搜档网
当前位置:搜档网 › 高中物理常见的物理模型易错题归纳总结

高中物理常见的物理模型易错题归纳总结

高中物理常见的物理模型易错题归纳总结
高中物理常见的物理模型易错题归纳总结

一、斜面问题

1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ.

图9-1甲

2.自由释放的滑块在斜面上(如图9-1 甲所示):

(1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左.

3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零(见一轮书中的方法概述).

图9-1乙

4.悬挂有物体的小车在斜面上滑行(如图9-2所示):

图9-2

(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;

(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.

5.在倾角为θ的斜面上以速度v 0平抛一小球(如图9-3所示):

图9-3

(1)落到斜面上的时间t =2v 0tan θ

g

(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;

(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)2

2g cos θ

6.如图9-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止.

图9-4

7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定

速度v m =mgR sin θ

B 2L 2

图9-5

8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =m m +M

L .

图9-6

●例1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.

举例如下:如图9-7甲所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的

滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =M +m

M +m sin 2 θ

g sin θ,式

中g 为重力加速度.

图9-7甲

对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..的,请你指出该项[2008年高考·北京理综卷]( )

A .当θ=0°时,该解给出a =0,这符合常识,说明该解可能是对的

B .当θ=90°时,该解给出a =g ,这符合实验结论,说明该解可能是对的

C .当M ?m 时,该解给出a ≈g sin θ,这符合预期的结果,说明该解可能是对的

D .当m ?M 时,该解给出a ≈g

sin θ

,这符合预期的结果,说明该解可能是对的

【解析】当A 固定时,很容易得出a =g sin θ;当A 置于光滑的水平面时,B 加速下滑的同时A 向左加速运动,B 不会沿斜面方向下滑,难以求出运动的加速度.

图9-7乙

设滑块A 的底边长为L ,当B 滑下时A 向左移动的距离为x ,由动量守恒定律得:

M x t =m L -x t

解得:x =mL

M +m

当m ?M 时,x ≈L ,即B 水平方向的位移趋于零,B 趋于自由落体运动且加速度a ≈g .

选项D 中,当m ?M 时,a ≈g

sin θ

>g 显然不可能.

[答案] D

【点评】本例中,若m 、M 、θ、L 有具体数值,可假设B 下滑至底端时速度v 1的水平、竖直分量分别为v 1x 、v 1y ,则有:

v 1y v 1x =h L -x =(M +m )h ML 12m v 1x 2+12m v 1y 2+1

2M v 22=mgh m v 1x =M v 2

解方程组即可得v 1x 、v 1y 、v 1以及v 1的方向和m 下滑过程中相对地面的加速度.

●例2 在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L .一个质量为m 、边长也为L 的正方形线框以速度v 进入上部磁场时,恰好做匀速运动.

图9-8甲

(1)当ab 边刚越过边界ff ′时,线框的加速度为多大,方向如何?

(2)当ab 边到达gg ′与ff ′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab 边到达gg ′与ff ′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab 边在运动过程中始终与磁场边界平行,不计摩擦阻力)

【解析】(1)当线框的ab 边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,线框恰好做匀速运动,则有:

mg sin θ=BI 1L

此时I 1=BL v

R

当线框的ab 边刚好越过边界ff ′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab 边与cd 边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I 1.故线框的加速度大小为:

图9-8乙

a =4BI 1L -mg sin θm

=3g sin θ,方向沿斜面向上.

(2)而当线框的ab 边到达gg ′与ff ′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI 2L

故I 2=14I 1

由I 1=BL v R 可知,此时v ′=14

v

从位置①到位置③,线框的重力势能减少了3

2

mgL sin θ

动能减少了12m v 2-12m (v 4)2=15

32

m v 2

由于线框减少的机械能全部经电能转化为焦耳热,因此有:

Q =32mgL sin θ+15

32

m v 2.

[答案] (1)3g sin θ,方向沿斜面向上 (2)32mgL sin θ+1532

m v 2 【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.

二、叠加体模型

叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷 Ⅰ 的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.

叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型的情境和结论需要熟记和灵活运用.

1.叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A 、B 之间无摩擦力作用.

图9-9

2.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f ·s 相.

图9-10

●例3 质量为M 的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d 1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d 2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)( )

图9-11

A .最终木块静止,d 1=d 2

B .最终木块向右运动,d 1

C .最终木块静止,d 1

D .最终木块静止,d 1>d 2

【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m ,由动量守恒定律得:

m v 0-m v 0=(M +2m )v

解得:v =0,即最终木块静止

设左侧子弹射入木块后的共同速度为v 1,有: m v 0=(m +M )v 1

Q 1=f ·d 1=12m v 02-1

2(m +M )v 12

解得:d 1=mM v 02

2(m +M )f

对右侧子弹射入的过程,由功能原理得:

Q 2=f ·d 2=12m v 02+1

2

(m +M )v 12-0

解得:d 2=(2m 2

+mM )v 02

2(m +M )f

即d 1<d 2. [答案] C

【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.

三、含弹簧的物理模型

纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.

1.静力学中的弹簧问题

(1)胡克定律:F =kx ,ΔF =k ·Δx .

(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力. ●例4 如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了( )

图9-12甲

A .(m 1+m 2)2g 2

k 1+k 2

B .(m 1+m 2)2g 22(k 1+k 2)

C .(m 1+m 2)2g 2(k 1+k 2

k 1k 2

)

D .(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 1

【解析】取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:

F =(m 1+m 2)g

设这一过程中上面和下面的弹簧分别伸长x 1、x 2,如图9-12乙所示,由胡克定律得:

图9-12乙

x 1=

(m 1+m 2)g k 1,x 2=(m 1+m 2)g

k 2

故A 、B 增加的重力势能共为: ΔE p =m 1g (x 1+x 2)+m 2gx 2 =(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 1

[答案] D

【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长

量,再将两者相加,但不如上面解析中直接运用Δx =ΔF

k

进行计算更快捷方便.

②通过比较可知,重力势能的增加并不等于向上提的力所做的功W =F ·x 总=(m 1+m 2)2g 2

2k 22

(m 1+m 2)2g 2

2k 1k 2

2.动力学中的弹簧问题

(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.

(2)如图9-13所示,将A 、B 下压后撤去外力,弹簧在恢复原长时刻B 与A 开始分离.

图9-13

●例5 一弹簧秤秤盘的质量m 1=1.5 kg ,盘内放一质量m 2=10.5 kg 的物体P ,弹簧的质量不

计,其劲度系数k =800 N/m ,整个系统处于静止状态,如图9-14 所示.

图9-14

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2 s 内F 是变化的,在0.2 s 后是恒定的,求F 的最大值和最小值.(取g =10 m/s 2)

【解析】初始时刻弹簧的压缩量为:

x 0=(m 1+m 2)g k

=0.15 m

设秤盘上升高度x 时P 与秤盘分离,分离时刻有: k (x 0-x )-m 1g

m 1

=a

又由题意知,对于0~0.2 s 时间内P 的运动有: 12

at 2

=x 解得:x =0.12 m ,a =6 m/s 2

故在平衡位置处,拉力有最小值F min =(m 1+m 2)a =72 N 分离时刻拉力达到最大值F max =m 2g +m 2a =168 N . [答案] 72 N 168 N

【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m 1与m 2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a ,故秤盘与重物分离.

3.与动量、能量相关的弹簧问题

与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:

(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;

(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.

●例6 如图9-15所示,用轻弹簧将质量均为m =1 kg 的物块A 和B 连接起来,将它们固定在空中,弹簧处于原长状态,A 距地面的高度h 1=0.90 m .同时释放两物块,A 与地面碰撞后速度立即变为零,由于B 压缩弹簧后被反弹,使A 刚好能离开地面(但不继续上升).若将B 物块换为质量为2m 的物块C (图中未画出),仍将它与A 固定在空中且弹簧处于原长,从A 距地面的高度为h 2处同时释放,C 压缩弹簧被反弹后,A 也刚好能离开地面.已知弹簧的劲度系数k =100 N/m ,求h 2的大小.

图9-15

【解析】设A 物块落地时,B 物块的速度为v 1,则有: 1

2

m v 12=mgh 1 设A 刚好离地时,弹簧的形变量为x ,对A 物块有: mg =kx

从A 落地后到A 刚好离开地面的过程中,对于A 、B 及弹簧组成的系统机械能守恒,则有: 1

2

m v 12=mgx +ΔE p 换成C 后,设A 落地时,C 的速度为v 2,则有: 12

·2m v 22=2mgh 2 从A 落地后到A 刚好离开地面的过程中,A 、C 及弹簧组成的系统机械能守恒,则有: 12

·2m v 22=2mgx +ΔE p 联立解得:h 2=0.5 m . [答案] 0.5 m

【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.

●例7 用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg 的物块C 静止在前方,如图9-16 甲所示.B 与C 碰撞后二者粘在一起运动,则在以后的运动中:

图9-16甲

(1)当弹簧的弹性势能最大时,物体A 的速度为多大? (2)弹簧弹性势能的最大值是多少?

(3)A 的速度方向有可能向左吗?为什么?

【解析】(1)当A 、B 、C 三者的速度相等(设为v A ′)时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,则有:

(m A +m B )v =(m A +m B +m C )v A ′

解得:v A ′=(2+2)×6

2+2+4

m/s =3 m/s .

(2)B 、C 发生碰撞时,B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者的速度为v ′,则有: m B v =(m B +m C )v ′

解得:v ′=2×6

2+4

=2 m/s

A 的速度为v A ′时弹簧的弹性势能最大,设其值为E p ,根据能量守恒定律得:

E p =12(m B +m C )v ′2+12m A v 2-1

2(m A +m B +m C )v A ′2

=12 J .

(3)方法一 A 不可能向左运动.

根据系统动量守恒有:(m A +m B )v =m A v A +(m B +m C )v B 设A 向左,则v A <0,v B >4 m/s

则B 、C 发生碰撞后,A 、B 、C 三者的动能之和为:

E ′=12m A v 2A +12(m B +m C )v 2B >12(m B +m C )v 2

B =48 J 实际上系统的机械能为:

E =E p +1

2

(m A +m B +m C )v A ′2=12 J +36 J =48 J

根据能量守恒定律可知,E ′>E 是不可能的,所以A 不可能向左运动.

方法二 B 、C 碰撞后系统的运动可以看做整体向右匀速运动与A 、B 和C 相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)

由(1)知整体匀速运动的速度v 0=v A ′=3 m/s

图9-16乙

取以v 0=3 m/s 匀速运动的物体为参考系,可知弹簧处于原长时,A 、B 和C 相对振动的速率最大,分别为:

v AO =v -v 0=3 m/s v BO =|v ′-v 0|=1 m/s

由此可画出A 、B 、C 的速度随时间变化的图象如图9-16乙所示,故A 不可能有向左运动的时刻.

[答案] (1)3 m/s (2)12 J (3)不可能,理由略 【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s 匀速行驶的车厢内,A 、B 和C 做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s 、1 m/s .

②当弹簧由压缩恢复至原长时,A 最有可能向左运动,但此时A 的速度为零.

●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m 和4m .笔的弹跳过程分为三个阶段:

图9-17

①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);

②由静止释放,外壳竖直上升到下端距桌面高度为h 1时,与静止的内芯碰撞(如图9-17乙所示);

③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h 2处(如图9-17丙所示).

设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g .求: (1)外壳与内芯碰撞后瞬间的共同速度大小. (2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.

(3)从外壳下端离开桌面到上升至h 2处,笔损失的机械能. [2009年高考·重庆理综卷]

【解析】设外壳上升到h 1时速度的大小为v 1,外壳与内芯碰撞后瞬间的共同速度大小为v 2. (1)对外壳和内芯,从撞后达到共同速度到上升至h 2处,由动能定理得:

(4m +m )g (h 2-h 1)=1

2(4m +m )v 22-0 解得:v 2=2g (h 2-h 1).

(2)外壳与内芯在碰撞过程中动量守恒,即: 4m v 1=(4m +m )v 2

将v 2代入得:v 1=5

4

2g (h 2-h 1)

设弹簧做的功为W ,对外壳应用动能定理有:

W -4mgh 1=12

×4m v 2

1

将v 1代入得:W =1

4

mg (25h 2-9h 1).

(3)由于外壳和内芯达到共同速度后上升至高度h 2的过程中机械能守恒,只有在外壳和内芯的碰

撞中有能量损失,损失的能量E 损=12×4m v 21-12

(4m +m )v 2

2 将v 1、v 2代入得:E 损=5

4

mg (h 2-h 1).

[答案] (1)2g (h 2-h 1) (2)1

4

mg (25h 2-9h 1)

(3)5

4

mg (h 2-h 1) 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.

四、传送带问题

从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物

理规律解答物理问题的能力.对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:

(1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;

(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W =m v 2=2E k =2Q 摩.

●例9 如图9-18甲所示,物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P 点自由滑下,则( )

图9-18甲

A .物块有可能不落到地面上

B .物块仍将落在Q 点

C .物块将会落在Q 点的左边

D .物块将会落在Q 点的右边

【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v 0,物块与皮带之间的动摩擦因数为μ,则:

图9-18乙

物块在皮带上做匀减速运动的加速度大小a =μmg

m

=μg

物块滑至传送带右端的速度为: v =v 02-2μgs

物块滑至传送带右端这一过程的时间可由方程s =v 0t -1

2

μgt 2解得.

当皮带向左匀速传送时,滑块在皮带上的摩擦力也为: f =μmg

物块在皮带上做匀减速运动的加速度大小为:

a 1′=μmg m

=μg

则物块滑至传送带右端的速度v ′=v 02-2μgs =v

物块滑至传送带右端这一过程的时间同样可由方程s =v 0t -1

2

μgt 2 解得.

由以上分析可知物块仍将落在Q 点,选项B 正确. [答案] B

【点评】对于本例应深刻理解好以下两点:

①滑动摩擦力f =μF N ,与相对滑动的速度或接触面积均无关;

②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同. 我们延伸开来思考,物块在皮带上的运动可理解为初速度为v 0的物块受到反方向的大小为μmg 的力F 的作用,与该力的施力物体做什么运动没有关系.

●例10 如图9-19所示,足够长的水平传送带始终以v =3 m/s 的速度向左运动,传送带上有一质量M =2 kg 的小木盒A ,A 与传送带之间的动摩擦因数μ=0.3.开始时,A 与传送带之间保持相对静止.现有两个光滑的质量均为m =1 kg 的小球先后相隔Δt =3 s 自传送带的左端出发,以v 0=15 m/s 的速度在传送带上向右运动.第1个球与木盒相遇后立即进入盒中并与盒保持相对静止;

第2个球出发后历时Δt 1=1

3

s 才与木盒相遇.取g =10 m/s 2,问:

图9-19

(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大? (2)第1个球出发后经过多长时间与木盒相遇?

(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?

【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律得: m v 0-M v =(m +M )v 1

解得:v 1=3 m/s ,方向向右.

(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过时间t 0与木盒相遇,则有:

t 0=s v 0

设第1个球进入木盒后两者共同运动的加速度大小为a ,根据牛顿第二定律得: μ(m +M )g =(m +M )a

解得:a =μg =3 m/s 2,方向向左

设木盒减速运动的时间为t 1,加速到与传送带具有相同的速度的时间为t 2,则:

t 1=t 2=Δv

a

=1 s

故木盒在2 s 内的位移为零

依题意可知:s =v 0Δt 1+v (Δt +Δt 1-t 1-t 2-t 0) 解得:s =7.5 m ,t 0=0.5 s .

(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s ′,木盒的位移为s 1,则:

s ′=v (Δt +Δt 1-t 0)=8.5 m

s 1=v (Δt +Δt 1-t 1-t 2-t 0)=2.5 m

故木盒相对于传送带的位移为:Δs =s ′-s 1=6 m 则木盒与传送带间因摩擦而产生的热量为: Q =f Δs =54 J .

[答案] (1)3 m/s (2)0.5 s (3)54 J

【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.

能力演练

一、选择题(10×4分)

1.图示是原子核的核子平均质量与原子序数Z 的关系图象,下列说法正确的是( )

A .若D 和E 结合成F ,结合过程中一定会吸收核能

B .若D 和E 结合成F ,结合过程中一定会释放核能

C .若A 分裂成B 和C ,分裂过程中一定会吸收核能

D .若A 分裂成B 和C ,分裂过程中一定会释放核能

【解析】D 、E 结合成F 粒子时总质量减小,核反应释放核能;A 分裂成B 、C 粒子时,总质量减小,核反应释放核能.

[答案] BD

2.单冷型空调器一般用来降低室内温度,其制冷系统与电冰箱的制冷系统结构基本相同.某单冷型空调器的制冷机从低温物体吸收热量Q 2,向高温物体放出热量Q 1,而外界(压缩机)必须对工

作物质做功W ,制冷系数ε=Q 2

W

.设某一空调的制冷系数为4,若制冷机每天从房间内部吸收2.0×

107 J 的热量,则下列说法正确的是( )

A .Q 1一定等于Q 2

B .空调的制冷系数越大越耗能

C .制冷机每天放出的热量Q 1=2.5×107 J

D .制冷机每天放出的热量Q 1=5.0×106 J

【解析】Q 1=Q 2+W >Q 2,选项A 错误;ε越大,从室内向外传递相同热量时压缩机所需做的

功(耗电)越小,越节省能量,选项B 错误;又Q 1=Q 2+Q 2

ε

=2.5×107 J ,故选项C 正确.

[答案] C 3.图示为一列简谐横波的波形图象,其中实线是t 1=0时刻的波形,虚线是t 2=1.5 s 时的波形,且(t 2-t 1)小于一个周期.由此可判断( )

A .波长一定是60 cm

B .波一定向x 轴正方向传播

C .波的周期一定是6 s

D .波速可能是0.1 m/s ,也可能是0.3 m/s 【解析】由题图知λ=60 cm

若波向x 轴正方向传播,则可知:

波传播的时间t 1=T 4,传播的位移s 1=15 cm =λ

4

故知T =6 s ,v =0.1 m/s

若波向x 轴负方向传播,可知:

波传播的时间t 2=34T ,传播的位移s 2=45 cm =3λ

4

故知T =2 s ,v =0.3 m/s . [答案] AD

4.如图所示,在水平桌面上叠放着质量均为M 的A 、B 两块木板,在木板A 的上面放着一个质量为m 的物块C ,木板和物块均处于静止状态.A 、B 、C 之间以及B 与地面之间的动摩擦因数都为μ.若用水平恒力F 向右拉动木板A ,使之从C 、B 之间抽出来,已知重力加速度为g ,则拉力F 的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)( )

A .F >μ(2m +M )g

B .F >μ(m +2M )g

C .F >2μ(m +M )g

D .F >2μmg

【解析】无论F 多大,摩擦力都不能使B 向右滑动,而滑动摩擦力能使C 产生的最大加速度为μg ,故F -μmg -μ(m +M )g M

>μg 时,即F >2μ(m +M )g 时A 可从B 、C 之间抽出.

[答案] C

5.如图所示,一束单色光a 射向半球形玻璃砖的球心,在玻璃与空气的界面MN 上同时发生反射和折射,b 为反射光,c 为折射光,它们与法线间的夹角分别为β和θ.逐渐增大入射角α,下列说法中正确的是( )

A .β和θ两角同时增大,θ始终大于β

B .b 光束的能量逐渐减弱,c 光束的能量逐渐加强

C .b 光在玻璃中的波长小于b 光在空气中的波长

D .b 光光子的能量大于c 光光子的能量

【解析】三个角度之间的关系有:θ=α,sin β

sin α

=n >1,故随着α的增大,β、θ都增大,但是θ

<β,选项A 错误,且在全反射前,c 光束的能量逐渐减弱,b 光束的能量逐渐加强,选项B 错误;

又由n =sin βsin α=c v =λ

λ′

,b 光在玻璃中的波长小于在空气中的波长,但光子的能量不变,选项C 正

确、D 错误.

[答案] C

6.如图所示,水平传送带以v =2 m/s 的速度匀速前进,上方漏斗中以每秒50 kg 的速度把煤粉竖直抖落到传送带上,然后一起随传送带运动.如果要使传送带保持原来的速度匀速前进,则传送带的电动机应增加的功率为( )

A .100 W

B .200 W

C .500 W

D .无法确定

【解析】漏斗均匀持续将煤粉抖落在传送带上,每秒钟有50 kg 的煤粉被加速至2 m/s ,故每秒钟传送带的电动机应多做的功为:

ΔW =ΔE k +Q =1

2

m v 2+f ·Δs =m v 2=200 J

故传送带的电动机应增加的功率ΔP =ΔW

t

=200 W .

[答案] B

7.如图所示,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上.当施加水平向右的匀强电场E 后,小球开始做简谐运动,下列关于小球运动情况的说法中正确的是( )

A .小球的速度为零时,弹簧的伸长量为qE

k

B .小球的速度为零时,弹簧的伸长量为2qE

k

C .运动过程中,小球和弹簧系统的机械能守恒

D .运动过程中,小球动能变化量、弹性势能变化量以及电势能的变化量之和保持为零

【解析】由题意知,小球位于平衡位置时弹簧的伸长量x 0=qE

k

,小球速度为零时弹簧处于原长

或伸长了2x 0=2qE

k

,选项A 错误、B 正确.

小球做简谐运动的过程中弹簧弹力和电场力都做功,机械能不守恒,动能、弹性势能、电势能的总和保持不变,选项D 正确.

[答案] BD

8.如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力和滑动摩擦力大小相等,重力加速度为g ,则[2009年高考·北京理综卷]( )

A .将滑块由静止释放,如果μ>tan θ,滑块将下滑

B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑

C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,则拉力大小应是2mg sin θ

D .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,则拉力大小应是mg sin θ 【解析】对于静止置于斜面上的滑块,可沿斜面下滑的条件为mg sin θ>μmg cos θ;同理,当mg sin θ<μm g cos θ时,具有初速度下滑的滑块将做减速运动,选项A 、B 错误;当μ=tan θ 时,滑块与斜面之间的动摩擦力f =mg sin θ,由平衡条件知,使滑块匀速上滑的拉力F =2mg sin θ,选项C 正确、D 错误.

[答案] C

9.国产“水刀”——超高压数控万能水切割机,以其神奇的切割性能在北京国际展览中心举行的第五届国际机床展览会上引起轰动,它能切割40 mm 厚的钢板、50 mm 厚的大理石等材料.

将普通的水加压,使其从口径为0.2 mm 的喷嘴中以800 m/s ~1000 m/s 的速度射出,这种水射流就是“水刀”.我们知道,任何材料承受的压强都有一定限度,下表列出了一些材料所能承受的压强的限度.

,水射流与材料接触后,速度为零,且不附着在材料上,水的密度ρ=1×103 kg/m 3,则此水刀不能切割上述材料中的( )

【解析】以射到材料上的水量Δm 为研究对象,以其运动方向为正方向,由动量定理得: -pS ·Δt =-ρS v ·Δt ·v

得:p =ρv 2=6.4×108 Pa

由表中数据可知:此“水刀”不能切割材料C 和D . [答案] CD

10.如图甲所示,质量为2m 的长木板静止地放在光滑的水平面上,另一质量为m 的小铅块(可视为质点)以水平速度v 0滑上木板的左端,恰能滑至木板的右端且与木板保持相对静止,铅块在运动过程中所受到的摩擦力始终不变.若将木板分成长度与质量均相等(即m 1=m 2=m )的两段1、2后,将它们紧挨着放在同一水平面上,让小铅块以相同的初速度v 0由木板1的左端开始运动,如图乙所示,则下列说法正确的是( )

A .小铅块滑到木板2的右端前就与之保持相对静止

B .小铅块滑到木板2的右端后与之保持相对静止

C .甲、乙两图所示的过程中产生的热量相等

D .图甲所示的过程产生的热量大于图乙所示的过程产生的热量 【解析】长木板分两段前,铅块和木板的最终速度为:

v t =m v 03m =13v 0

且有Q =fL =12m v 02-12×3m (v 03)2=1

3

m v 02

长木板分两段后,可定量计算出木板1、2和铅块的最终速度,从而可比较摩擦生热和相对滑动的距离;也可用图象法定性分析(如图丙所示)比较得到小铅块到达右端之前已与木板2保持相对静止,故图甲所示的过程产生的热量大于图乙所示的过程产生的热量.

[答案] AD

二、非选择题(共60分)

11.(5分)图示为伏安法测电阻的部分电路,电路其他部分不变,当开关S接a点时,电压表的示数U1=11 V,电流表的示数I1=0.2 A;当开关S接b点时,U2=12 V,I2=0.15 A.那么,为了提高测量的准确性,开关S应接______点(填“a”或“b”),R x的测量值为________Ω.

[答案] b(2分)80(3分)

12.(10分)如图所示,光滑水平轨道与光滑圆弧轨道相切,轻弹簧的一端固定在水平轨道的左端,OP是可绕O点转动的轻杆,且摆到某处就能停在该处;另有一小钢球.现在利用这些器材测定弹簧被压缩时的弹性势能.

(1)还需要的器材是________、________.

(2)以上测量实际上是把对弹性势能的测量转化为对________能的测量,需要直接测量________和________.

(3)为了研究弹簧的弹性势能与劲度系数和形变量间的关系,除以上器材外,还准备了几个轻弹簧,所有弹簧的劲度系数均不相同.试设计记录数据的表格.

[答案] (1)天平刻度尺(每空1分)

(2)重力势质量上升高度(每空1分)

(3)设计表格如下(5分)

压缩量x(m)

上升高度h(m)

E=mgh(J)

弹簧 A B C

劲度系数k(N/m)

上升高度h(m)

E=mgh(J)

13.(10分)m=12 kg 的物体A、B,A、B和轻弹簧静止竖立在水平地面上.现加一竖直向上的力F在上面的物体A上,使物体A开始向上做匀加速运动,经0.4 s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10 m/s2.求:

(1)此过程中所加外力F 的最大值和最小值. (2)此过程中外力F 所做的功.

【解析】(1)A 原来静止时有:kx 1=mg (1分)

当物体A 刚开始做匀加速运动时,拉力F 最小,设为F 1. 对物体A 有:F 1+kx 1-mg =ma (1分)

当物体B 刚要离开地面时,拉力F 最大,设为F 2. 对物体A 有:F 2-kx 2-mg =ma (1分) 对物体B 有:kx 2=mg (1分)

对物体A 有:x 1+x 2=1

2at 2 (1分)

解得:a =3.75 m/s 2

联立解得:F 1=45 N (1分),F 2=285 N . (1分)

(2)在力F 作用的0.4 s 内,初末状态的弹性势能相等 (1分) 由功能关系得:

W F =mg (x 1+x 2)+1

2

m (at )2=49.5 J . (2分)

[答案] (1)285 N 45 N (2)49.5 J

14.(12分)如图甲所示,倾角为θ、足够长的两光滑金属导轨位于同一倾斜的平面内,导轨间距为l ,与电阻R 1、R 2及电容器相连,电阻R 1、R 2的阻值均为R ,电容器的电容为C ,空间存在方向垂直斜面向上的匀强磁场,磁感应强度为B .一个质量为m 、阻值也为R 、长度为l 的导体棒MN 垂直于导轨放置,将其由静止释放,下滑距离s 时导体棒达到最大速度,这一过程中整个回路产生的焦耳热为Q ,则:

(1)导体棒稳定下滑的最大速度为多少?

(2)导体棒从释放开始到稳定下滑的过程中流过R 1的电荷量为多少?

【解析】(1)当达到最大速度时,导体棒匀速运动,电容器中没有电流,设导体棒稳定下滑的最大速度为v ,有:

E =Bl v (1分)

I =E R 2+R

(1分) 所以F 安=BIl =B 2l 2v

2R

(2分)

导体棒的受力情况如图乙所示,根据受力平衡条件有:

F 安=mg sin θ (1分)

解得:v =2mgR sin θ

B 2l 2

. (2分)

(2)棒加速运动时电容器上的电压增大,电容器充电;当棒达到最大速度后,电容器上的电荷量最大并保持不变,所以流过R 1的电荷量就是电容器所带的电荷量,则:

U =IR 2=E 2R R =E 2=Bl v 2=mgR sin θ

Bl (3分)

QR 1=CU =mgRC sin θ

Bl . (2分)

[答案] (1)2mgR sin θB 2l 2

(2)mgRC sin θ

Bl

15.(13分)如图甲所示,一质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,此磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处到A 点的距离为2d (直线DAG 与电场方向垂直).不计离子重力,离子运动轨迹在纸面内.求:

(1)正离子从D 处运动到G 处所需时间. (2)正离子到达G 处时的动能.

【解析】(1)正离子的运动轨迹如图乙所示,在磁场中做圆周运动的时间为:

t 1=13T =2πm 3Bq

(1分)

圆周运动半径r 满足:r +r cos 60°=d (1分)

解得:r =2

3

d (1分)

设离子在磁场中运动的速度为v 0,则有:r =m v 0

Bq

(1分)

解得:v 0=2Bqd

3m

(1分)

离子从C 运动到G 所需的时间t 2=2d v 0=3m

Bq

(2分)

离子从D →C →G 的总时间为:

t =t 1+t 2=(9+2π)m

3Bq

. (2分)

(2)设电场强度为E ,对离子在电场中的运动过程,有:

qE =ma ,d =1

2

at 22 (1分)

由动能定理得:Eq ·d =E k G -1

2

m v 02 (1分)

解得:E k G =4B 2q 2d

29m

. (2分)

[答案] (1)(9+2π)m 3Bq (2)4B 2q 2d 2

9m

16.(15分)如图甲所示,质量m 1=2.0 kg 的物块A 随足够长的水平传送带一起匀速运动,传送带的速度大小v 带=3.0 m/s ,方向如图所示;在A 的右侧L =2.5 m 处将质量m 2=3.0 kg 的物块B 无初速度放上传送带.已知在A 、B 碰后瞬间B 相对传送带的速度大小为1.0 m/s ,之后当其中某一物块相对传送带的速度为零时,传送带立即以大小为2.0 m/s 2的加速度制动,最后停止运动.传送带的运动情况不受物块A 、B 的影响,且A 、B 碰撞的时间极短.设两物块与传送带间的动摩擦因数均为μ=0.10.求:

(1)物块B 刚开始滑动时的加速度. (2)碰撞后两物块的速度. (3)两物块间的最大距离.

【解析】(1)物块B 刚开始滑动时,加速度为: a =μm 2g m 2

=μg =1 m/s 2,方向向右. (2分)

(2)设经t 1时间,A 、B 两物块相碰,有: 12at 2

1

+L =v 带t 1 解得:t 1=1 s ,t 1′=5 s(由上述分析可知,t 1′不合题意,舍去) 碰前B 的速度v 2=at 1=1 m/s (2分)

由题意可知:碰后B 的速度v 2′=2 m/s 或v 2″=4 m/s 由动量守恒定律得:

m 1v 带+m 2v 2=m 1v 1′+m 2v 2′ m 1v 带+m 2v 2=m 1v 1″+m 2v 2″

解得:碰后A 的速度v 1′=1.5 m/s 或v 1″=-1.5 m/s

检验:由于12m 1v 2带+12m 2v 22<12m 1v 1′2+12

m 2v 2″2

故v 1″=-1.5 m/s 、v 2″=4 m/s 这组数据舍去

所以碰后A 的速度v 1′=1.5 m/s ,方向向右;B 的速度v 2′=2 m/s ,方向向右. (3分)

(3)因碰后两物块均做加速度运动,加速度都为a =1 m/s 2,所以B 的速度先达到与传送带相同速度,设B 达到与传送带速度相同的时间为t 2.

有:v 带=v 2′+at 2,t 2=1 s

此时A 的速度v 3=v 1′+at 2=2.5 m/s <v 带

故从t 2之后A 继续加速运动,B 和传送带开始减速运动,直到A 和传送达到某个共同速度v 4

后,A 所受的摩擦力换向,才开始减速运动.设A 继续加速度的时间为t 3,则:

v 4=v 3+at 3=v 带-a 带t 3,t 3=1

6

s

A 的速度v 4=v 3+at 3=8

3

m/s (2分)

此时B 的速度v 5=v 带-at 3=17

6

m/s ,之后A 、B 均做减速运动,因为在整个过程中B 的速度始

终大于A 的速度,所以当A 、B 都静止时两物块间的距离最大. (1分)

B 碰后运动的总位移s 2=v 2带-v 2′2

2a +0-v 2带

2×(-a )

=7 m

或s 2=v 2′+v 带2t 2+v 带2×v 带

a

=7 m (2分)

A 碰后运动的总位移s 1=v 24-v 1′

22×a +0-v 2

42×(-a )

≈6 m (2分)

两物块间的最大距离s m =s 2-s 1=1 m . (1分) [答案] (1)1 m/s 2,方向向左

(2)A 的速度为1.5 m/s ,方向向右;B 的速度为2 m/s ,方向向右 (3)1 m

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高考物理力学知识点之曲线运动易错题汇编附答案(2)

高考物理力学知识点之曲线运动易错题汇编附答案(2) 一、选择题 1.如图所示,一个内侧光滑、半径为R的四分之三圆弧竖直固定放置,A为最高点,一小球(可视为质点)与A点水平等高,当小球以某一初速度竖直向下抛出,刚好从B点内侧进入圆弧并恰好能过A点。重力加速度为g,空气阻力不计,则() A.小球刚进入圆弧时,不受弹力作用 B.小球竖直向下抛出的初速度大小为gR C.小球在最低点所受弹力的大小等于重力的5倍 D.小球不会飞出圆弧外 2.光滑水平面上,小球m的拉力F作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是() A.若拉力突然消失,小球将沿轨迹Pb做离心运动 B.若拉力突然变小,小球将沿轨迹Pa做离心运动 C.若拉力突然变大,小球将可能沿半径朝圆心运动 D.若拉力突然变大,小球将可能沿轨迹Pc做近心运动 3.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等

4.如图所示,小孩用玩具手枪在同一位置沿水平方向先后射出两粒弹珠,击中竖直墙上M、N两点(空气阻力不计),初速度大小分别为v M、v N,、运动时间分别为t M、t N,则 A.v M=v N B.v M>v N C.t M>t N D.t M=t N 5.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为 A.2mgR B.4mgR C.5mgR D.6mgR 6.小明玩飞镖游戏时,从同一位置先后以速度v A和v B将飞镖水平掷出,依次落在靶盘上的A、B两点,如图所示,飞镖在空中运动的时间分别t A和t B.不计空气阻力,则 () A.v A<v B,t A<t B B.v A<v B,t A>t B C.v A>v B,t A>t B D.v A>v B,t A<t B 7.关于曲线运动,以下说法中正确的是() A.做匀速圆周运动的物体,所受合力是恒定的 B.物体在恒力作用下不可能做曲线运动 C.平抛运动是一种匀变速运动 D.物体只有受到方向时刻变化的力的作用才可能做曲线运动 8.一条小河宽100m,水流速度为8m/s,一艘快艇在静水中的速度为6m/s,用该快艇将人员送往对岸.关于该快艇的说法中正确的是()

高中物理易错题分析集锦——7热学之令狐文艳创作

第七单元:热学 令狐文艳 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。

对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式

高考物理力学知识点之曲线运动易错题汇编及解析

高考物理力学知识点之曲线运动易错题汇编及解析 一、选择题 1.如图所示,B和C 是一组塔轮,固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A 轮的半径与C轮相同,且A轮与B轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a、b、c 分别为三轮边缘上的三个点,则a、b、c 三点在运动过程中的() A.线速度大小之比为 3∶2∶2 B.角速度之比为 3∶3∶2 C.向心加速度大小之比为 9∶6∶4 D.转速之比为 2∶3∶2 2.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等 平面内运动,在x方向的速度图像和y方向的位移图3.有一个质量为4kg的物体在x y 像分别如图甲、乙所示,下列说法正确的是() A.物体做匀变速直线运动B.物体所受的合外力为22 N C.2 s时物体的速度为6 m/s D.0时刻物体的速度为5 m/s 4.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( )

A.mv02+mg h B.mv02-mg h C.mv02+mg (H-h) D.mv02 5.如图所示为一皮带传动装置,右轮的半径为,a是它边缘上的一点。左侧是一轮轴,大轮的半径为,小轮的半径为。b点在大的边缘轮上,c点位于小轮上。若在传动过程中,皮带不打滑。则() A.a点与c点的角速度大小相等B.b点与c点的角速度大小相等 C.b点与c点的线速度大小相等D.a点与c点的向心加速度大小相等 6.关于曲线运动,以下说法中正确的是() A.做匀速圆周运动的物体,所受合力是恒定的 B.物体在恒力作用下不可能做曲线运动 C.平抛运动是一种匀变速运动 D.物体只有受到方向时刻变化的力的作用才可能做曲线运动 7.一辆汽车在水平公路上转弯,沿曲线由N向M行驶速度逐渐减小。图A,B,C,D分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是() A. B. C.

高中物理易错题专题三物理牛顿运动定律(含解析)

高中物理易错题专题三物理牛顿运动定律(含解析) 一、高中物理精讲专题测试牛顿运动定律 1.利用弹簧弹射和传送带可以将工件运送至高处。如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。B 、C 分别是传送带与两轮的切点,相距L =6.4m 。倾角也是37?的斜面固定于地面且与传送带上的B 点良好对接。一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能; (2)工件沿传送带由B 点上滑到C 点所用的时间; (3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。 【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】 (1)由能量守恒定律得,弹簧的最大弹性势能为: 2P 01sin 37cos372 E mgx mgx mv μ??=++ 解得:E p =42J (2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ??+= 解得:a 1=10m/s 2 工件与传送带共速需要时间为:011 v v t a -= 解得:t 1=0.4s 工件滑行位移大小为:22 0112v v x a -= 解得:1 2.4x m L =< 因为tan 37μ? <,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:

高一物理易错题(整理)

易错题第四季 【例1】 如图所示,质量为M 的楔形木块放在水平桌面上,它的顶角为90 ,两 底角为α和β.a 、b 为两个位于斜面上的质量均为m 的小木块,已 知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不 动,这时楔形木块对水平桌面的压力等于( ) A .Mg mg + B .2Mg mg + C .(sin sin )Mg mg αβ++ D .(cos cos )Mg mg αβ++ 例题1: 【答案】A 【解析】本体最好以整体的方法受力分析,直接就可以得到N F Mg mg =+ 下面我们用隔离的方法来解决一下: 取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得1sin mg ma α= ?1sin a g α= 同理,b 的加速度也沿斜面向下,大小为2sin a g β=. 将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度分别为 2212sin sin y y a g a g αβ== 再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+ 又o 90αβ+=,所以sin cos αβ= 则(2)N M m g F mg +-= ? N F Mg mg =+ 【例2】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水平天花板上的固 定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻 绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根 轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是( ) A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为53 mg C .拉力F 大小为45mg D .拉力F 大小为43 mg 例题2: 【答案】BD 易错:先分析B 球,根据平衡应该知道AB 绳子是不受力的,而不是受到三个力。 【解析】由于A 、B 两球均处于静止状态,且OB 绳中的拉力等于mg ,AB 绳中的拉力为零,此时,A 球受重力、 拉力F 、OA 绳拉力T F 三个力作用处于平衡,据平衡条件可求得5/3,4/3T F mg F mg = =,故B D 、正确. 【例3】 一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧, 平衡时长度为2l 。弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2 121F F l l -+ b a β α

高中物理易错题分析集锦——4动量

第四单元:动量、动量守恒定律 [内容和方法] 本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。 本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ] C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解分析】错解:选B。 认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【正确解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【小结】判断这一类问题,应从作用力大小判断入手,再由动量

高二物理选修易错题练习

高二物理综合题&易错题练习 (选修3-2、3-5) 班别:___________ 姓名:____________ 学号:___________ 一、选择题(本大题共15小题,在每题所给的四个选项中,第1~8题只有一项符合题目要求,第8~15题有多个选项符合要求。) 1. 关于原子结构,下列说法错误的是( ) A. 汤姆孙根据气体放电管实验断定阴极射线是带负电的粒子流,并求出了这种粒子的比荷 B. 卢瑟福α粒子散射实验表明:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动 C. 各种原子的发射光谱都是连续谱 D. 玻尔在原子核式结构模型的基础上,结合普朗克的量子概念,提出了玻尔的原子模型 2. 一群处于基态的氢原子受到某种单色光照射时,只能发生甲、乙、丙三种单色光,其中甲光的波长最短,丙光的波长最长,则甲、丙这两种单色光的光子能量之比E 甲:E 丙等于( ) A. 3:2 B. 6:1 C. 32:5 D. 9:4 3. 法拉第发明了世界上第一台发电机---法拉第圆盘发电机。铜质圆盘竖直放置在水平向左的匀强磁场中,铜盘圆心处有一个摇柄,边缘和圆心处各有一个铜电刷与其紧贴,用导线将电刷与电阻R 连接起来形成回路。转动摇柄,使圆盘如图所示方向转动。已知匀强磁场的磁感应强度大小为B ,圆盘半径为l ,圆盘匀速转动的角速度为ω。下列说法中正确的是( ) A. 圆盘产生的感应电动势为212B l ω,流过电阻R 的电流方向为从b →a B. 圆盘产生的感应电动势为212 B l ω,流过电阻R 的电流方向为从a →b C. 圆盘产生的感应电动势为2B l ω,流过电阻R 的电流方向为从b →a D. 圆盘产生的感应电动势为2B l ω,流过电阻R 的电流方向为从a →b 4. 某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度匀速运动时,电压表的示数为U .则下列说法中正确的是( ) A. 传送带匀速运动的速率为U BL B. 电阻R 上产生的焦耳热的电功率为2U R r + C. 金属条每经过磁场区域受到的安培力大小为BUd R r + D. 每根金属条经过磁场区域的全过程中克服安培力做功为BLUd R 5. 矩形线圈abcd 在如图所示的磁场中以恒定的角速度ω绕ab 边转动,磁场方向垂直纸面向里,

高三试题解析高中物理易错题热学

热学 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V —T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变

化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式 错解一是没有全面考虑内能是物体内所有分子的动能和势能的总和。温度低只表示物体分子平均动能小,而不表示势能一定也小,也就是所有分子的动能和势能的总和不一定也小,所以选项A是错的。 实际上因为不同物质的分子质量不同,而动能不仅与速度有关,也与分子质量有关,单从一方面考虑问题是不够全面的,所以错解二选项B也是错的。 错解三的原因是混淆了微观分子无规则运动与宏观物体运动的差别。分子的平均动能只是分子无规则运动的动能,而物体加速运动时,物体内所有分子

高考物理力学知识点之相互作用易错题汇编附答案(3)

高考物理力学知识点之相互作用易错题汇编附答案(3) 一、选择题 1.如图所示,物块A 放在直角三角形斜面体B 上面,B 放在弹簧上面并紧挨着竖直墙壁,初始时A 、B 静止,现用力F 沿斜面向上推A ,但A 、B 仍未动.则施加力F 后,下列说法正确的是( ) A .A 、 B 之间的摩擦力一定变大 B .B 与墙面间的弹力可能不变 C .B 与墙之间可能没有摩擦力 D .弹簧弹力一定不变 2.一质量为中的均匀环状弹性链条水平套在半径为R 的刚性球体上,已知不发生形变时环状链条的半径为R/2,套在球体上时链条发生形变如图所示,假设弹性链条满足胡克定律,不计一切摩擦,并保持静止.此弹性链条的弹性系数k 为 A .22 3(31)2mg R π+ B .3(31)2mg R π- C . 3(31)mg + D . 3(31)mg + 3.某小孩在广场游玩时,将一氢气球系在了水平地面上的砖块上,在水平 风力的作用下,处于如图所示的静止状态.若水平风速缓慢增大,不考虑气球体积及空气密度的变化,则下列说法中正确的是 A .细绳受到拉力逐渐减小 B .砖块受到的摩擦力可能为零 C .砖块一定不可能被绳子拉离地面

D.砖块受到的摩擦力一直不变 4.如图所示,细绳MO与NO所能承受的最大拉力相同,长度MO>NO,则在不断增加重物G的重力过程中(绳OC不会断)() A.绳ON先被拉断 B.绳OM先被拉断 C.绳ON和绳OM同时被拉断 D.条件不足,无法判断 5.如图所示,铁质的棋盘竖直固定,每个棋子都是一个小磁铁,能吸在棋盘上保持静止,不计棋子间的相互作用力,下列说法正确的是 A.小棋子共受三个力作用 B.棋子对棋盘的压力大小等于重力 C.磁性越强的棋子所受的摩擦力越大 D.棋子质量不同时,所受的摩擦力不同 6.叠放在水平地面上的四个完全相同的排球如图所示,质量均为m,相互接触,球与地面间的动摩擦因数均为μ,则: A.上方球与下方3个球间均没有弹力 B.下方三个球与水平地面间均没有摩擦力 C.水平地面对下方三个球的支持力均为4 3 mg D.水平地面对下方三个球的摩擦力均为4 3 mg 7.一物体m受到一个撞击力后沿不光滑斜面向上滑动,如图所示,在滑动过程中,物体m受到的力是()

高中物理高三试题解析高中物理易错题分析集锦——光学

第13单元:光学 [内容和方法] 本单元内容包括光的直线传播、棱镜、光的色散、光的反射、光的折射、法线、折射率、全反射、临界角、透镜(凸、凹)的焦点及焦距、光的干涉、光的衍射、光谱、红外线、紫外线、X射线、γ射线、电磁波谱、光电子、光子、光电效应、等基本概念,以及反射定律、折射定律、透镜成像公式、放大率计算式,光的波粒二象性等基本规律,还有光本性学说的发展简史。 本单元涉及到的方法有:运用光路作图法理解平面镜、凸透镜、凹透镜等的成像原理,并能运用作图法解题;根据透镜成像规律,运用逻辑推理的方法判断物象变化情况。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:解题操作过程不规范导致计算错误;将几何光学与物理光学综合时概念不准确;不善于用光路图对动态过程作分析。 例1 光从玻璃射入空气里时传播方向如图13-l所示,请在图中标出入射角和折射角。 【错解分析】错解: 如图13-2所示,α为入射角,β为折射角。 错解原因一是受思维定势的影响,不加分析地认定玻璃与空气总是上下接触的;二是对光的折射及其规律未吃透,将题设文字条件与图形条件结合起来的分析能力差。根据光的折射规律,光从水或玻璃等透明物质射入空气里时,折射角大于入射角,题设文字条件是“从玻璃射入空气”,因此折射角大于入射角,再结合题设所给图形,可知CD为界面,AB为法线。 【正确解答】 如图 13-3所示,α′为入射角,β′折射角(CD左面为玻璃,右面为空气)。

【小结】 解光的折射现象的题目,首先应对光线是从光疏媒质进入光密媒质呢?还是光线是从光密媒质进入光疏媒质作出判断。为了保证你每次做题时,能够不忘判断,建议同学们做光的折射题时,先画出光路图,标出入射光线和出射光线的方向,在界面处标出哪一个是光密媒质,哪一个是光疏媒质。然后再解题。 例2 一束白光从玻璃里射入稀薄空气中,已知玻璃的折射率为1.53,求入射角为下列两种情况时,光线的折射角各为多少? (1)入射角为50° (2)入射角为30° 【错解分析】错解: r=30°3′ r=19°4′ 此解法中没有先分析判断光线是从光疏媒质进入光密媒质,还是从光密媒质进入光疏媒质,会不会发生全反射。而是死套公式,引起错误。 【正确解答】 光线由玻璃里射入空气中,是由光密媒质射入光疏媒质,其临界角为 由已知条件知,当i=50°时,i>A,所以光线将发生全反射,不能进入空气中。当i=30°时,i<A,光进入空气中发生折射现象。 sinr=n·sini=1.53×sin30°=0.765 r= 49°54′ 【小结】 解光的折射现象的题目时,首先应做出判断:光线是从光疏媒质进入光密媒质,还是光线是从光密媒质进入光疏媒质。如是前者则i>r,如是后者则i<r。其次,如果是从光密媒质进入光疏媒质中,还有可能发生全反射现象,应再判断入射角是否大于临界角,明确有无折射现象。 例3如图13-4所示,放在空气中折射率为n的平行玻璃砖,表面M和N平行,P,Q两个面相互平行且与M,N垂直。一束光射到表面M上(光束不与M平行),则: [ ]

初三物理力学易错题及解析

初中物理经典易错题-力和运动 1.在湖中划船时,使船前进的的动力是() A.桨划水的推力 B.水直接对船的推力 C.人对船的推力 D.水对桨的推力 2.踢到空中的足球,受到哪些力的作用( ) A受到脚的作用力和重力 B受到重力的作用C只受到脚的作有力 D没有受到任何力的作用 3.一辆汽车分别以6米/秒和4米/秒的速度运动时,它的惯性大小:() A.一样大; B.速度为4米/秒时大; C.速度为6米/秒时大; D.无法比较 4.站在匀速行驶的汽车里的乘客受到几个力的作用( ) A.1个 B.2 个 C.3个 D.4个 5.甲、乙两个同学沿相反的方向拉测力计,各用力200牛.则测力计的示数为( ) A、100牛 B、200牛 C、0牛 D、400牛 6.一物体受到两个力的作用,这两个力三要素完全相同,那么这两个力( ) A 一定是平衡力 B 一定不是平衡力 C 可能是平衡力 D 无法判断 7.体育课上,小明匀速爬杆小刚匀速爬绳。有关他们受到的摩擦力下面说法正确的是() A、因为爬杆时手握杆的压力大,所以小明受到的摩擦力一定大 B、因为绳子粗糙,所以小刚受到的摩擦力一定大 C、小明和小刚受到的摩擦力一定相等 D、若小明的体重大,则他受到的摩擦力一定大 8.如图所示,物体A在水平力F的作用下,静止在竖直墙壁上.当水平力减小为F/2时,物体A恰好沿竖直墙壁匀速下滑.此时物体A所受摩擦力的大小() A.减小为原来的1/2 B.和原来一样 C.增大为原来的2倍D.无法判断9.蹦极游戏是将一根有弹性的绳子一端系在身上,另一端固定在高处,从高处跳下,a是弹性绳自然下垂的位置,C点是游戏者所到达的最低点,游戏者从离开跳台到最低点的过程中,物体速度是如何变化的?_______________ 10.A、B两物体叠放在水平桌面上,在如图所示的三种情况下:①甲图中两物体均处于静止状态;②乙图中水平恒力F作用在B物体上,使A、B一起以2m/s的速度做匀速直线运动; ③丙图中水平恒力F作用在B物体上,使A、B一起以20m/s的速度做匀速直线运动。比较上述三种情况下物体A在水平方向的受力情况,以下说法正确的是() A、三种情况下,A在水平方向都不受力B三种情况下,A在水平方向都受力且受力相同C、①中A在水平方向不受力,②、③中A在水平方向都受力但受力 不同 D、①中A在水平方向不受力,②、③中A在水平方向都受力但受力 相同 11.饮料厂生产的饮料装瓶后,要在自动化生产线上用传送带传送。如图所示,一瓶饮料与传送带一起水平向左匀速运动,不计空气阻力。请在图中画出饮料瓶受力的示意图。(图中的A点表示重心) 答案及分析 1.可能错误A.生活经验,用桨划船船才能前进,不划桨船将不动.所以选A

高中物理易错题错误分析及正确解法

高中物理易错题错误分析及正确解法 第9单元稳恒电流 [内容和方法] 本单元内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。 本单元涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系[例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:不对电路进行分析就照搬旧的解题套路乱套公式;逻辑推理时没有逐步展开,企图走“捷径”;造成思维“短路”;对含有电容器的问题忽略了动态变化过程的分析。 例1 如图9-1所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2?

在直流电路中,如果串联或并联了电容器应该注意,在与电容器串联的电路中没有电流,所以电阻不起降低电压作用(如R2),但电池、电容两端可能出现电势差,如果电容器与电路并联,电路中有电流通过。电容器两端的充电电压不是电源电动势ε,而是路端电压U。 【正确解答】 (1)当K接通电路稳定时,等效电路图如图9-2所示。

【小结】 本题考查学生对电容器充放电物理过程定性了解程度,以及对充电完毕后电容所在支路的电流电压状态是否清楚。学生应该知道电容器充电时,随着电容器内部电场的建立,

物理易错题集--力学篇

东辰学校初2011级中考复习 物理易错题集--力学篇 一、选择题 1、某研究性学习小组在老师的指导下,完成“水的体积随温度变化” 的研究,得到如图1所示的图像,根据这个图线,可得到水的温度从8℃ 降到2℃的过程中有关水的变化的一些信息,下列说法正确的是( ) A 、水遵从热涨冷缩的规律 B 、水的体积先变大后变小 C 、水的密度先变小后变大 D 、水在4℃时密度最大 2、在绵阳新益大厦乘坐观光电梯上行的过程中,以下描述对所选参照 物正确的是( ) A.观光者离地面越来越远,是以观光电梯为参照物 B.地面离观光者越来越远,是以观光电梯为参照物 C.地面离观光者越来越远,是以地面为参照物 D.观光者静止不动,是以地面为参照物 3、汽车甲和汽车乙由同一地点,向同一方向,同时开始运动,开始运 动时开始计时,它们的v -t 图像如右图所示。关于两辆汽车的运动情 况.下列说法中正确的是 ( ) A.汽车甲做变速运动,汽车乙做匀速运动 B.开始运动时,汽车乙的速度是汽车甲的速度的4倍 C.运动到30s 时,两车又相遇 D.运动30s 后,汽车乙的速度大于汽车甲的速度 4、如图3,放在M 、N 两水平桌面上的P 、Q 两物体,分别在F P =5N 、F Q =3N 的水平拉力作用下做匀速直线运动,可以确定 ( ) A .桌面M 一定比桌面N 粗糙 B .P 的速度一定大于Q 的速度 C .P 的质量一定大于Q 的质量 D .P 受到的摩擦力一定大于Q 受到的摩擦力 5、如图4所示,物体A 在水平力F 的作用下,静止在竖直墙壁上。当水平力减 小为F /2时,物体A 恰好沿竖直墙壁匀速下滑。此时物体A 所受摩擦力的大小 将( ) A.减小为原来的1/2 B.和原来一样 C.增大为原来的2倍 D.无法判断 6、如图5所示,小华将弹簧测力计一端固定,另一端钩住长方体 木块A ,木块下面是一长木板,实验时拉着长木板沿水平地面 向左运动,读出弹簧测力计示数即可测出木块A 所受摩擦力大 小。在木板运动的过程中,以下说法正确的是( ) A.木块A 受到的是静摩擦力 B.木块A 相对于地面是运动 的 图 1 图 2 图 3 图 4 图5

高中物理易错题精选 电磁感应错题集

第十一章电磁感应错题集 一、主要内容:电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 二、基本方法:要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 三、错解分析:错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1 长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[] 错解:t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 错解原因:磁通量Φ=BS⊥BS(S⊥是线圈垂直磁场的面积),磁通量的变化ΔΦ=Φ2-Φ1,两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 分析解答:实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,虽然磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 评析:弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清 磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2 在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向 下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的 哪一端是正极?

高一物理易错题整理)

易错题第四季 【例1】 如图所示,质量为 M 的楔形木块放在水平桌面上,它 的顶角为90,两底角为α和β.a 、b 为两个位于斜面 上的质量均为m 的小木块,已知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不动,这时楔形木块对水平桌面的压力等于() A .Mg mg + B .2Mg mg + C .(sin sin )Mg mg αβ++ D .(cos cos )Mg mg αβ++ 例题1: 【答案】A 【解析】本体最好以整体的方法受力分析,直接就可以得到N F Mg mg =+ 下面我们用隔离的方法来解决一下: 取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得1sin mg ma α=?1sin a g α= 同理,b 的加速度也沿斜面向下,大小为2sin a g β=. 将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度 分别为 再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+ 又o 90αβ+=,所以sin cos αβ= 则(2)N M m g F mg +-=?N F Mg mg =+ 【例2】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水 平天花板上的固定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是() A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为 5 3 mg C .拉力F 大小为45 mg D .拉力F 大小为43 mg 例题2: 【答案】BD 易错:先分析B 球,根据平衡应该知道AB 绳子是不受力的,而不是受到三个 力。 b a β α

【2010高考轻松过系列专题】高中物理易错题分析——动量、动量守恒定律

高中物理易错题分析——动量、动量守恒定律 [内容和方法] 本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。 本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ] A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解分析】错解:选B。 认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【正确解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以 掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。

高考物理力学知识点之牛顿运动定律易错题汇编附答案

高考物理力学知识点之牛顿运动定律易错题汇编附答案 一、选择题 1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是() A.在A点时,人所受的合力为零 B.在B点时,人处于失重状态 C.从A点运动到B点的过程中,人的角速度不变 D.从A点运动到B点的过程中,人所受的向心力逐渐增大 2.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球() A.可能落在A处B.一定落在B处 C.可能落在C处D.以上都有可能 3.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2) A.12 N B.22 N C.25 N D.30N 4.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,则()

A .升降机停止前在向下运动 B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态 C .13t t -时间内小球向下运动,动能先增大后减小 D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量 5.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( ) A . B . C . D . 6.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力 f F 、速度v 随F 的变化图象正确的是( )

高中物理易错题

高中物理易错题.txt爱,就大声说出来,因为你永远都不会知道,明天和意外,哪个会先来!石头记告诉我们:凡是真心爱的最后都散了,凡是混搭的最后都团圆了。你永远看不到我最寂寞的时候,因为在看不到你的时候就是我最寂寞的时候!高中物理易错题 151.如图所示,人站在小车上不断用铁锤敲击小车的一端.下列各种说法中正确的是: (A)如果地面水平、坚硬光滑,则小车将向右运动. (B)如果地面水平、坚硬光滑,则小车将在原地附近做往复运动. (C)如果地面阻力较大,则小车有可能断断续续地向右运动. (D)敲打时,铁锤跟小车间的相互作用力是内力,小车不可能发生运动. 解析:敲打时,铁锤跟小车间的相互作用力是(人、车、铁锤)内力,如果地面水平、坚硬光滑,系统无水平方向的外力,合动量为零,不可能向一个方向运动,A错,B正确.又地面粗糙,系统合外力不为零,根据敲击技巧,车可能往复运动,也可能向一个方向运动,有点类似骑独轮车,手的摆动相当于铁锤的运动.本题选B、C. 152.三块完全相同的木块从同一高度由静止开始下落,A块自由下落,B块在开始下落的瞬间即被一水平飞来的子弹击中(击穿出),C块在下落到一半距离时被另一相同的水平飞来的子弹击中(未穿出),则三木块落地时间关系为: (A)tA=tB=tC. (B) tA<tB<tC. (C) tA<tB=tC. (D) tA=tB<tC 解析:由题分析出,A块自由下落,B块平抛,所以tA=tB,C块中途被水平子弹击中,击穿过程中,C块受到子弹在水平和竖直方向的阻力作用,此时C块竖直分速度变小,竖直方向相当于粘合了一个子弹,动量守恒,所以C块要比A、B到地时间要长,本题选D. 153.下列说法中正确的有: (A)一个质点在一个过程中如果其动量守恒,其动能也一定守恒. (B)一个质点在一个过程中如果其动量守恒,其机械能也一定守恒. (C)几个物体组成的物体系统在一个过程中如果动量守恒,其机械能也一定守恒. (D)几个物体组成的物体系统在一个过程中如果机械能守恒,其动量也一定守恒. 解析:动量守恒只能说明,考虑的对象合外力为0,当然对一质点来说,合外力的功也为O,所以A答正确;合外力为零,机械能不一定守恒,如匀速下落的物体,合外力为0,动量守恒,机械能在减少,B答错误;对于一个系统,内力作功也会影响机械能的变化,如子弹水平击穿光滑水平面的木块,系统动量守恒,内力(相互作用的摩擦力)做功机械能减少,所以C答错误;机械能是否守恒,与做功有关,动量守恒与合外力有关,两者条件不同,没有直接的联系,D答错误.本题选A. 154.三个半径相同的弹性球,静止置于光滑水平面的同一直线上,顺序如图所示,已知mA =mB=l kg,当A以速度vA=10 m/s向B运动,若B不再与A球相碰,C球质量最大为kg. 答案:mC≤mB=1kg 155.如图所示,质量为m的小物块沿光滑水平面以初速v0滑上质量为M的小车,物块与车间有摩擦,小车上表面水平且与小物块原所在平面等高,支承小车的平面水平光滑.小物块滑上小车后最终与小车一起运动而保持相对静止.从物体滑上车到物块与车相对静止的整个过程中,小物块受到的摩擦力总共做功W=,其中转化为热量的部分W1=,其余部分W-W1转化为. 答案:小车动能

相关主题