搜档网
当前位置:搜档网 › 水塔自动供水系统

水塔自动供水系统

水塔自动供水系统
水塔自动供水系统

水塔自动供水系统

对于生活和消防合用供水系统,则设备可设定两个工作压力,一个为消防供水压力,一个为消防供水压力。平时设备按生活设定压力运行,消防泵参与依次循环软启动,同时向消防管网补压,维持消防管网压力。当有火警发生时,由消火栓破玻按钮、湿式报警阀上的压力开关、消防控制中心、控制柜上的消防强起按钮等发出消防信号,则PLC受到此信号并自动控制系统将供水压力提供到消防设定压力按消防所需水量,增加启动多台工作泵,供给生活和消防的全部用水量。如果生活供水管网上装设有电动阀门,则设备在接到消防启动信号后,先关闭生活供水管网上的电动蝶阀,再将供水压力提高至消防设定压力,供给消防所需的全部用水量。消防结束后,需手动恢复平时生活工作状态。

16、济南无负压供水设备厂家规格齐全

可任意组合配套,应用范围广,稍加改变可应用于空调、风机、搅拌机等需恒温、恒压、恒湿、恒浓度的电机拖动设备。

济南无负压供水设备厂家主要特点

1、采同微机控制,全自动运行,管理简单,使用方便、可靠。

2、结构紧凑,占地面积小,投资省,安装方便,便于集中管理。

3、功能齐全,通过面板操作实现用户所需的各种功能。

变频控制柜

5-1、变频控制柜概述:

变频控制柜是技术人员充分吸收国内外水泵控制的先进经验,经过多年生产和应用,不断完善优化后,精心设计制作而成。

变频控制柜产品具有过载、短路、缺相保护以及泵体漏水,电机超温及漏电等多种保护功能及齐全的状态显示,并具备单泵及多泵控制工作模式,多种主备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制。

变频控制柜内在质量优良,外形美观耐用,安装操作方便,是各类水泵安全可靠的伴侣。

5-2、变频控制柜组成及性能:

1、变频控制柜由断路由,变频器,接触器,中间断路由,PLC,触摸屏的等组成

2、尺寸:1700mm×600mm×350mm (高×宽×深)。

3、结构:

a、控制柜为离墙式安装,电缆由下进出线。

b 、柜体具有足够的机械和电气强度,能承受运输、安装和事故短路时电动力影响而不致损坏和产生有害变形。

4、控制柜(箱)元器件:

各控制柜中的元件根据负荷条件来确定技术参数,并符合其自身的有关标准。主要元器件选型:

a、热继电器及主要二次元器件(含保护元件)

b、其余一次、二次元器件采用国内性能优良的、成熟的产品。

c、开关柜内主要电气一次元器件选用具有生产许可证,所有电器元件是由供需双方认可的生产厂家。所有元件的短路动、及开断能力不小于规定要求,相同型号和额定值的元件能互换。

5、所有螺栓、双头螺栓、螺纹、管螺纹、螺栓夹及螺母均遵守国际标准化组织(ISO)和国际单位制(SI)的标准。

6、接线要求:

a、端子排额定电压不低于500V,额定电流不小于5A,具有隔板,标号线套和端子螺丝,每个端子排都标以编号。所有端子的绝缘材料是阻燃的。每个端子的接线数量一般为一根,最多不得超过两根。

b、表计、控制、信号和保护回路连接用线选用阻燃交联聚乙烯绝缘,绝缘电压不小于500V,截面不小于1.5mm2的多股铜胶线。导线两端均标以编号,导线任何的连接部分不能焊接。电流互感器回路导线截面不小于4mm2。

7、变频调速装置内所采用的其它电气元器件性能指标和安全指标达到国家相关标准。控制柜电器元件,采用国际名牌正泰和施耐德,具有缺相,过载,超载保护。根据外部情况自行运行,自我保护,可省去人工管理费用。

8、变频调速装置充分考虑使用环境要求,散热可靠,并配专用的通风组件以满足散热要求。

9、变频调速装置加装按钮、指示灯等操作显示元件,柜内在变频器前端安装保护变频器的断路器和快熔,相应设备和元件及其安装接线在设备出厂前完成。供货方配相应的变频柜就地操作箱,有启停、速度给定、水泵功率、电流和频率显示功能。

10、变频控制柜包括但不限于以下保护特性:

主电源过/欠压保护、接地保护(相与地短路保护保护)、输出相间短路保护、内部电源的输出短路保护、电动机过热保护、变频器过温保护、PID反馈信号值低于最小值或高于最大值保护、冷却风机故障保护、过流保护、缺相保护、电流限幅、I2T保护、I/O端子、辅助电源、短路保护、电机欠/过载保护、堵转保护、串行通讯故障保护、AI丢失保护、输出接地、输出短路、输出缺相、电动机过载、变频器过温、4-20mA模拟量信号丢失等保护功能

11、多泵自动切换,可选择循环或根据工作时间启动方式。

12、内置时钟,可以任意设定定时开、关,设定任意时刻的压力值。

13、维修简单方便独有的系统故障检测、明确的故障部位(中文)提示,使工程人员能清楚地了解故障所在,帮助维修人员检查故障发生的部位和原因。

14、232和485通信接口,可连接各种控制模块和智能设备。通过

GPRS/CDMA/SMS模块,可实现远程提醒和交互操作。

15、分时分压功能,为满足一天内不同时段不同用水量需求,可对用水高峰、低谷时段实行不同压力控制。每天可设置八个不同的时间段,每个时间段里都可以设定不同的压力。

16、采用模糊控制原理,自动优化时无需调整控制器参数,并提供用户可更改切泵条件,方便有经验用户,响应快、精度高、泵切换时管网冲击小。

17、可靠性高。模拟和数字信号全部采用光隔离,全面提高电磁兼容性,采用开关电源供电,具有宽电压适用范围。

18、结构先进。通过智能数字面板的操控和显示节省大量按钮开关和指示灯,更经济,器件采用先进的SMT(表面贴装)工艺。

应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。济南无负压供水设备厂家通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。

济南无负压供水设备厂家特点

1、经济效益显著

使用该设备,可不建造水塔、不设楼顶水箱,既减少工程的施工周期,又解决了工程造价费用高的缺点,还克服了气压波动大,水泵启动频繁等不足之处。

2、设计严谨

该设备采用水泵变频恒压控制,无论系统用水量怎样变化,均能使管道出口压力保持恒定。

3、运行可靠

该设备采用变频调速器和国内优质水泵,具有完善的保护功能和自动、手动转换功能,使运行非常可靠。并且性能良好、控制方式灵活、抗干扰能力强

4、高效节能

该设备能根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,节电效果明显,比恒速水泵可节电35%。

5、操作简单

该设备采用全自动控制,PID调节,键盘操作,人机界面(文本、数字)显示。操作人员只需转换电控柜开关,就可以实现用户所需工况,实现全自动无人值守。

6、保护功能齐全

具有完美的过载、短路、过压、欠压、缺相、过流、短路、水源缺水等自动保护功能。在异常情况下能进行信号报警、自检、故障判断等。

7、占地少安装方便

整套设备只有一组供水控制柜和水泵机组,安装非常简单方便。

8、延长水泵及电机的使用寿命

对多台泵组均能可靠的实现软启动,使电网和管网免冲击,并且轮流运转,大大延长了水泵及电机的使用寿命。

9、定时开关机控制

(可选功能)系统内设有实时时钟,数据可掉电保护。如果用户只需要在一天中的某段时间内运行,则可设定每天的开机、关机时间,进行定时控制。

10、当变频器发生故障时,济南无负压供水设备厂家能够自动转换至工频运行,确保供水不间断。

11、爆管保护功能

当外管网发生爆管后,济南无负压供水设备厂家可自动停止运行。

12、突然停电后再来电,济南无负压供水设备厂家能够自动启动运行。

13、可编程控制器具有RS485通讯接口,便于将各种参数传至上位计算机。(附加功能)。

14、济南无负压供水设备厂家符合JG/T3009-93标准。

15、可适用于生活消防合用系统。

对于生活和消防合用供水系统,则设备可设定两个工作压力,一个为消防供水压力,一个为消防供水压力。平时设备按生活设定压力运行,消防泵参与依次循环软启动,同时向消防管网补压,维持消防管网压力。当有火警发生时,由消火栓破玻按钮、湿式报警阀上的压力开关、消防控制中心、控制柜上的消防强起按钮等发出消防信号,则PLC受到此信号并自动控制系统将供水压力提供到消防设定压力按消防所需水量,增加启动多台工作泵,供给生活和消防的全部用水量。如果生活供水管网上装设有电动阀门,则设备在接到消防启动信号后,先关闭生活供水管网上的电动蝶阀,再将供水压力提高至消防设定压力,供给消防所需的全部用水量。消防结束后,需手动恢复平时生活工作状态。

16、济南无负压供水设备厂家规格齐全

可任意组合配套,应用范围广,稍加改变可应用于空调、风机、搅拌机等需恒温、恒压、恒湿、恒浓度的电机拖动设备。

济南无负压供水设备厂家主要特点

1、采同微机控制,全自动运行,管理简单,使用方便、可靠。

2、结构紧凑,占地面积小,投资省,安装方便,便于集中管理。

3、功能齐全,通过面板操作实现用户所需的各种功能。

无负压变频供水设备

变频控制柜

5-1、变频控制柜概述:

变频控制柜是技术人员充分吸收国内外水泵控制的先进经验,经过多年生产和应用,不断完善优化后,精心设计制作而成。

变频控制柜产品具有过载、短路、缺相保护以及泵体漏水,电机超温及漏电等多种保护功能及齐全的状态显示,并具备单泵及多泵控制工作模式,多种主备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制。

变频控制柜内在质量优良,外形美观耐用,安装操作方便,是各类水泵安全可靠的伴侣。

5-2、变频控制柜组成及性能:

1、变频控制柜由断路由,变频器,接触器,中间断路由,PLC,触摸屏的等组成

2、尺寸:1700mm×600mm×350mm (高×宽×深)。

3、结构:

a、控制柜为离墙式安装,电缆由下进出线。

b 、柜体具有足够的机械和电气强度,能承受运输、安装和事故短路时电动力影响而不致损坏和产生有害变形。

4、控制柜(箱)元器件:

各控制柜中的元件根据负荷条件来确定技术参数,并符合其自身的有关标准。主要元器件选型:

a、热继电器及主要二次元器件(含保护元件)

b、其余一次、二次元器件采用国内性能优良的、成熟的产品。

c、开关柜内主要电气一次元器件选用具有生产许可证,所有电器元件是由供需双方认可的生产厂家。所有元件的短路动、及开断能力不小于规定要求,相同型号和额定值的元件能互换。

5、所有螺栓、双头螺栓、螺纹、管螺纹、螺栓夹及螺母均遵守国际标准化组织(ISO)和国际单位制(SI)的标准。

6、接线要求:

a、端子排额定电压不低于500V,额定电流不小于5A,具有隔板,标号线套和端子螺丝,每个端子排都标以编号。所有端子的绝缘材料是阻燃的。每个端子的接线数量一般为一根,最多不得超过两根。

b、表计、控制、信号和保护回路连接用线选用阻燃交联聚乙烯绝缘,绝缘电压不小于500V,截面不小于1.5mm2的多股铜胶线。导线两端均标以编号,导线任何的连接部分不能焊接。电流互感器回路导线截面不小于4mm2。

7、变频调速装置内所采用的其它电气元器件性能指标和安全指标达到国家相关标准。控制柜电器元件,采用国际名牌正泰和施耐德,具有缺相,过载,超载保护。根据外部情况自行运行,自我保护,可省去人工管理费用。

8、变频调速装置充分考虑使用环境要求,散热可靠,并配专用的通风组件以满足散热要求。

9、变频调速装置加装按钮、指示灯等操作显示元件,柜内在变频器前端安装保护变频器的断路器和快熔,相应设备和元件及其安装接线在设备出厂前完成。供货方配相应的变频柜就地操作箱,有启停、速度给定、水泵功率、电流和频率显示功能。

10、变频控制柜包括但不限于以下保护特性:

主电源过/欠压保护、接地保护(相与地短路保护保护)、输出相间短路保护、内部电源的输出短路保护、电动机过热保护、变频器过温保护、PID反馈信号值低于最小值或高于最大值保护、冷却风机故障保护、过流保护、缺相保护、电流限幅、I2T保护、I/O端子、辅助电源、短路保护、电机欠/过载保护、堵转保护、串行通讯故障保护、AI丢失保护、输出接地、输出短路、输出缺相、电动机过载、变频器过温、4-20mA模拟量信号丢失等保护功能

11、多泵自动切换,可选择循环或根据工作时间启动方式。

12、内置时钟,可以任意设定定时开、关,设定任意时刻的压力值。

13、维修简单方便独有的系统故障检测、明确的故障部位(中文)提示,使工程人员能清楚地了解故障所在,帮助维修人员检查故障发生的部位和原因。

14、232和485通信接口,可连接各种控制模块和智能设备。通过

GPRS/CDMA/SMS模块,可实现远程提醒和交互操作。

15、分时分压功能,为满足一天内不同时段不同用水量需求,可对用水高峰、低谷时段实行不同压力控制。每天可设置八个不同的时间段,每个时间段里都可以设定不同的压力。

16、采用模糊控制原理,自动优化时无需调整控制器参数,并提供用户可更改切泵条件,方便有经验用户,响应快、精度高、泵切换时管网冲击小。

17、可靠性高。模拟和数字信号全部采用光隔离,全面提高电磁兼容性,采用开关电源供电,具有宽电压适用范围。

18、结构先进。通过智能数字面板的操控和显示节省大量按钮开关和指示灯,更经济,器件采用先进的SMT(表面贴装)工艺。

应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。济南无负压供水设备厂家通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。

无负压供水设备厂家特点

1、经济效益显著

使用该设备,可不建造水塔、不设楼顶水箱,既减少工程的施工周期,又解决了工程造价费用高的缺点,还克服了气压波动大,水泵启动频繁等不足之处。

2、设计严谨

该设备采用水泵变频恒压控制,无论系统用水量怎样变化,均能使管道出口压力保持恒定。

3、运行可靠

该设备采用变频调速器和国内优质水泵,具有完善的保护功能和自动、手动转换功能,使运行非常可靠。并且性能良好、控制方式灵活、抗干扰能力强

4、高效节能

该设备能根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,节电效果明显,比恒速水泵可节电35%。

5、操作简单

该设备采用全自动控制,PID调节,键盘操作,人机界面(文本、数字)显示。操作人员只需转换电控柜开关,就可以实现用户所需工况,实现全自动无人值守。

6、保护功能齐全

具有完美的过载、短路、过压、欠压、缺相、过流、短路、水源缺水等自动保护功能。在异常情况下能进行信号报警、自检、故障判断等。

7、占地少安装方便

整套设备只有一组供水控制柜和水泵机组,安装非常简单方便。

8、延长水泵及电机的使用寿命

对多台泵组均能可靠的实现软启动,使电网和管网免冲击,并且轮流运转,大大延长了水泵及电机的使用寿命。

9、定时开关机控制

(可选功能)系统内设有实时时钟,数据可掉电保护。如果用户只需要在一天中的某段时间内运行,则可设定每天的开机、关机时间,进行定时控制。

10、当变频器发生故障时,济南无负压供水设备厂家能够自动转换至工频运行,确保供水不间断。

11、爆管保护功能

当外管网发生爆管后,济南无负压供水设备厂家可自动停止运行。

12、突然停电后再来电,济南无负压供水设备厂家能够自动启动运行。

13、可编程控制器具有RS485通讯接口,便于将各种参数传至上位计算机。(附加功能)。

14、济南无负压供水设备厂家符合JG/T3009-93标准。

15、可适用于生活消防合用系统。

水塔供水自动控制系统的设计

水塔水位的PLC控制的设计PLC课程设计说明书 姓名 班级 学号 专业机电一体化技术 教师 组别 日期 2012.1.10 成绩

目录 一概述 (1) 二水塔供水自动控制系统方案设计 (2) 设计方案 (2) 三水塔水位自动控制系统设计 (2) 1水泵电动机控制电路的设计 (2) 2水位传感器的选择 (4) 四水位自动控制系统的组成 (6) 1、系统构成及其控制要求 (6) 2系统框图 (7) 五 PLC的设计 (8) 1可编程序控制器(PLC)简介 (8) 2PLC工作原理 (8) 3PLC的编程语言--梯形图 (9) 4SYSMAC-C系列P型机概述 (11) 5水塔水位自动控制系统的软件设计 (12) 六结束语(系统总结分析) (17) 1系统的优点 .......................................................................... 错误!未定义书签。2结束语 .................................................................................. 错误!未定义书签。参考文献 (19) 致谢 (20)

水塔供水自动控制系统的设计 一概述 水塔水位控制系统采用交流电压检测水位,在控制系统启动后,若水槽水位低于水槽最低水位S2时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位S4时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位S2时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位S1时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。 二水塔供水自动控制系统方案设计 设计方案 PLC和传感器构成的水塔水位恒定的控制系统原理。 在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。本文主要阐述利用PLC和传感器构成的水塔水位恒定的控制系统。

给水工程设计(审图)标准

给水工程设计(审图)标准()月第一次修订2018年9第一章总则 第一条给水工程设计(审图)以确保安全供水为前提,以先进技术为保障, 以提高工程质量为标准。 第二条新建、改建和扩建给水工程设计(审图)以大连金普新区给水管网总体规划为依据。 第三条给水工程包括市政管道工程、住宅配套工程、公共设施配套工程、工商企业配套工程等。 第二章设计(审图)依据及标准规范 第四条给水工程设计(审图)标准应符合现行国家、行业相关规范、标准要求。 第五条设计(审图)相关依据。 (一)、《建筑给水排水设计规范》(2009年版)GB50015-2003;(二)、《室外给水设计规范》 GB50013-2006; (三)、《城市工程管线综合规划规范》GB50289-98; (四)、《泵站设计规范》GB 50265-2010; (五)、《建筑设计防火规范》GB50016-2014; (六)、《城市给水工程规划规范》GB 50282-98; ;GB50268-2008《给水排水管道工程施工及验收规范》、(七).

(八)、《建筑给水排水及采暖工程施工质量验收规范》 GB50242-2002;(九)、《节水型卫生洁具》GBT31436-2015; (十)、《大连市供水用水管理条例》 2012版; (十一)、《大连市节约用水条例》 2013版; (十二)、《大连开发区住宅类建筑给水管道施工技术标准》; (十三)、《大连开发区城市居民二次供水加压泵站(设计)建设标准》;等相关的设计、施工、验收规范及技术标准。 第三章室内给水工程 第一节管道设置 第六条室内生活给水管道宜布置成枝状,单向供水。 第七条管道应设置在单元管道井内,管道井的净尺寸应符合规范要求,且管 道井开门尺寸不小于800×600mm。住宅项目室内给水平面图中应设 计水暖管道井管线(含智能水表穿线套管)平面布置详图。 第八条管道应固定在管道井内,管道支架采用50x50mm镀锌角钢制作。 第九条管道采用橡塑棉保温。 第十条室内出户管埋深以室外地坪下1.2米为标准。 第二节管材选用 第十一条公建及住宅分户水表前管材宜选用S4级(PN16)PPR给水塑料管。

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

水塔供水系统的PLC控制设计

课程设计 课程名称电气控制与PLC课程设计课题名称水塔供水系统的PLC控制设计专业测控技术 班级1301 学号 姓名 指导老师刘星平,赖指南,谭梅,沈细群 2016年6月17日

电气信息学院 课程设计任务书 课题名称水塔供水系统的PLC控制设计 姓名专测控技术与仪器班级学号 指导老师刘星平、赖指南等 课程设计时间2016年6月6日-2016年6月17日(15、16周) 教研室意见意见:同意审核人:汪超林国汉 一.任务及要求 设计任务: 以PLC为核心,设计一个水塔供水系统的PLC控制系统,为此要求完成以下设计任务: 1.根据系统的基本结构、工艺过程和控制要求,确定控制方案。 2.配置电器元件,选择PLC型号。 3.绘制PLC控制系统线路原理图和PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 4.上机调试程序。 5.上位机组态监控的设计(可选项) 6.编写设计说明书。 设计要求 (1)所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 (2)所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 (3)所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出。 二.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解控制系统的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制控制系统的控制线路原理图和控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 4.第一周星期五:上机调试程序。

大楼物业供水系统设计

大楼物业供水系统 设计

大楼物业供水系统设计 目录 第 1 章绪论 (1) 1.1 研究背景 (1) 1.2 供水系统设计要求 (2) 1.3 供水系统设计思想 (3) 1.4 供水系统方案确定 (4) 1.5 供水系统运行和原理 (4) 1.5.1 系统原理说明 (4) 1.5.2 系统运行说明 (5) 第 2 章可编程控制器的概述 (7) 2.1 可编程控制器介绍 (7) 2.2 三菱FX系列介绍 (7) 2.2.1 三菱FX系列PLC主要特点 (8) 2.2.2 三菱FX系列PLC主要数据简介 (8) 2.2.3 三菱FX系列PLC基本指令 (9) 2.3 可编程控制器的特点 (10) 2.4 可编程控制器的工作原理 (10) 2.4.1 PLC的等效工作电路 (10) 2.4.2 PLC的工作过程 (12) 第 3 章系统硬件设计 (14) 3.1 系统的构成 (14)

3.2 系统主要硬件设备的选型 (16) 3.2.1 PLC的选型 (16) 3.2.2 水泵机组的选型 (17) 3.2.3 压力传感器的选型 (18) 3.3 系统电路分析及设计 (20) 3.3.1 系统电源 (20) 3.3.2 供水系统主电路分析与设计 (21) 3.3.3 可编程控制器I/O分配 (24) 3.3.4 PLC I/O接线图 (25) 3.3.5 压力传感器信号处理 (26) 3.3.6 报警电路设计 (27) 第 4 章系统的软件设计 (30) 4.1 软件开发环境简介 (30) 4.2 供水系统程序流程图 (31) 4.3 供水系统程序设计及解析 (32) 4.3.1 程序的模式选择、水泵工作程序设计及解析 (32) 4.3.2 程序的保护、报警选择程序设计及解析 (34) 4.4 程序调试及仿真 (37) 4.5 程序调试及仿真体会 (39) 结论 (42) 致谢 (44) 参考资料 (46)

简易水塔供水系统

第一章系统基本设计 第一节引言 随着生活水平的提高,水塔自动供水系统在日常生活及工业领域中应用相当广泛,本设计应用于工厂备用水源方面使用自动供水系统, 而以往水塔水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,而本设计的主要作用是能够很好的节省劳动力,免去了传统的供水的繁琐,自动供水,适用于节约型经济社会。 本系统摒去一往的设计理念,将水的特殊导电性做成的水位传感器作为芯片的输入量传给芯片,经芯片处理后由继电器控制水泵的启动和停止。以确保给水、补水箱水位的平衡,并且还有指示灯来实现当前的工作状态。 第二节系统设计方案 1.2.1设计要求: 1、可以自动实现水位检测。 2、可以自动启动停止水泵。 3、有指示灯能够现实当前的工作状态。 1.2.2两种设计方案 方案一: 用单片机作为控制核心用六个液位传感器分别作为给水箱补水箱的上限位、中限位和下限位传感器,从而利用单片机采集信号、处理来控制电机起停实现补水与否和工作状态指示。 方案二: 系统以模拟,数字混合电路为核心,利用水的特殊导电性做成的水位传感器作为芯片的输入量。通过逻辑门电路的组合来实现控制。与非门电路组成给水箱控制电路实现给水箱的补水;用与门电路的组合实现补水箱控制电路,控制给给水箱补水与否;最后通过两个二极管的开通

和关断来实现电机的启动与停止以及工作指示灯的指示。 对比以上两种方案都可以实现系统要求,但方案一成本高,电路复杂,并且还需要软件的调试。考虑到系统的精度不需很高,确定选择方案二的设计。

第二章电源电路 电源采用三端稳压器结构。电路有整流、滤波及三端稳压等环节组成,如图2-1 图2-1 电源电路 第一节单相桥式整流 桥式整流电路由变压器、四个二极管组成的整流桥和滤波电容等器件组成,属于全桥整流电路。整流过程如图2-1 当u2是正半周时,二极管VD1和VD3导通,而二极管VD2和VD4截止,负载上的电流自上而下流过负载,负载上得到与u2的正半周期相同的电压。 当在u2负半周时,u2的实际极性是下正上负,二极管VD2和VD4导通而VD1和VD3截止,负载上的电流仍然自上而下流过负载,负载上得到了与u2正半周相同的电压。

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

水塔水位控制系统PLC设计说明书

水塔水位控制系统PLC 设计 1、水塔水位控制系统PLC 硬件设计 1.1、水塔水位控制系统设计要求 水塔水位控制装置如图1-1所示 图1-1 水塔水位控制装置 水塔水位的工作方式: 当水池液位低于下限液位开关S4,S4此时为ON ,水阀Y 打开(Y 为ON ),开始往水池里注水,定时器开始定时,4秒以后,若水池液位没有超过水池下限液位开关时(S4还不为OFF ),则系统发出报警(阀Y 指示灯闪烁),表示阀 S1---表示水塔的水位上限,S2---表示水塔的水位下限,S3---表示水池水位上限, S4---表示水池水位下限,M1为抽水电机,Y 为水阀。

Y没有进水,出现故障;若系统正常,此时水池下限液位开关S4为OFF,表示水位高于下限水位。当水位液面高于上限水位,则S3为ON,阀Y关闭(Y为OFF)。 当S4为OFF时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为ON),电机M开始工作,向水塔供水,当S2为OFF时,表示水塔水位高于水塔下限水位。当水塔液面高于水塔上限水位时(水塔上限水位开关S1为OFF),电机M停止。(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动) 1.2 水塔水位控制系统主电路 水塔水位控制系统主电路如图1-2所示: L1L2L3 SQ FU KM FR M 3~ 图1-2 水塔水位控制系统主电路 1.3、I/O接口分配 水塔水位控制系统PLC的I/O接口分配如表1-1所示。 表1-1 水塔水位控制系统PLC的I/O接口分配表 符号地址绝对地址数据类型说明 1 S1 I0.1 BOOL 水塔上限水位 2 S2I0.2 BOOL 水塔下限水位 3 S3I0.3 BOOL 水池上限水位

组态设计水塔供水系统组态设计(自动化专业)

自动化应用软件实训设计 题目:水塔供水系统 班级: 姓名: 学号: 指导教师: 设计时间: 评语: 成绩

一、题目设计方案 本文所设计的水塔供水系统主要由七部分组成,分别是登录界面、控制主画面、实时曲线、历史曲线、实时报表、历史报表以及报警窗口。 系统实现了水塔液位的自动调节。当水塔储水箱液位低于25dm时,采用单位时间供水量为5dm的深井泵1和单位时间供水量为10dm的深井泵2同时向水塔储水箱供水。当水塔液位达到60dm时,关闭深井泵1,深井泵2单独供水;当水塔液位达到80dm时,用深井泵1单独供水,当水塔液位高于96dm时,向水塔停止供水。 当水塔储水箱中有水时,通过供水阀向两个站点水箱分别供水,一旦站点水箱液位达到85dm时,停止供水,而当其液位低于一定值时,继续供水,这样保证了用户用水的水压不会过高或者过低。 “组态王”是完全基于网络的概念,是一个完全意义上的工业级软件平台,现已广泛应用于化工、电力、国属粮库、邮电通讯、环保等行业。它也适合于污水处理行业的设计工作。组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。可以把这样的系统划分为控制层、监控层、管理层三个层次结构。监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。 二、界面设计 根据软件监控的需要,要对水塔储水箱以及站点水箱的液位实行监控,但由于是模拟设计,没有真正的对象,于是构造一个虚拟对象,即设计一个基于组态王的水塔液位的模拟控制,通过对模拟水箱液位的控制来模拟现场真正的运行情况,一边进行监控。 1.内存变量的定义 首先打开组态王软件的工程浏览器,在数据词典中双击新建,会弹出如图1的对话框,键入变量名,设置变量类型。

恒压供水系统设计

目录 1 摘要 (1) 1.1 引言 (1) 1.1变频恒压供水系统理论分析 (2) 1.1.1变频恒压供水系统的原理 (2) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (4) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (7) 3.1 变频器简介 (7) 3.1.1 变频器的基本结构与分类 (7) 3.1.2 变频器的控制方式 (7) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (9) 3.2.3 变频器主电路外围设备选择 (11) 3.3 可编程控制器(PLC) (13) 3.3.1 PLC的定义及特点 (13) 3.3.2 PLC的工作原理 (14) 3.3.3 PLC及压力传感器的选择 (14) 4 PLC编程及变频器参数设置 (15) 4.1 PLC的I/O接线图 (15) 4.2 PLC程序 (16) 4.3 变频器参数的设置 (20) 4.3.1 参数复位 (20) 4.3.2 电机参数设置 (20) 总结 (21) 参考文献 (22)

摘要 以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。 关键字:恒压供水、变频器、PLC控制器 Combined with frequency as the core component of the PLC control system with high reliability, strong anti-interference ability, combined flexible programming, easy maintenance and low cost, and many other characteristics, frequency conversion constant pressure water supply system combines technology, electrical technology, lightning lightning protection technology, modern control, remote monitoring technology and integration. Using the system for water supply can improve the stability and reliability of water supply systems, water supply systems to facilitate the implementation of centralized management and monitoring; the same time the system has good energy efficiency, which is an increasing scarcity of energy is particularly important today, so the study design of the system, for improving efficiency and living standards, reduce energy consumption has important practical significance Keywords: constant pressure water supply, inverter, PLC controller

估计水塔用水量

估计水塔流量实验报告 姓名:祁华东 学号:110714220 班级:11级测绘工程(2)班 指导老师:刘利斌

估计水塔流量实验报告 一.问题的提出 某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时. 水塔是一个高12.2m ,直径17.4m 的正圆柱.按照设计,水塔水位降至约8.2m 时,水泵自动启动,水位升到约10.8m 时水泵停止工作. 表 1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量. 表1 水位测量记录 (符号//表示水泵启动) 二.问题分析 流量是单位时间流出水的体积,由于水塔是圆柱形,横截面积是时刻(h) 水位(cm) 0 0.92 1.84 2.95 3.87 4.98 5.90 7.01 7.93 8.97 968 948 931 913 898 881 869 852 839 822 时刻(h) 水位(cm) 9.98 10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 // // 1082 1050 1021 994 965 941 918 892 时刻(h) 水位(cm) 19.04 19.96 20.84 22.01 22.96 23.88 24.99 25.91 866 843 822 // // 1059 1035 1018

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

水塔供水系统设计说明

自动化应用软件实训设计题目:水塔供水系统 班级: 姓名: 学号: 指导教师: 设计时间:

目录 引言......................................................................... - 1 - 1.设计方案及原理.......................................................... - 1 - 2.界面设计................................................................. - 2 - 2.1内存变量的定义...................................................... - 2 - 2.2 登录界面设计 ....................................................... - 3 - 2.3水塔液位控制主界面的设计.......................................... - 4 - 2.4 实时曲线与历史曲线 ................................................ - 4 - 2.5 报表打印............................................................ - 6 - 2.6 报警窗口设计 ....................................................... - 6 - 2.7 数据库操作画面..................................................... - 7 - 3.命令语言设计 ............................................................ - 7 - 3.1 按钮的设计.......................................................... - 7 - 3.2 管道流动条件的设计 ................................................ - 7 - 3.3历史报表命令语言 ................................................... - 8 - 3.4系统运行命令语言 ................................................... - 8 - 总结........................................................................ - 10 -

组态王-水塔供水设计

自动化应用软件实训

1 绪论 生产生活中的用水量常随时间而变化,季节、昼夜相差很大。用水和供水的不平衡集中体现在水压上,用水多而供水少则水压低,用水步而供水多则水压高。人口的增加以及人们的生活水平的提高,对城市供水质量、数量、稳定性等问题提出来越来越高的要求。而用户用水的多少是时常变动的,因此供水不足或供水过剩的事情时常会发生。而供水与用水的不平衡主要集中在供水的压力上,供水压力又表现为供水量的多少。若供水多于用水,则水压低,反之,水压高。保持供水压力的恒定,可以使用水和供水之间保持平衡,即用水多时,供水也多,用水少时,供水也少,为了能更好地做到这点,本论文采用了三个水泵供水以提供足够的压力,从而提高供水的质量。 2 系统需求分析 自动供水系统的工作原理:首先,水泵抽水向蓄水箱中注满水,保证蓄水箱内的液位能保持在一定的范围内。这里设定两个报警器,当水箱液位低于水箱液位下限时,报警器2报警,供水管道向水箱注入水,当水箱液位高于水箱液位上限时,报警器1报警,供水管道停止向蓄水箱供水。当水箱液位在水箱液位上限与水箱液位下限之间时,报警器1和报警器2都不报警。然后再由蓄水箱引出三根水管,通过三个水泵向用户供水。当用水量为高峰期时,三个泵同时供水;当用水量为正常期时,两个水泵同时供水;当用水量为低峰期时,一个泵供水。如此以保证用户用水水压的恒定,实现自动供水。 3 系统方案论证 根据常识可知,供水与用水的不平衡主要集中在供水的压力上,供水压力又表现为供水量的多少。若供水多于用水,则水压低,反之,水压高。保持供水压力的恒定,可以使用水和供水之间保持平衡,即用水多时,供水也多,用水少时,供水也少,为了能更好地做到这点,本论文采用了三个水泵以提供足够的压力,从而提高供水的质量。同时,为了保证三个水泵随时都有水可抽,前面设计了蓄水箱,蓄水箱自带有液位自测系统,能随时保证一定的水量供求。为了实现人机界面的友好,在系统画面上还设置了多个仪表,用以随时观测系统的运行情况,便于系统的分析。 4 系统监控界面设计 4.1 新建工程 打开组态王首先新建立工程“自动供水控制系统”,进入画面界面,点击新建工程画面,进入开发系统界面,确定背景属性。如图4.1所示。

基于三菱PLC控制的恒压供水系统设计(互联网+)

摘要 本设计是专门对日常用水而设计的恒压供水控制系统。根据国内外的研究现状以及系统的控制要求,制定出了一套适合此系统的控制方案。控制方案中,硬件设计主要对可编程控制器(PLC)机型、变频器机型以及电机泵组的机型做出了选择,同时还对系统的输入输出点进行了规划和分配。在软件设计部分,针对控制要求画出了系统的流程图,并且还对每一部分的流程图进行了功能的解释,使读者能更加轻松的了解整个系统的软件设计情况。在此课题中,还采用了MCGS组态软件,对控制系统进行监视与模拟运行,很直观的再现了现场的实际情况。最后,还对整个系统进行了运行调试,运行结果表明该系统具有水压稳定、硬件组成简单、运行可靠和操作方便等优点。 关键词:恒压供水;可编程控制器;变频器;组态软件

Abstract This design is specially designed for water constant pressure water supply control system. According to the requirements of the current research at home and abroad and the system control, develop a set of control scheme suitable for the system. In the control scheme, the hardware design is mainly to the programmable logic controller (PLC) model , frequency converter and motor pump set model made a choice, but also on the system input and output points of planning and allocation. In software design part, according to draw the flow chart of the system, and the required control and flow chart of every part of the function of explanation, so that readers can more easily understand the software design of the whole system. In this topic, also adopted the MCGS configuration software, to monitor and control system’s simulate, intuitive reproduce the actual situation of the scene. Finally, the debugging of the whole system running, the results on the surface of the system has stable pressure, simple structure, reliable operation and convenient operation. Key words: Constant pressure water supply;Programmable logic Controller;Inverter;Configuration software

水塔自动供水系统

水塔自动供水系统 对于生活和消防合用供水系统,则设备可设定两个工作压力,一个为消防供水压力,一个为消防供水压力。平时设备按生活设定压力运行,消防泵参与依次循环软启动,同时向消防管网补压,维持消防管网压力。当有火警发生时,由消火栓破玻按钮、湿式报警阀上的压力开关、消防控制中心、控制柜上的消防强起按钮等发出消防信号,则PLC受到此信号并自动控制系统将供水压力提供到消防设定压力按消防所需水量,增加启动多台工作泵,供给生活和消防的全部用水量。如果生活供水管网上装设有电动阀门,则设备在接到消防启动信号后,先关闭生活供水管网上的电动蝶阀,再将供水压力提高至消防设定压力,供给消防所需的全部用水量。消防结束后,需手动恢复平时生活工作状态。 16、济南无负压供水设备厂家规格齐全 可任意组合配套,应用范围广,稍加改变可应用于空调、风机、搅拌机等需恒温、恒压、恒湿、恒浓度的电机拖动设备。 济南无负压供水设备厂家主要特点 1、采同微机控制,全自动运行,管理简单,使用方便、可靠。 2、结构紧凑,占地面积小,投资省,安装方便,便于集中管理。 3、功能齐全,通过面板操作实现用户所需的各种功能。 变频控制柜 5-1、变频控制柜概述: 变频控制柜是技术人员充分吸收国内外水泵控制的先进经验,经过多年生产和应用,不断完善优化后,精心设计制作而成。 变频控制柜产品具有过载、短路、缺相保护以及泵体漏水,电机超温及漏电等多种保护功能及齐全的状态显示,并具备单泵及多泵控制工作模式,多种主备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制。 变频控制柜内在质量优良,外形美观耐用,安装操作方便,是各类水泵安全可靠的伴侣。 5-2、变频控制柜组成及性能: 1、变频控制柜由断路由,变频器,接触器,中间断路由,PLC,触摸屏的等组成

给水系统设计

给水系统的功能 发电厂给水系统的任务是(包括脱过氧的凝结水和经过化学处理的补充水)从除氧器贮水箱送到锅炉的省煤器进口。给水在输送的过程中,要进行加热并升压,以满足锅炉对给水的温度和压力的要求,整个汽水循环的热效率的到提高。 加热给水的热源,来自汽轮机的各级抽气,提高给水的抽气,就要借助给水泵。给水泵是发电厂简历汽水热力循环必不可少的设备 给水系统除向锅炉供水之外,还得向锅炉过热器的减温装置提供减温水,以调节主蒸汽的温度;在给水泵中间级抽头,向加热器的减温装置供给减温水和事故喷水的用水。 在装有汽轮机旁路系统的发电厂,给水系统要向高压旁路系统供水,以降低主蒸汽排入再热器冷段蒸汽的温度,是锅炉出口和再热器出口的蒸汽压力和温度得到调整。 本次设计主要针对主给水管道的温度和压力的设计。 一、机组简介 锅炉 形式:超临界、单炉膛、一次中间再热、平衡通风、固态排渣、全钢架悬吊结构、露天布置燃煤直流锅炉 锅炉最大连续出力:1950t/h 过热器出口压力:25.5MPa 过热器出口温度:569℃ 再热器出口压力:4.54MPa 再热器出口温度:569℃

给水温度:280.4℃ 锅炉效率(LHV):93.84 汽轮机 形式:超临界参数、一次中间再热、单轴、三缸四排汽、8级回热抽汽凝汽式汽轮机 额定功率:660MW 额定进汽量:1900t/h 主汽阀额定进汽压力:24.2MPa(a) 主汽阀进汽温度:566℃ 再热蒸汽额定进汽压力:4.525MPa(a) 再热蒸汽进汽温度:566℃ 再热蒸汽额定流量:1525.5t/h 循环冷却水温度:143.1℃ 排汽压力:0.00747MPa(a) 排汽量:1038.82t/h 机组净热耗:7942kJ/kW.h 发电机 型式:水-氢-氢冷却、静态励磁发电机 额定功率:600MW 额定容量:667MVA 电压:20kV 频率:50Hz

51单片机的水塔控制

电子系统综合创新设计 水塔控制设计 院系:电子与电气工程学院 专业:电子信息工程 班级:0 姓名:0 指导老师:0

目录 第1章绪论.................................................2 1.1 概述...................................................2 1.2设计要求及意义...........................................2第2章总体方案论证与设计...................................3 2.1总体设计方案............................................3 2.2设计要求及意义...........................................3第3章系统硬件设计.........................................4 3.1总体设计方案............................................4 3.2系统组成................................................4第4章系统的软件设计.......................................11 4.1水位控制程序............................................11 4.2使用说明与注意事项.......................................11第5章系统调试与测试结果分析...............................12 5.1 软件测试.......................................................12结论........................................................12 参考文献....................................................13 附录1 程序..................................................14 附录2 仿真效果图............................................16

相关主题