距离金属/溶液界面无穷远处,认为溶液深处的电位为零,从而把金属与溶液的内电位差看成是金属相对于溶液的电位降。因此,当金属一侧带有剩余正电荷、溶液一侧带有剩余负电荷时,其电位降为正值,该电极绝对电位为正值。同理反之。

3.氢标电极和相对电极符号的规定

电化学中最常用、最重要的参比电极是标准氢电极,人为规定标准氢电极的相对电位为零,用符号表示,上标0表示标准状态。选用氢标准电极作参比电位时,任何一个电极的相对电极就等于该的电极与标准氢电极所组成的原电池的电动势。相对于标准氢电极的电极电位为氢标电位。并规定,给定电极与标准氢电标组成原电池时,若给定电极上发生还原反应(给定电极作阴

极),则该给定电极电位为正值;反之,若给定电极上发生氧化反应(给定电极

作阳极),则该电极电位为负值。

2.1.5液体接触电位

两溶液相组成或浓度不同,溶质粒子将自发地从浓度高的相向浓度低的相

迁移,扩散过程中,因正、负离子运动速度不同而在两相界面层中形成双电层,产生一定的电位差,即液体接界电位(液界电位)。按照形成形成相间电位的原因,也可以把液体接界电位叫做扩散电位。

液界电位不稳定、难以计算、测量,所以在电化学体系中包含它时,使该

体系的电化学参数(如电动势、平衡电位等)的测量值失去热力学意义。为了减

小液界电位,通常在两种溶液之间连接一个高浓度的电解质溶液作为“盐桥”。盐桥的溶液既需要高浓度,还需要其正、负离子迁移速度尽量接近,通常都用

饱和氯化钾溶液中加入少量琼脂配成胶体作盐桥。但必须注意,盐桥溶液不能

与电化学体系中的溶液发生反应。

2.2 电化学体系

根据电化学反应发生的条件和结果的不同,通常把电化学体系分为三大类型:Ⅰ:两个电极和外电路负载接通后、能自发地将电流送到外电路中作功,该

体系称为原电池。Ⅱ:与外电源组成回路,强迫电流在电化学体系中通过并促

使电化学反应发生,这类体系称为电解池。Ⅲ:电化学反应能自发进行,但不

能对外作功,只起破坏金属的作用,这类体系称为腐蚀电池。

2.2.1 原电池(自发电池)

凡是能将化学能直接转变为电能的电化学装

置叫做原电池/自发电池,也可叫伽尔伐尼电池。

以最简单的原电池-丹尼尔电池为例,锌的溶解

(氧化反应)和铜的析出(还原反应)是分别在阳极

区和阴极区进行的电荷的转移(电子得失),要通

过外线路中的自由电子的流动和溶液中离子的迁移才得以实现。这样,电池反

应所引起的化学能变成为载流子传递的动力并转化为可以作电功的电能。为研

究方便,电化学中规定了原电池的书写方式,丹尼尔电池可以以下面的形式表示:

℃,

(1)负极写在左边,正极写在右边,溶液写在中间。

(2)凡是两相界面均用“│”或“,”表示。两种溶液间如果用盐桥连接,则在两溶液间用“║”表示。

(3)气体或溶液中同种金属不同价态离子不能直接构成电极,必须依附在惰性金属(如铂)做成的极板上。此时,应注明惰性金属种类。

(4)必要时注明电池反应进行的温度和电极的正、负极性。

2.电池的可逆性

电池进行可逆变化,必须具备以下两个条件:(1)电池中的化学变化是可逆的,即物质的变化是可逆的。电池在工作过程(放电过程)所发生的物质变化,以反向电流(充电过程)时,又重新恢复原状的可能性。(2)电池中的能量转化是可逆的。即电能或化学能不转变为热量而散失,用电池放电时放出的

能量再对电池充电,电池体系和环境都能恢复到原来状态。

当电流为无限小时,放电和充电过程都在同一电压下进行,正逆过程所做

的电功可以相互抵消,外界环境能够复原。这种过程的变化速度是无限缓慢的,电池反应始终在接近平衡的状态下进行。由此可见,电池的热力学可逆过程是

一种理想过程。在实际工作中,只能达到近似的可逆过程。实际使用的电池都

是不可逆的。这也正反映了热力学的局限性。

3.原电池电动势

在电池中没有电流通过时、原电池两个终端相之间的电位差叫做该电池的电动势,用符号E表示。原电池的能量来源于电池内部的化学反应,若设原电池反

应可逆地进行时所做的电功W为:,按照法拉第定律,Q又可写成nF,n

为参与反应的电子数。所以。从化学热力学知道,恒温恒压下,可逆

过程所作的最大有用功等于体系自由能的减少。因此可逆电池的最大有用功W

应等于该电池体系自由能的减少(-△G)。即

(1)原电池的电能来源于电池反应引起的自由能变化。

(2)这两个关系式非常重要,是联系化学热力学和电化学的主要桥梁,表明了化学能与电能之间转化的定量关系,是电化学热力学中定量计算的基础。

(3)只能适用于可逆电池。因为只有对于可逆过程,电池所做的电功才等于最大有用功。

(4)对于不可逆过程,体系自由能的变化中.有一部分将以热能的形式散失掉。

4.原电池电动势的温度系数

在恒压下原电池电动势对温度的偏导数称为原电池电动势的温度系数,以

表示。恒压下体系自由能的变化满足吉布斯-亥姆霍兹方程

合并后得到

吉布斯-亥姆荷茨方程应用于电池热力学中的另一种表达形式。可以通过测定E

和来求反应的焓变。

(1)若,电功小于反应的焓变。电池工作时,有一部分化学能转变为热

能。倘若在绝热体系中,电池会慢慢变热。

(2)若,电功大于反应的焓变。电池工作时,从环境吸热以保持温度不变。倘若在绝热体系中,电池则逐渐变冷。

(3)若,电功等于反应的焓变。电池工作时即不吸热也不放热。

5.原电池电动势的测量原理

原电池电动势不能用一般的伏特计测量,因为用

伏特计测量时,有电流通过原电池,电流流经原

电池内阻时将产生欧姆电压降(Ir)。结果从伏特

计上读出的电池端电压不等于电池电动势。最精

确和合理的测量电动势的方法是“补偿法”。利

用此法,可以在电流无限小的条件下测量电池电

动势。如左图所示。当开关S扳向1时,通过调

节Rp,使电流I在标难电阻R

N

上产生的电压降

IR

N 与标准电池电动势E

N

相平衡,检流计指示为零。此时有

将开关S扳向2,调节触点,使R

x 上的电压(称为补偿电压)与被测电动势E

x

相平衡,检流计指示为零,则

若测量过程中保持工作电流I不变,则

式中,E

N 在确定温度下为已知值。如果测出R

N

和R

x

,就可求出被测电动势E

x

数值。

2.2.2.电解池

将铁片和锌片分别浸入ZnSO

溶液中组成一个电解池,与外电源B接通后,

4

由电源负极输送过来的电子流入铁电极,溶液中的Zn2+离子在铁电极上得到电

子,还原成锌原子并沉积在铁上。即

与电源正极相连的金属锌不断溶解生成了锌离子,锌

失去的电子从电极中流向外线路。即

电解池是依靠外电源迫使一定的电化学反应发生并生成新的物质的装置。

2.2.3 腐蚀电解池

假如两个电极构成短路的电化学体系,则失

电子(氧化)反应在电子导体的一个局部区域(阳

极区)发生;而得电子反应(还原)在另一个局部

区域(阴极区)发生。通过电解液中离子的定向运

动和在电子导体内部阴、阳极区之间的电子流动,

就构成了一个闭合回路。这一反应过程和原电池

一样是自发进行的。

由于电池体系是短路的,电化学反应所释放的化学能虽然转化成了电能,但无法加以利用,即不能对外作有用功,最终仍转化为热能而散失掉。因此,这种电化学体系不能成为能量发生器。然而,在该体系中,由于电化学反应的结果,必然存在着物质的损耗。只能导致金属材料破坏而不能对外界做有用功的短路原电池称为腐蚀原电池,腐蚀电池虽是自发进行,但却耗费能量;而且导致体系本身的毁坏。

2.2.4浓差电池

一些原电池的电池总反应不是化学变化,仅仅是一钟物质从高浓度状态向低浓度状态的转移,所以,又把这一类原电池叫做浓差电池。如果将两个相同

材料的电极分别浸入由同一种电解质组成,但

浓度不同的溶液中,即可构成浓差电池。除了

由于电解质溶液中离子浓度或分子浓度(如溶

解氧的浓度)不同而形成的浓差电池外,还有

由于参与电极反应的气体分压不同而形成的浓

差电池。

2.3 平衡电极电位

2.3.1 电极的可逆性

按照电池的结构,每个电池都可以分成两半,即由两个半电池所组成。每个半电池实际就是一个电极体系。电池总反应也是由两个电极的电极反应所组成的。因此,要使整个电池成为可逆电池,两个电极或半电池必须是可逆的。可逆电极必须具备下面两个条件:

(1)电极反应是可逆的。只有正向、反向反应的速度相等时,电极反应中物质的交换和电荷的交换才是平衡的。

(2)电极在平衡条件下工作。平衡条件就是通过电极的电流等于零或电流无限小。只有在这种条件下,电极上进行的氧化反应和还原反应速度才能被认为是相等的。

2.3.2 可逆电极的电位

可逆电极电位,也称作平衡电位或平衡电极电位。任何一个平衡电位都是相对一定的电极反应而言的。以符号

表示某一电极的平衡电位。平衡电位的热力学计算公式为:

平氧化态还原态

能斯特电极电位公式,式中:是标准状态在的平衡电位,叫做该电极的标准电极电位,对一定的电极体系,是一个常数。n为参加反应的电子数。

R=8.314J,F=96500C/mol,因此,也可写为

平氧化态还原态

2.3.3 电极电位的测量

电极电位的测量实际上就是原电池电动势的测量。当被测电极与参比电极组成测量原电池时,参比电极作电池的正极(阴极)时,有

若参比电极作电池的负极(阳极)时,有

式中:为被测电极的氢标电位;为参比电极的氢标电位。

2.3.4 可逆电极类型

1.第一类可逆电极

又称为阳离子可逆电极。这类电极是金属浸在含有该金属离子的可溶性盐

溶液中所组成的电极。如Zn│ZnSO

4,Cu│CuSO

4,

Ag│AgNO

3

等电极都属于此类

可逆电极。电极反应时,金属阳离子从极板上溶解到溶液中沉积,该类可逆电极的平衡电位和金属离子的种类、活度和介质的温度有关。

2.第二类可逆电极

又称为阴离子可逆电极。这类电极是由金属插入其难溶盐和与该难溶盐具

有相同阴离子的可溶性盐溶液中所组成的电极。例如:Hg│Hg

2Cl

2

(固)KCl(α

Cl-);Pb│PbSO

4

(固),SO

4

2-(α

SO4

2-) 。电极反应时,阴离子在界面间进行溶解

和沉积(生成难溶盐)的反应。此类电极的平衡电位是由阴离子的种类、活度和反应温度来决定的。

3.第三类可逆电极

由铂或其他惰性金属插入同一元素的两种不同价态离子的溶液中所组成的电极。

,;,;,

等为第三类可逆电极。这类电极的组成中,惰性金属本身不参加

电极反应,只起导电作用。电极反应由溶液中同一元素的两种价态的离子之间

进行氧化还原反应来完成。所以,这类可逆电极又称为氧化还原电极。

4.气体电极

气体可逆电极就是在固相和液相界面上,气态物质发生氧化还原反应的电极。气体在常温常压下不导电,须借助于铂或其他惰性金属起导电作用,是气

体吸附在惰性金属表面,与溶液中相应的离子进行氧化还原反应并达到平衡状态。

2.3.5标准电极电位和标准电化序

标准电极电位是标准状态下的平衡电位。除了标准氢电极被认为规定为

零外,其他电极的标准电极电位通常都用氢标电位表示。可以把各种标准电极

电位按数值的大小,从负到正排成一次次序表,这种表称为标准电化序或标准

电位序。

标准电极电位的正负反映了电极在进行电极反应时,相对于标准氢电极的

得失电子的能力。电极电位越负,越容易失电子;电极电位越正,越容易得电子。标准电化序也反映了某一电极相对于另一电极的氧化还原能力的大小。电

极电位负的金属是较强的还原剂,电极电位正的金属是较强的氧化剂。标准电

化序就成了一种分析氧化还原反应的热力学可能性的有力工具。

(1)标准电化序在一定条件下反映金属的活泼性。标准电位负的金属比较容易失去电子,是活泼金属;反之是不活泼金属。因此根据标准电化序可以粗略判

断金属发生腐蚀的热力学可能性。电位越负,金属腐蚀的可能性越大。

(2)当两种或两种以上金属接触并有电解液存在时,可根据标准电化序初步估计哪种金属被加速腐蚀,哪种金属被保护。

(3)标准电化序指出了金属(包括氢离子)在水溶液中的置换次序。置换反

应本质上也是氧化还原反应,所以可用标准电化序对金属离子的置换次序作出

估计。在简单盐的水溶液中,金属元素可以置换比它的标准电位更正的金属离子,标准电位为负值的金属可以置换氢离子而析出氢气,但标准电位为正值的

金属则不能与氢离子发生反应,

(4)可初步估计电解过程中,溶液里的各种金属离子(包括氢离子)自阴极析出的先后顺序。电解过程中,在阴极优先析出的金属离子应是电极电位较正,

因而容易得电子的金属离子。

2.4 不可逆电极

2.4.1 不可逆电极及其电位

在实际的电化学体系中,有许多电极并不能满足可逆电极条件,这类电极

叫做不可逆电极,例如。铝在海水中所形成的电极,相当于;零件在电

镀溶液中所形成的电极:Fe|,Fe|Cr,Cu|等等。

2.4.2 不可逆电极的类型

1.第一类不可逆电极

当金属浸入不含该金属离子的时所形成的电极,如Zn│HCl,Zn│NaCl。

这类电极与第一类可逆电极有相似之处,即电位的大小与金属离子浓度有关。2.第二类不可逆电极

一些标准电位较正的的金属(Cu,Ag等)浸在能生成该金属的难溶盐或氧

化物的溶液中所组成的电极叫做第二类不可逆电极,例如Cu|NaCl,Ag|NaCl等,由于生成的难溶盐、氧化物或氢氧化物的溶度积很,它们在溶液中很快达到饱

和并在金属表面析出。

3.第三类不可逆电极

金属浸入含有某种氧化剂的溶液中所形成的电极,例如Fe|HNO

3,Fe|K

2

CrO

7

以及不锈钢浸在含有氧化剂的溶液中。这类电极所建立起来的电极电位主要依赖于溶液中氧化态物质和还原态物质之间的氧化还原反应。因此,它类似于第三类可逆电极,称为不可逆的氧化还原电极。

4.不可逆气体电极

一些具有较低的氢过电位[注]的金属在水溶液中,尤其是酸中,会建立起不

可逆的氢电极电位。这时,电极反应主要是

但仍有反应发生,后者的速度远小于前者。因此,电极电位值主

要取决于氢的氧化还原过程,表现出气体电极的特征。故称为不可逆气体电极。例如Fe|HCl,Ni|HCl等电极就属于这一类。

2.4.3 可逆电位与不可逆电位的判别

2.4.4 影响电极电位的因素

1.电极的本性

电极的本性在这里指的是电极的组成。由于组成电极的氧化态物质和还原

态物质不同,得失电子的能力也不同,因而形成的电极电位不同。

2.金属的表面状态

金属表面加工的精度,表面层纯度,氧化膜或其他成相膜的存在,原子、

分子在表面的吸附等等对金属的电极电位有很大的影响,可使电极电位变化的

范围达1V左右。其中金属表面自然生成的保护膜层的影响特别大。保护膜的形成多半使金属电极电位向正移,而保护膜的破坏或溶液中的离子对膜的穿透率

增强时,往往使电极电位变负。电位的变化可达数百mV。

3.金属机械变形和内应力

变形和内应力的存在通常使电极电位变负:在变形的金属上,金属离子的

能量增高,活性增大,当他浸入溶液时就容易溶解而变成离子。如果由于变形

或应力作用破坏了金属表面的保护膜,电位也将变负。

4.溶液的PH值

PH值对电极电位有明显影响,可使电极电位变化达数百mV.

5.溶液中氧化剂的存在

通常的金属腐蚀过程中常遇到的氧化剂是溶解在电解液中的氧,氧化剂多半使电极电位变正,除了吸附氧的作用外,还可能因为生成氧化膜或使原来的保护膜更加致密而使电位变正。

6.溶液中络合剂的存在

当溶液中有络合剂时,金属离子就可能不在以水化离子形式存在,而使以某种络离子的形式存在,不同的络合剂对同种金属的电极电位的影响不同,但总是使电位向更负的方向变化。

7.溶剂的影响

电极电位既与物质得失电子有关,又与离子的溶剂有关。

2.5 电位-PH图

平衡电位的数值反应了物质的氧化还原能力,可以用来判断电化学反应进

行的可能性。平衡电位的数值与反应物质的活度(或逸度)有关,对有离子或离子参与的反应来说,电极电位将随溶液的PH值的变化而变化。以电位

(平衡电极电位,相对于标准氢电极)为纵坐标,以PH为横坐标的电化学平衡图。

2.5.1 化学反应和电极反应的平衡条件

化学反应可写成通式

式中:为反应物质;为反应物质的化学计量数。等温条件下,化学反应达

到平衡的条件是体系自由能的变化为零。即

式中,为i物质的化学位。由化学等温式

得到

此为化学反应平衡条件的数学表达式,式中K为该反应的平衡常数。

电极反应可用下列通式表示,即

电极反应与化学反应的主要区别在于:除了物质的变化外,还有电荷的转移。在电极反应中平衡的能量中还应考虑电能的变化。电极反应的平衡条件应是各反应物质电化学位的代数和为零。

()表示电极材料(金属)和溶液的内电位差,也就是电极的绝对电位。若用相对电极电位,如氢标电位来代替绝对电位

式中,对还原态物质取负数,对氧化态物质取正数。

1.有离子参加,没有电子参加的化学反应

2.没有离子参加的电极反应

3.有离子参加的电极反应

第二章 化学热力学初步

第二章化学热力学初步 1. 热力学第一定律W U- = Q ?,由于U为状态函数,所以Q和W也是状态函数,对吗?为什么? 答:不对。Q和W只有在能量交换的时候才会有具体的数值,并且随途径不同,共和热的数值都会有变化,所以不是状态函数。 2. 解释下列名词 (1) 体系与环境 (2) 热(Q) (3) 功(W) (4) 焓(H)和焓变(H ?) (5) 热力学能U (6) 恒容反应热(Q V)和恒压反应热(Q p) 答:(1) 热力学中称研究的对象为体系,称体系以外的部分为环境。 (2) 体系在变化过程中吸收的热量为Q。 (3) 体系对环境所做的功。 (4) H=U+PV 当泛指一个过程的时候,其热力学函数的改变量为焓变。 (5) 体系内一切能量的总和叫热力学能。 (6) 在恒容过程中完成的化学反应,其热效应称为恒容反应热。 在恒压过程中完成的化学反应,其热效应称为恒压反应热。 3. 什么叫状态函数?它具有何特性? 答:藉以确定体系状态的物理量称为体系的状态函数。它具有加和性。 4. 何谓热效应?测量方法有哪两种? 答:化学反应的热效应为当生成物和反应物的温度相同时,化学反应过程中的吸收或放出的热量。可以选择恒压和恒容两种条件下测量。 5. 什么叫热化学方程式?书写热化学方程式要注意哪几点? 答:表示出反应热效应的化学方程式叫做热化学方程式。书写化学方程式时要注意一下几点:(1)写热化学方式式,要注意反应的温度和压强条件,如果反应是在298K和1.013×105Pa下进行时,习惯上不予注明。(2)要注明物质的聚集状态和晶形。(3)方程式中的配平系数只是表示计量数,不表示分子数。但计量数不同时,同一反应的反应热数值也不同。 6. ①无机化学中常用的反应热有哪几种?反应热的实质是什么?什么类型的化学反应Q V=Q p?等摩尔的NaOH和NH3·H2O溶液分别与过量的HCl溶液中和所放热量是否相等?为什么? ②反应2N2(g)+O2(g)=2N2O(g)在298K时,ΔrH m?=164K J·mol-1, 求反应的ΔU? 答:①无机化学中常用的反应热有恒压反应热和恒容反应热。 反应热的实质是:当生产物与反应物的温度相同时,化学反应过程中的吸

第十章_热力学定律 知识点全面

第十章热力学定律 知识网络: 一、 功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U 表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q ?=+ 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU ,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU ,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。

对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,不会使熵减少。 ③任何宏观物质系统都有一定量的熵,熵也可以在系统的变化过程中产生或传递。 ④一切自然过程的发生和发展中,总熵必定不会减少。 ●能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。 四、能源和可持续发展: ●能源的重要性:能源是社会存在与发展永远不可或缺的必需品,是国民经济运动的物质基础,它与材料、信息构成现代社会的三大支柱。 ●化石能源:人们把煤、石油叫做化石能源。 ●生物质能:生物质能指绿色植物通过光合作用储存在生物体内的太阳能,储存形式是生物分子的化学能。 ●风能:为了增加风力发电的功率,通常把很多风车建在一起,我国新疆、内蒙古等地已经开始大规模利用风力发电。

第三章化学热力学

第三章化学热力学 (g) + O2(g) ?H2O(l)(298K)的Q p与Q V之差(kJ·mol-1)是………………………() (A)(B) (C)(D) 2.已知HCN(aq)与NaOH(aq)反应,其中和热是kJ·mol-1,H+(aq) + OH-(aq) = H2O(l),= kJ·mol-1,则1 mol HCN 在溶液中电离的热效应(kJ·mol-1)是……………() (A)(B) (C)(D) 3.已知2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g) ,= kJ·mol-1 ,则该反应的Q V值是…………………………………………………………………………() (A)(B) (C)(D) 4.如果体系经过一系列变化,最后又变到初始状态,则体系的………………………() (A)Q = 0 W = 0 ΔU = 0 ΔH = 0 (B)Q 0 W 0 ΔU = 0 ΔH = Q (C)Q = WΔU = Q - WΔH = 0 (D)Q WΔU = Q - WΔH = 5.在一定温度下:(1) C(石墨) + O2(g) = CO2(g) ΔH1 ;(2) C(金刚石) + O2(g) = CO2(g) ΔH2;(3) C(石墨) = C(金刚石) ΔH3 = kJ·mol-1,其中ΔH1和ΔH2的关系是…………………………………………………………………() (A)ΔH1>ΔH2(B)ΔH1<ΔH2 (C)ΔH1=ΔH2(D)不能判断 6.若两个液态组分混合形成理想溶液,则混合过程的…………………………………( (A)ΔV = 0 ΔH = 0 ΔS = 0 ΔG = 0(B)ΔV > 0 ΔH < 0 ΔS < 0 ΔG > 0 (C)ΔH = 0 ΔV = 0 ΔS > 0 ΔG < 0 (D)ΔH > 0 ΔV < 0 ΔG< 0 ΔS > 0

第二章 化学热力学基础

课 题第二章 化学热力学 基础 课次第一讲(2学时) 教学目的(1)理解状态函数的概念及其特点(2)理解过程和途径的区别(3)理解热和功的概念及其符号规定. 重点难点状态函数的基本特点热和功的符号规定及计算 教学过程2-1 热力学的一些基本概念 教学方法 讲授 课的类型 基础课 内蒙古农业大学理学院普通化学教案 第二章 化学热力学基础(8学时) §2.1 热力学的一些基本概念 一.系统和环境 系统是被人为地划定的作为研究对象的物质(又叫体系或物系)。除系统外的物质世界就是环境。体系分类: 孤立系统:与环境既无物质交换又无能量交换。开放系统:与环境既有物质交换又有能量交换。封闭系统: 与环境无物质交换而有能量交换。二.状态和状态函数 在热力学中,为了描述一个系统,必须确定它的一系列性质,即物理性质和化学性质,如温度、压力、体积、密度、组成等。当系统的所有物理性质和化学性质都有确定的值,则称这个系统处于一定的状态。所以系统的状态是由一系列表征系统性质的物理量所确定下来的系统的存在形式,是其物理性质和化学性质的综合表现。系统的状态是由许多宏观的物理量来描述和确定的。例如,气体的温度、压力、体积以及物质的量等宏观物理量确定了,则该气体系统的状态也就确定了。只要其中一个物理量改变,则体系的状态就会发生变化,变化前的状态叫始态,变化后的状态叫终态。 系统的每一状态都具有许多物理和化学性质,状态一定,系统的性质也就一定,状态改变,系统的性质也随之变化。在热力学中把用来说明、

确定系统所处状态的系统性质叫做状态函数。例如p、V、T及后面要介绍的非常重要的热力学能U、焓H、熵S和吉布斯自由能G等均是状态函数。状态函数的特点:一是当系统的状态确定后,系统的宏观性质即状态函数就有确定的数值,亦即系统的宏观性质是状态的单值函数;二是状态函数的变化值只决定于系统的始态和终态,而与状态发生变化时所经历的具体途径无关。无论经历多么复杂的变化,只要系统恢复原状,则状态函数也恢复原状。 状态函数按其性质可分为两大类: (1)广度性质:又称容量性质,当将系统分割成若干部分时,系统的某性质等于各部分该性质之和,即广度性质的值与系统中物质的量成正比,具有加和性。体积、质量、热力学能、熵、焓、吉布斯自由能等均是广度性质。 (2)强度性质:此类性质不具有加和性,其值与系统中物质的量多少无关,仅决定于系统本身的特性。例如,两杯298K的水混合,水温仍是298K,而不是596K。温度、压力、密度、粘度等均是强度性质。 应当指出,两个广度性质的比值,是一个新的强度性质。如摩尔体积、摩尔质量、密度、浓度等就是强度性质。强度性质不必指定物质的量就可以确定。 三.过程和途径 当系统与环境之间发生物质交换和能量交换时,系统的状态就会发生变化,人们把状态变化的经过称为过程,而把完成变化的具体步骤称为途径。一个过程可以由多种不同的途径来实现,而每一途径常由几个步骤组成。例如,在101.325kPa下,将25℃水加热到75℃的过程,可以通过多种途径达到。如途径Ⅰ,直接加热升温到75℃;途径Ⅱ,先把水加热到90℃,然后再冷却到75℃。 热力学常见的过程有: (1)定温过程:系统的状态变化是在系统的始态温度、终态温度及环境温度均相等的条件下发生的过程。即T始=T终=T环=T。

工程热力学课后作业答案(第十章)第五版

10-1蒸汽朗肯循环的初参数为16.5MPa 、550℃,试计算在不同背压p2=4、6、8、10及12kPa 时的热效率。 解:朗肯循环的热效率 3 121h h h h t --= η h1为主蒸汽参数由初参数16.5MPa 、550℃定 查表得:h1=3433kJ/kg s1=6.461kJ/(kg.K) h2由背压和s1定 查h-s 图得: p2=4、6、8、10、12kPa 时分别为 h2=1946、1989、2020、2045、2066 kJ/kg h3是背压对应的饱和水的焓 查表得。 p2=4、6、8、10、12kPa 时饱和水分别为 h3=121.41、151.5、173.87、191.84、205.29 kJ/kg 故热效率分别为: 44.9%、44%、43.35%、42.8%、42.35% 10-2某朗肯循环的蒸汽参数为:t1=500℃、p2=1kPa ,试计算当p1分别为4、9、14MPa 时;(1)初态焓值及循环加热量;(2)凝结水泵消耗功量及进出口水的温差;(3)汽轮机作功量及循环净功;(4)汽轮机的排汽干度;(5)循环热效率。 解:(1)当t1=500℃,p1分别为4、9、14MPa 时初焓值分别为: h1=3445、3386、3323 kJ/kg 熵为s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa(s2=s1)对应的排汽焓h2:1986、1865、1790 kJ/kg 3点的温度对应于2点的饱和温度t3=6.98℃、焓为29.33 kJ/kg s3=0.106 kJ/(kg.K) 3`点压力等于p1,s3`=s3, t3`=6.9986、7.047、7.072℃ 则焓h3`分别为:33.33、38.4、43.2 kJ/kg 循环加热量分别为:q1=h1-h3`=3411、3347、3279.8 kJ/kg (2)凝结水泵消耗功量: h3`-h3 进出口水的温差t3`-t3 (3)汽轮机作功量h1-h2 循环净功=0w h1-h2-( h3`-h3) (4)汽轮机的排汽干度 s2=s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa 对应的排汽干度0.79、0.74、0.71 (5)循环热效率1 0q w =η=

第2章化学热力学习题

一、思考题 1. 什么是体系,什么是环境两者有什么区别根据两者的关系,可以将体系分为哪几类 答案:体系:我们所选择的研究对象。 环境:在体系周围与体系有关系的物质。 体系分为:孤立体系;封闭体系;敞开体系。 2. 与环境连通的系统属于何种类型的系统为什么 答案:属于敞开系统,此时环境与系统之间既有物质交换又有能量交换。 3. 密闭容器中的化学反应系统属于何种类型的系统为什么 4. 密闭且保温性能绝好的容器中的化学反应系统属于何种类型的系统为什么 5. 什么是等容热效应与等压热效应两者有什么关系在什么情况下它们相等 答案:等容过程的热效应,称等容热效应,Q v = Δr U ; 等压过程的称等压热效应Q p =ΔH。化学反应、相变过程等一般是在等压条件下进行的,故手册 中列出的有关数据,一般是等压热效应。 对应同一反应,等容和等压热效应 ΔγU m 和 ΔγH m 之间有如下近似关系: ΔγH m =ΔγU m +ΔnRT 式中Δn (或示为 )为反应过程中气体物质的量的增量。 6. 内能变U ?与等容热效应,焓变H ?与等压热效之间有什么样的关系 7. 内能变与焓变之间有什么关系在什么情况下它们相等 8. 在下列反应或过程中,Q p 与Q v 有区别吗 ① NH 4HS (s)??? →?K 15.273NH 3 (g) + H 2S (g) ② H 2 (g) + Cl 2 (g) ??? →?K 15.273 2 HCl (g) ③ CO 2 (s) ???→?K 15.195 CO 2 (g) ④ AgNO 3(aq) + NaCl (aq) ??? →?K 15.273AgCl(s) + NaNO 3(aq) 9. 下列反应中,哪些反应的H ?≈U ? ① 2H 2(g )+O 2(g )== 2H 2O (g ) ② Pb(NO 3)2 +2KI (s )== PbI 2(s )+ 2KNO 3 (s) ③ NaOH(aq) + HCl(aq) == NaCl(aq) + H 2O (l) ④ CO 2(g) + NaOH(s) == NaHCO 3(s) 10. 什么是状态函数状态函数有什么特点Q 、W 、H 、U 、S 、G 中哪些是状态函数,哪些不是 答案:体系的性质是由体系的状态确定的,这些性质是状态的函数,称为状态函数; 11. 上题的状态函数中,哪些没有明确的物理意义具有明确物理意义的,请说明其物理意义。 12. 化学热力学中所说的“标准状态”意指什么 答案:状态函数中热力学能U 及焓H 和吉布斯自由能G 等热力学函数的绝对值是无法确定的。为了便于比较不同状态时它们的相对值,需要规定一个状态作为比较的标准。所谓标准状态,是在指定温度T 和标准压力(100kPa )下该物质的状态,简称标准态。对具体系统而言,纯理想气体=1 p 。溶液中溶质的标准态,是在指定温度T 和标准压力p 的状态;纯液体(或纯固体)物质的标准态是标准压力p 下的状态;混合理想气体的标准态是指任一气体组分的分压力为p 时该气体所处的状态。因压力对液体和固体的体积影响很小,故可将溶质的标准态浓度改用c=1mol ·Kg -1 ,而没有指定温度,所以与温度有关的状态函数的标准状态应注明温度。 13. 化学热力学中,标准状态条件是指压力为100kPa 还是指压力为100 kPa ,温度为 14. 标准摩尔生成焓的定义是什么如何根据时的标准摩尔生成焓的数值计算反应在时的标准摩尔焓变 其他温度时的标准摩尔焓变如何计算 15. 时,物质B 的标准摩尔生成焓符号如何单位如何

第3章 化学热力学基础

3.15 2mol Hg(l)在沸点温度(630K)蒸发过程中所吸收的热量为109.12kJ。则汞的标准摩尔蒸发热ΔvapHm=(54.46)kJ ;该过程中对环境做功W=(10.48kJ),ΔU=(98.64kJ),ΔS=(173.2J·K-1),ΔG=(0) 3.16 有A,B,C,D四个反应,在298K时的反应的热力学函数分别为反应 A B C D Δ 10.5 1.80 -126 -11.7 rHm/(kJ·m ol-1) Δ 30.0 -113 84.0 -105 rSm/(kJ·m ol-1) 则在标准状态下,任何温度都能自发进行的反应是(C),任何温度都不能自发进行的反应是(B);另两个反应中,在温度高于(77)℃时可自发进行的反应是(A),在温度低于(-161.6)℃时可自发进行的反应是(D) 3.17 1mol液态的苯完全燃烧生成的CO2(g)和H2O(l),则该反应的Qp与Qv的差值(-3.72)kJ(温度25℃) 3.18 已知25℃时,ΔfHm(Br,g)=30.71kJ·mol-1,ΔfGm(Br,g)

=3.14kJ·mol-1,则Br2(l)的标准摩尔蒸发熵为(92.52)J·mol-1·K-1,正常沸点为(58.93)℃ 3.19 反应2HgO(s)===2Hg(l)+O2(g)ΔrHm=181.4kJ·mol-1,则ΔfHm(HgO,s)=(-90.7kJ·mol-1)。已知Ar(Hg)=201,生成1gHg(l)的焓变是(0.451)kJ 3.20 已知反应CaCO3(s)===CaO(s)+CO2(g)在298K时ΔrGm=130kJ·mol-1,1200K时ΔrGm=-15.3kJ·mol-1,则该反应的ΔrHm 为(161J·mol-1·K-1) 3.21 将下列物质按摩尔熵值由小到大排列,其顺序为 Li(s))0 3.23 若3mol理想气体向真空膨胀,该过程的Q,W,ΔU,ΔH,ΔS,ΔG中不为零的是(ΔS,ΔG)

第10章热力学基础

第10章 热力学基础 一、选择题 1. 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体)开始时它们的压强和温度都相同,现将3 J 热量传给氨气,使之升高到一定的温度。若使氢气也升高同样的温度,则应向氢气传递热量为 (A)6 J (B)3 J (C)5 J (D )l0 J [ ] 2. 对于物体的热力学过程, 下列说法中正确的是 (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 [ ] 3. 有关热量, 下列说法中正确的是 (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 [ ] 4. 关于功的下列各说法中, 错误的是 (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功 [ ] 5. 1mol 理想气体从初态(T 1, p 1, V 1 )等温压缩到体积V 2, 外界对气体所做的功为 (A) 121ln V V RT (B) 2 11ln V V RT (C) )(121V V p - (D) 1122V p V p - [ ] 6. 物质的量相内能同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体 (A) 从外界吸热和内能的增量均相同 (B) 从外界吸热和内能的增量均不相同 (C) 从外界吸热相同, 内能的增量不相同 (D) 从外界吸热不同,的增量相同 [ ] 7. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为

第三章 金属电化学腐蚀的热力学原理

第三章金属电化学腐蚀的热力学原理 §3-1 腐蚀原电池 1.腐蚀原电池是指导致金属材料的破坏而不能对外做有用功的短路原电池。 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 (图3-1) 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 O2 + 4H+ +4e →2H2O

(图3-2) 电化学腐蚀发生的根本原因是由于介质中存在着平衡电极电位高于金属的平衡电极电位的氧化性物质。 2.腐蚀原电池的组成及工作过程 1)组成:阳极、阴极、电解质溶液、外电路。 2)工作过程:①金属阳极溶解过程如Fe →Fe2+ +2e ②溶液中氧化性物质的阴极还原过程如

2H+ +2e →H2 ③电子和离子的定向流动过程 以上三个过程是彼此独立进行的,但又是串联在一起的,因而只要其中的某个过程的进行受到阻滞,则金属的腐蚀速度就会减缓。3.电化学腐蚀的次生过程 腐蚀电池工作过程中,阳极附近金属离子(如Fe2+)浓度增大,阴极附近的pH升高,则随着离子的迁移发生如下反应: Fe2+ + 2OH- →Fe(OH)2 ↓ 或者进一步被氧化为:4Fe(OH)2+ O2 +2H2O →Fe(OH)3↓ 即铁在含氧水溶液中腐蚀的次生过程。 如图所示是铁在含氧水溶液中的腐蚀及其次生过程。

(图3-3 P22) 4.腐蚀原电池的分类 按照电极的大小,被破坏金属的表观形态,腐蚀电池可分为三类: 1)超微电池腐蚀:金属表面上存在的超微 观的(原子大小的)电化学不均一性引起,可以认为阴阳极是等电位,导致金属材料 的均匀腐蚀。 2)微电池腐蚀:金属表面存在许多微小的

第2章 电化学热力学

第2章电化学热力学 2.1 相间电位和电极电位 2.1.1 相间电位 两相接触时,荷电粒子(含偶极子)在界面层中的非均匀分布使两相界面层中存在电位差,这种电位差称为相间电位。引起相间电位的可能有以下四种情形: (a)带电粒子在两相间的转移或利用外电源向界面两侧充电使两相中出现剩余电 荷,形成“双电层”。 (b)阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷. 在界面的溶液一侧形成吸附双电层。 (c)溶液中极性分子在界面溶液一侧定向排列,形成偶极子层。 (d)金属表面因各种短程力作用而形成的表面电位差。 在电化学体系,离子双电层是相间电位的主要来源,同一种粒子在不同相中所具有的能量状态是不同的,当两相接触时,该粒子就会自发地从高能态相向低能态相转移。对于不带电的粒子i相间稳态分布的条件是 即该粒子在两相中的化学位相等,

对于带电粒子来说,在两相间转移时,除了引起化学能的变化外,还有随电荷转移所引起的电能变化。假设孤立相M是一个由良导体组成的球体,因而球体所带的电荷全部均匀分布在球面上。 (1)将单位正电荷e从无穷远处移至离良导体球M 104~10-5cm处时所做的功, 电荷与球体之间只有长程力(库仑力)作用,称为M相(球体)的外电位,用ψ表示,有: (2)从10-4 ~ 10-5cm处越过表面层到达M相内界面短程力做电功称为M的表面电位χ: χ (3)克服物相M与试验电荷之间短程力所作的化学功: μ 化 对于单位正电荷情况:任一相的表面层中,由于界面上的短程力场(范德瓦耳斯力、共价键力等)引起原子或分子偶极化并定向排列,使表面层成为一层偶极子层。单位正电荷穿越该偶极子层所作的电功称为M相的表面电位χ。所以将一个单位正电荷从无穷远处移入M相所作的电功是外电位ψ与表面电位χ之和,即 Ф称为M相的内电位。如果进入M相的不是单位正电荷,而是1摩尔的带电粒

物理化学第二章热力学第一定律

第二章热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。 2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的Q,W, U和 H的值。 3.了解为什么要定义焓,记住公式U Q V , H Q p的适用条件。 4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中, U, H, W, Q的计算。 二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒 定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一 些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习 题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。 例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变化的过 程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地 上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨” 是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递 的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外, 其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变 为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热)的。例如在 不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、 燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所 以 Q 0, W 0, U 0 。这个变化只是在系统内部,热力学能从一种形式变为

第3章 化学热力学基础 习题及全解答

第3章化学热力学基础 1.状态函数的含义及其基本特征是什么?T、p、V、△U、△H、△G、S、G、Q p、Q u、Q、W、W e最大中哪些是状态函数?哪些属于广度性质?哪些属于强度性质? 答:状态函数的含义就是描述状态的宏观性质,如T、p、V、n、m、ρ等宏观物理量,因为体系的宏观性质与体系的状态之间存在对应的函数关系。状态函数的基本特点如下: (1)在条件一定时,状态一定,状态函数就有一定值,而且是唯一值。 (2)条件变化时,状态也将变化,但状态函数的变化值只取决于始态和终态,与状态变化的途径无关。 (3)状态函数的集合(和、差、积、商)也是状态函数。其中T、p、V、S、G是状态函数,V、S、G、H、U属于广度性质(具有加和性),T、p属于强度性质。 2.下列叙述是否正确?试解释之。 (1)Q p=△H,H是状态函数,所以Q p也是状态函数; (2)化学计量数与化学反应计量方程式中各反应物和产物前面的配平系数相等; (3)标准状况与标准态是同一个概念; (4)所有生成反应和燃烧反应都是氧化还原反应; (5)标准摩尔生成热是生成反应的标准摩尔反应热; (6)H2O(l)的标准摩尔生成热等于H2(g)的标准摩尔燃烧热; (7)石墨和金刚石的燃烧热相等; (8)单质的标准生成热都为零; (9)稳定单质的△f HΘm、SΘm、△f GΘm均为零; (10)当温度接近绝对零度时,所有放热反应均能自发进行。 (11)若△r H m和△r S m都为正值,则当温度升高时反应自发进行的可能性增加; (12)冬天公路上撒盐以使冰融化,此时△r G m值的符号为负,△r S m值的符号为正。 答:(1)错。虽然H是状态函数,△H并不是状态函数,所以Qp当然不是状态函数;。 (2)错。因为反应物的化学计量数为负,与反应计量方程式中反应物前面为正的系数不相等; (3)错。如气体的标准状况是指0℃和101.325KPa条件,而标准态对温度没有限定; (4)错。如由石墨生成金刚石的生成反应就不是氧化还原反应; (5)对。因某物质的标准摩尔生成热是由某物质生成反应的标准摩尔反应热而命名的; (6)对。因H2O(l)的生成反应与H2(g)的燃烧反应是同一个反应; (7)错。因石墨和金刚石的燃烧反应虽最终产物相同,但反应的始态不同; (8)错。因为只有稳定单质的标准生成热才为零; (9)错。因为只有稳定单质的△f HΘm、△f GΘm为零,而稳定单质的SΘm在一般条件下并不为零; (10)对。因为当温度接近绝对零度时,反应熵变趋近于零,反应热为影响反应自发的唯一因素; (11)对。因△r H m和△r S m都为正值,说明是吸热的、有可能自发的反应,升温有利; (12)对。因冰融化变水了,说明乃混乱度增大的自发过程,△r G m值必为负,△r S m值必为正。 3.1 mol气体从同一始态出发,分别进行恒温可逆膨胀或恒温不可逆膨胀达到同一终态,因恒温可逆膨胀对外做功W r大于恒温不可逆膨胀对外做的功W ir,则Q r>Q ir。对否?为什么? 答:对。因为从同一始态到同一终态,热力学能变相同,根据热力学第一定律,因恒温可逆膨胀对外做功W r大于恒温不可逆膨胀对外做的功W ir,则恒温可逆膨胀从环境吸收的热Q必大于恒温不可逆膨胀从环境吸收的热Q ir。(△u=O r-W r= O-W; W r>W ir则Q r>Q ir)

第十章_热力学定律知识点全面

功、热与内能 ?绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ?内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母 ?热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ?热传递的方式:热传导、对流热、热辐射。 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述: 库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也 同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即 Q=0,则:g U,外界对物体做的功等于物体内能的增加。 若过程中不做功,即 W=Q 贝y : Q=A U,物体吸收的热量等于物体内能的增加。 知识网络: U 表示。 (开尔文表述)不可能从单一热

若过程的始末状态物体的内能不变,即△U=0,则:W+Q=O,外界对物体做的功等于物体放出的热量。 对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解 ① 在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律?能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ?第一类永动机不可制成是因为其违背了热力学第一定律 ?第二类永动机不可制成是因为其违背热力学第二定律一切自然过程总是沿着分子热运动的无序性增大的方向进行)?熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展, 至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵

第3章 电化学热力学

第3章电化学热力学 3.1可逆电池和可逆电极 电化学与热力学的联系 组成可逆电池的必要条件 可逆电极的类型 电化学与热力学的联系桥梁公式: r ,,f,max r m ,,()()T P R T P R G W nEF nEF G zEF ξ Δ==?Δ=?=?可逆电池:电池在平衡态或无限接近于平衡态的 情况下工作。 3.1.1 组成可逆电池的必要条件 化学反应可逆能量变化可逆 原电池电解池 电池充放电后,反应体系复原 1. 电极及电池的化学反应本身必须是可逆的例 2. Zn, Cu 棒插入H 2SO 4中构成的电池 原电池(放电)反应: (-)Zn → Zn ++ + 2e 阳极,氧化(+)2H + + 2e → H 2↑ 阴极,还原 总反应:Zn + 2H + → Zn ++ + H 2↑ 电解池(充电)反应: (-)2H + + 2e → H 2↑ 阴极,还原(+)Cu → Cu ++ + 2e 阳极,氧化 总反应:2H + + Cu → Cu ++ + H 2↑ 1. 电极及电池的化学反应本身必须是可逆的

反应体系复原的同时,环境也必须复原 要求能量复原,即要求外加电流I →0 因为电池总是有内阻,内阻消耗电能 功—→热,导致不可逆 2. 能量变化可逆 即:电池的工作条件是可逆的(处于或接近于平衡态,即没有电流通过或通过的电流为无限小)。 Question 1 Question 2 研究可逆电池的重要意义 9(1)揭示一个原电池把化学能转变为电能的最高限度; 9(2)可利用可逆电池来研究电化学系统的热力学,即电化学反应的平衡规律。原电池的电动势就是指可逆电池的电动势。 Question 可逆电池中的反应都是在等温等压下进行的,因此ΔG=0? ZFE G m r ?=Δ 3.1.2 可逆电极的类型ù金属与其阳离子组成的电极ù氢电极ù氧电极ù卤素电极ù汞齐电极 ù金属-难溶盐及其阴离子组成的电极ù金属-氧化物电极 ù氧化-还原电极 ⑴第一类电极 ⑵第二类电极 ⑶第三类电极

工程热力学第十章蒸汽动力装置循环教案.docx

第十章蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质:水蒸汽。 用途:电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 匀速 朗肯循环回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今 不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能 按卡诺循环进行。 p 51 C2 v 1-2绝热膨胀(汽轮机) 2-C定温放热(冷凝汽)可以实现 5-1定温加热(锅炉) C-5绝热压缩(压缩机)难以实现 原因: 2-C 过程压缩的工质处于低干度的湿汽状态 1 、水与汽的混合物压缩有困难,压缩机工作不稳定,而且 3 点的湿蒸汽比容比 水大的多 '2000'需比水泵大得多的压缩机使得输出的净功大大3232

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理 论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使 T1高于临界温度,改进的结果 就是下面要讨论的另一种循环—朗肯循环。 10-2朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵 P 送进省煤器 D′进行预热,然后在锅炉内吸热汽化,饱 和蒸汽进入 S 继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热 过程—朗诺循环。 1-2绝热膨胀过程,对外作功 2-3定温(定压)冷凝过程(放热过程) 3-4绝热压缩过程,消耗外界功 4-1定压吸热过程,(三个状态) 4-1 过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2 过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3 过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4 过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

第十章_热力学定律 知识点全面

知识网络: 一、功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、热力学第一定律、第二定律 ?=+ 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。

若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。 对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵

第13章 热力学基础习题及答案

第十三章习题 热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 的abc过程,(图中虚线ac为等温线),和图(2) 所 示的def过程(图中虚线df为绝热线).判断这两 种过程是吸热还是放热. abc过程 热,def过程热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 强是。(= γC p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

相关主题