搜档网
当前位置:搜档网 › 远红外功能纤维的性能

远红外功能纤维的性能

远红外功能纤维的性能
远红外功能纤维的性能

远红外功能纤维的性能:主要有三大作用:保温,保健,抗菌.

1释放的远红外线与体内水分子的共振作用能够有效活化水分子,提高细胞渗透性能,从而提高身体的含氧量

2平衡身体的酸碱度:远红外线能净化血液,改善皮肤质素,预防因尿酸过高而引致骨骼关节疼痛。

3改善微循环:活性水分子自由出入细胞之间,以及远红外线的热效应,促使血流速度加快,微丝血管扩张;微丝血管开放愈多,心脏的压力便可以减少。

4促进新陈代谢:微循环系统若得到改善,新陈代谢产生的废物便可迅速排出体外,减轻肝脏及肾脏的负担

5能与水分子及有机物产生共振而具有良好的热效应,因此远红外纺织品具有良好的保暖性。

远红外纤维的加工方法

远红外纤维制备方法分为熔融纺丝法、共混纺丝法和涂层法三大类。

1熔融纺丝法

按远红外辐射材料微粉添加过程和方法,远红外纤维的熔融纺丝法有四种工艺路线。

(1)全造粒法:在聚合过程中添加远红外陶瓷微粉制成远红外材料的切片。远红外微粉与成纤聚合物混合均匀,纺丝稳定性好,但由于再造粒工艺的引入,使生产成本增高。

(2)母粒法:将远红外陶瓷微粉制成高浓度远红外母粒,再与定量成纤聚合物混合后纺丝。该方法设备投资较少,生产成本较低,工艺路线较成熟。

(3)注射法:在纺丝加工过程中,用注射器将远红外粉直接入成纤聚合物熔体中而制成远红外纤维。该方法技术路线简单,但远红外粉与成纤聚合物的均匀分散有困难,且需进行设备改造,添置注射器。

(4)复合纺丝法:以远红外母粒为芯,聚合物为皮,在双螺杆复合纺丝机上制成皮芯型远红外纤维。该方法技术难度高,纤维的可纺性好,但设备复杂,成本高。

2 共混纺丝法

共混纺丝法是将远红外粉体在聚合物聚合过程中加入反应体系,从切片开始就具有远红外发射功能,该方法的优点是生产易于操作,工艺简单。

3 涂层法

涂层法是将远红外吸收剂、分散剂和粘合剂配成涂层液,通过喷涂、浸渍和辊涂等方法,

将涂层液均匀地涂在纤维或纤维制品上,经烘干而制得远红外纤维或制品的一种方法

一种活性炭远红外功能纤维及其制造方法:其纤维由功能母粒和纤维级树脂切片构成,所述的功能母粒包含下列组分,活性炭粉体:10~40%,偶联剂:5~10%,分散剂:10~20%,载体树脂:30~75%。其方法如下:(1)制备功能母粒:将活性炭粉体材料烘干,按上述比例在烘干后的活性炭粉体中依次加入偶联剂、载体树脂、分散剂,经双螺杆熔融挤出,冷却,切粒,制成功能母粒。(2)纺丝:将上述功能母粒进行干燥,加入纤维级树脂切片,通过计量装置,控制功能母粒在纤维中的含量为2~10%,经熔融挤压纺丝,制成活性炭远红外功能纤维

辐射性能的测试

远红外辐射性能一般以比辐射率(发射率)来表示评价织物远红外性能的指标

保温性能的测试

保温性能的测试方法主要有:热阻CLO(克罗)值法、传热系数法、温差测定法、不锈钢锅法、热源照射下保温性测定法等

人体试验法

人体试验法包括3种方法:

(1)血液流速测定法。既然远红外织物有改善微循环、促进血液循环的作用,那么就可以通过人体试用远红外织物,测试其对人体的血液流速是否有加快的作用。

(2)皮肤温度测定法。分别用普通织物和远红外织物制成护腕,套在健康者的

手腕上,在室温下,在一定的时间内,用测温仪分别测得皮肤表面的温度,求出温度差。

(3)实用统计法。用普通纤维和远红外纤维制成棉絮类的制品,分别让一组试用者试用,根据使用者感受对比,统计出两种织物的保暖性能[1]。

5 远红外纺织品的功能

聚酰亚胺薄膜的性质及应用

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/45176653.html,)聚酰亚胺薄膜的性质及应用 变宝网11月14日讯 聚酰亚胺薄膜是一种耐高温电机电器绝缘材料,表现为黄色透明,它主要分成均苯型聚酰亚胺薄膜和联苯型聚酰亚胺薄膜两类,有突出的耐高温、耐辐射、耐化学腐蚀和电绝缘性能,可在250~280℃空气中长期使用。 一、聚酰亚胺薄膜的化学性质 聚酰亚胺化学性质稳定。聚酰亚胺不需要加入阻燃剂就可以阻止燃烧。一般的聚酰亚胺都抗化学溶剂如烃类、酯类、醚类、醇类和氟氯烷。它们也抗弱酸但不推荐在较强的碱和无机酸环境中使用。某些聚酰亚胺如CP1和CORIN XLS是可溶于溶剂,这一性质有助于发展他们在喷涂和低温交联上的应用。 二、聚酰亚胺薄膜的物理性质 热固性聚酰亚胺具有优异的热稳定性、耐化学腐蚀性和机械性能,通常为橘黄色。石墨或玻璃纤维增强的聚酰亚胺的抗弯强度可达到345 MPa,抗弯模量达到20GPa.热固性聚酰亚胺蠕变很小,有较高的拉伸强度。聚酰亚胺的使用温度范围覆盖较广,从零下一百余度到两三百度。

三、聚酰亚胺薄膜的应用 聚酰亚胺薄膜是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。IKAROS的帆就是使用聚酰亚胺的薄膜制和纤维作的在火力发电部门,聚酰亚胺纤维可以用于热气体的过滤,聚酰亚胺的纱可以从废气中分离出尘埃和特殊的化学物质。 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。中国长春有生产各种聚酰亚胺产品。 泡沫塑料:用作耐高温隔热材料。 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。

棉纤维的吸湿性能

(一)棉纤维得吸湿性能 棉纤维就是一种多孔性物质,由于纤维素大分子上存在很多得游离亲水性基团(羟基),所以能从潮湿空气中吸收水分与向干燥空气放出水分,这种现象称为棉纤维得吸湿性。棉纤维得吸湿性,对其她各项物理性能都有影响。如棉纤维吸湿后,重量增加,密度先增大后减小,强伸度增加,导电性能增强,纤维膨胀等。因此,在籽棉加工、农商交接、纤维性能测试以及纺织生产等过程中,都要规定并控制棉纤维得吸湿量。 棉纤维得吸湿就是比较复杂得物理化学现象。棉纤维含水得原因,主要有纤维本身结构以及大气温度与相对湿度等。 1.影响棉纤维吸湿得内部因素 亲水基因:棉纤维得主要成分就是纤维素。纤维素大分子上每个葡萄糖剩基上有3个羟基,它们属于亲水基因,对水分子有相当得亲与力,所以棉纤维分子结构中得自由羟基得数目越多,棉纤维得吸湿能力就越大。 棉纤维内得纤维素大分子上除羟基直接吸附水分以外,已被吸附得水分子,由于它本身也具有极性,帮也可吸附其她水分子,使后来吸附得水分子积聚在上面,称为间接吸附得水分,这些水分子排列不定,结合力也比较弱,存在于纤维内部得微小间隙成为微毛细水;当温度很高时,这种间接吸收得水分可以填充到纤维内部较大得间隙中,成为大毛细水。随着微毛细水与大毛细水得增加,棉纤维发生溶胀可以拆开分子间得一些联结点,使得更多得自由羟基与水分子结合。 分子排列:棉纤维中纤维素分子链相互间排列不匀,存在着结晶区与非结晶区。在结晶区,纤维素分子链排列整齐,分子间距较大,仅在少数点联结,结合力弱,就是一种松弛得网状结构,大多数自由羟基都向水分子开放,水分子很容易进入,所以棉纤维得吸湿主要发生在非结晶区。因此棉纤维得结晶度越低,吸湿能力越强。对单根棉纤维来说,初生层得非结晶区比次生层得多,不成熟得棉纤维非结晶区所占得比例比成熟棉纤维得大。因此,不成熟得低级棉常含有较高得水分。 除了结晶度影响纤维得吸湿性外,在同样得结晶度下,微晶体得大小对吸湿性也有影响。一般说来,晶体小得吸湿性较大。另外,大分子得取向度一般对吸湿性得影响较小,但聚合度有时对纤维得吸湿能力有一定得影响。 表面吸附:棉纤维暴露在大气中,就会在纤维表面吸附一定量得水汽与其她气体,这一般称为物理吸附。表面吸附能力得大小与纤维比表面积有一定得关系。单位体积得棉纤维所具有得表面积,叫棉纤维得比表面积。棉纤维愈细,棉纤维中缝隙孔洞愈多,比表面积愈大,吸湿性也要大一些。所以棉纤维得比表面积得大小,也就是影响吸湿性得一个因素。例如,在同样条件下,成熟差得棉纤维比成熟好得棉纤维比表面积大,其吸湿性也较大。 纤维素伴生物:棉纤维除主要成分就是纤维素外,还有少量得果胶、蛋白质、多缩戊糖、脂肪与蜡质、以及某些无机盐类等伴生物。脂肪与蜡质就是疏水物质,能保护棉纤维不易受潮。果胶、蛋白质、多缩戊糖,以及无机盐类中得氧化铁、氧化镁、氧化钙等就是亲水物质,能使棉纤维得吸湿性增强。因此,棉纤维中纤维素伴生物得性质与含量,也影响棉纤维得吸湿程度。另外,棉纤维在采集与初加工过程中还保留一定数量得杂质,这些杂质往往具有较高得吸湿能力。因此,棉纤维中含杂得多少,对棉纤维得吸湿性也有一定得影响。 2.影响棉纤维吸湿得外部因素 与棉纤维含水有关得外部因素有大气压力、温度与相对湿度。由于地球表面上大气压力得变化不大,这里主要讨论空气温度与相对湿度对棉纤维吸湿能力得影响。 相对湿度:棉纤维含水大小与空气得相对湿度密切相关。在一定得大气压力与温度下,相对湿度愈高,空气中水蒸气分压愈大,即单位体积内得空气中水分子数目愈多,水分子进入棉纤维中得机会愈多,其吸湿时就愈大。反之,当空气中水蒸气分压与相对湿度降低时,棉纤

远红外功能性材料

一、什么是远红外线 红外线是国外著名科学家赫歇尔在一次科学实验中发现的,他发现在太阳的可见光线以外存在着一种神奇的光线,人的肉眼无法看见这种光线,但它的物理特性与可见光线极为相似,有着明显的热辐射。由于它位于可见光中红光的外侧,故而称之为红外线,红外线的波长范围很宽,介于0.75——1000微米之间,在红外线中,波长较短的为近红外线,而远红外线是红外线中波长最长的一段红外线。根据使用者要求的不同,划分的标准不尽相同,在实际应用中,通常将波长在2.5微米以上的红外线称为远红外线。 二、红外线的划分 根据使用的要求不同,红外线的划分很不相同。 把能通过大气的三个波段划分为:近红外波段1~3微米 中红外波段3~5微米 远红外波段8~14微米 根据红外光谱划分为:近红外波段 1~3微米 中红外波段 3~40微米 远红外波段 40~1000微米 医学领域中常常如此划分:近红外区 0.76~3微米 中红外区 3~30微米 远红外区 3~30微米 医用红外线可分为两类:近红外线与远红外线。近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。 三、远红外线的特性 远红外线是电磁波的一种;它是不可见光,但却具备可见光所具有的一切特性,远红外线的主要物理特性如下: 1发射性: 因为远红外是属于光线范围的电磁波,所以它与光线一样不需要任何媒介便可直接传导,这就是远红外的发射性。 2渗透性(渗透力): 虽然远红外是属于光线的电磁波,但在渗透力上与其它可见光不同。远红外具有独特的穿透力,其能量可作用到皮下组织一定深度,再通过血液循环,将能量达到深层组织及器官中。这就是远红外线的渗透性。 3吸收、共振性: 根据基尔霍夫辐射定律:任何良好的辐射体,必然是良好的吸收体。在同一温度下,辐射体本领越大,其吸收本领越强,两者成正比关系,所有含远红外的物体,既可以辐射远红外线,也可以吸收远红外线,辐射与吸收对等。而人体每时每刻也都在发射远红外线,据测定:人体发射的远红线波长在9.6微米左右,所以,本单位经销的红外电热画系列产品中所产生的远红外线的波长在8----14微米,和人体表面峰值正相匹配,形成最佳吸收并可转化为人体的内能,极为密切影响到人类生命的起源、发生和发展,所以我们又称这一波长范围的远红外线

聚酰亚胺科普材料

聚酰亚胺 一、概述 英文名:Polyimide ;简称:PI 。 聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。聚酰亚胺是目前已经工业化的高分子材料中耐热性最高的品种,具有耐高温、耐低温、机械性能优越、耐有机溶剂、耐辐射、介电性能良好、无毒等诸多特性,可以作为薄膜、涂料、塑料、复合材料、胶粘剂、泡沫塑料、纤维、分离膜、液晶取向剂、光刻胶等产品,被称为“解决问题的能手”,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。在国家《新材料产业“十二五”发展规划》中,聚酰亚胺被列为重点发展的先进高分子材料。 一、性能 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达600℃,是迄今聚合物中热稳定性最高的品种之一。 2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。 5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5/℃,南京岳子化工YZPI热塑性聚酰亚胺3×10-5/℃,联苯型可达10-6/℃,个别品种可达10-7/℃。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。 7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω·cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 二、合成工艺 聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,主要包

(完整word版)纤维增强复合材料

纤维增强复合材料由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料,容易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度和模量要低得多,但可经受较大的应变,往往具有粘弹性和弹塑性,是韧性材料。 纤维增强复合材料,由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同,品种很多,如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar 纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。(1新型纺织材料及应用宗亚宁主编中国纺织出版社) 纤维增强复合材料的性能体现在以下方面: 比强度高比刚度大,成型工艺好,材料性能可以设计,抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多,会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料,虽然某些性能很好,但价格昂贵、纤维增强复合材料与传统的金属材料相比,具有较高的强度和模量,较低的密度、纤维增强复合材料还具有独特的高阻尼性能,因而能较好地吸收振动能量,同时减少对相邻结构件的影响。 从本世纪40年代起,复合材料的发展已经历了整整半个世纪。随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭与办公用品等等各部门。复合材料在建筑上可作为结构材料、装饰材料、功能材料以及用来制造各种卫生洁具和水箱等。 纤维增强复合材料由增强材料和基体材料构成,每部分都有各自的作用,影响复合材料的性能。 作为增强材料的纤维是组成复合材料的主要成分。在纤维增强复合材料中占有相当的体积分数,同时是结构复合材料承受载荷的主要部分。增强纤维的类型、数量和取向对纤维增强复合材料的性能十分重要,它主要影响以下的方面:(1)密度;

关于凉感纤维

凉爽纤维 凉爽纤维 凉爽纤维是一种新型的降温散热纤维,凉爽纤维的散热性能是通过对合成纤维改性或织物结构设计、后整理加工等方式产生的,使汗水迅速迁移至织物表面并发散,从而达到吸湿、散热、保持人体皮肤干爽的目的,其中包含采用凉爽纱作为吸湿排汗纱线制成的纤维。 凉爽纤维及其制品主要特征是具有瞬时凉爽和吸汗快干的舒适性。其功能性主要体现在:(1)导热性好,能迅速将身体的热量散出,使穿着者有清凉的感觉;(2)导湿性好,产生的汗液能快速发散、汽化,与皮肤相接触的布料保持干爽,给人舒适的感觉。 1.云母冰凉纤维 2009 年问世的一种新型降温散热纤维。是一种新型的降温散热纤维。云母的吸水性好,因此云母冰凉纤维具有降温的作用,同时纳米云母在纤维或纱线中呈同向性排列,此时云母薄膜层厚度减小,边界散射效应对热传导的影响逐渐显著,使得垂直于薄膜方向的热传导系数降低,但横向的热传导系数却逐步上升,于是热传导在横向上速度变快,因此,云母冰凉纤维的导热性能优异。

云母的化学性能较稳定,其导热性、吸水性、吸附性和绝缘性较好,被广泛运用于装饰化妆、防火建材、电子工业、涂料造纸等方面。 目前市场上有以涤纶或锦纶为载体融入纳米云母,利用其天然的层状结构和“导热+ 含水”双重功效开发的云母冰凉纤维,两者制备方法类似。 云母冰凉纤维是2009年,山东德棉集团开发了精梳棉/云母纤维针织用纱线并投入市场,该纱线条干均匀、强伸性能大、毛羽少、产品外观光泽亮丽、质感柔软。 此外,中山合成纤维公司还开发了云母锦纶冰凉纤维长丝,产品规格为77 dtex /48 f 和44 dtex /34 f,可供针织和机织用。 目前在市场上已经出现一些采用云母冰凉纤维制成的塑身内衣、袜子、T 恤等夏季各类纺织品。如露莎莉和黛安芬推出的云母冰凉纤维塑身美体裤,浪莎袜业推出的云母冰凉纤维包芯丝绢感觉加裆连裤袜等,其市场价格比普通袜子稍高,许多消费者对其评价较高。 从消费市场上看,我国对云母冰凉纤维的开发刚刚起步,其市场空缺较大,若能充分利用其导热吸水性好等优点开发一系列的夏季服装,则其市场前景应较好。另外,从环境保护方面来看,环境污染和气候变化越来越成为人类关心的问题,服装面料追求环保、推崇低碳经济已成为一种不可遏制的趋势。从面料发展趋势上看,生活水平的提高带动了人们寻求科技含量较高且更舒适的面料,云母冰凉纤维及其纺织品的出现可以在炎热的夏季带给人们凉爽的感受,使人们减少对空调的过分依赖,在达到低碳环保要求的同时也使人们获得较好的

聚酰亚胺

展开 1 名 词 定 义 2 介 绍 3 概 述 4 分 类

. 1 缩聚型聚酰亚胺 4 . 2 加聚型聚酰亚胺 4 . 3 子类 5 性能 6 质量指标

合 成 途 径 8 应 用 9 展 望 1名词定义 中文名称: 聚酰亚胺 英文名称: polyimide,PI 定义: 重复单元以酰亚胺基为结构特征基团的一类聚合物。具有耐高温、耐腐蚀和优良的电性能。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 2介绍 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃, 无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

英文名:Polyimide 简称:PI 聚酰亚胺 聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 4分类 4.1缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过聚酰亚胺 程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 4.2加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5 -降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 4.3子类 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型P I,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

远红外功能纤维的性能

远红外功能纤维的性能:主要有三大作用:保温,保健,抗菌. 1释放的远红外线与体内水分子的共振作用能够有效活化水分子,提高细胞渗透性能,从而提高身体的含氧量 2平衡身体的酸碱度:远红外线能净化血液,改善皮肤质素,预防因尿酸过高而引致骨骼关节疼痛。 3改善微循环:活性水分子自由出入细胞之间,以及远红外线的热效应,促使血流速度加快,微丝血管扩张;微丝血管开放愈多,心脏的压力便可以减少。 4促进新陈代谢:微循环系统若得到改善,新陈代谢产生的废物便可迅速排出体外,减轻肝脏及肾脏的负担 5能与水分子及有机物产生共振而具有良好的热效应,因此远红外纺织品具有良好的保暖性。 远红外纤维的加工方法 远红外纤维制备方法分为熔融纺丝法、共混纺丝法和涂层法三大类。 1熔融纺丝法 按远红外辐射材料微粉添加过程和方法,远红外纤维的熔融纺丝法有四种工艺路线。 (1)全造粒法:在聚合过程中添加远红外陶瓷微粉制成远红外材料的切片。远红外微粉与成纤聚合物混合均匀,纺丝稳定性好,但由于再造粒工艺的引入,使生产成本增高。 (2)母粒法:将远红外陶瓷微粉制成高浓度远红外母粒,再与定量成纤聚合物混合后纺丝。该方法设备投资较少,生产成本较低,工艺路线较成熟。 (3)注射法:在纺丝加工过程中,用注射器将远红外粉直接入成纤聚合物熔体中而制成远红外纤维。该方法技术路线简单,但远红外粉与成纤聚合物的均匀分散有困难,且需进行设备改造,添置注射器。 (4)复合纺丝法:以远红外母粒为芯,聚合物为皮,在双螺杆复合纺丝机上制成皮芯型远红外纤维。该方法技术难度高,纤维的可纺性好,但设备复杂,成本高。 2 共混纺丝法 共混纺丝法是将远红外粉体在聚合物聚合过程中加入反应体系,从切片开始就具有远红外发射功能,该方法的优点是生产易于操作,工艺简单。 3 涂层法 涂层法是将远红外吸收剂、分散剂和粘合剂配成涂层液,通过喷涂、浸渍和辊涂等方法,

近些年来新型纤维的特点及应用

近些年来新型纤维的特点及应用 摘要:介绍了近年来几种新型天然纤维和新型合成纤维的主要特点,并对它们的应用情况及研究进展进行了概述。 关键词:新型天然纤维;新型合成纤维;纤维特点;发展概况 1新型天然纤维的特点及其发展概述 竹纤维就是从自然生长的竹子中提取出的一种纤维素纤维,是继棉、麻、毛、丝之后的第五大天然纤维。竹纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,同时又具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。 1.1.1竹纤维的特点 竹纤维中含有一种名为“竹琨”的抗茵物质,具有天然抗菌、防螨、防臭的药物特性,竹沥有广泛的抗微生物功能,竹纤维中的叶绿素和叶绿素铜钠具有较好的除臭作用。经高科技工艺制作的竹纤维织品可有效地抑制细菌生长,清洁人体周围空气,预防传染病。其抑菌功能经反复洗涤后也不会衰减”。在正常温度条件下,竹纤维及其纺织品很稳定,但在一定环境下竹纤维可以分解为水和二氧化碳。 1.1.2竹纤维的应用 竹纤维织物的天然抗茵、抗紫外线作用在经多次反复洗涤、日晒后,仍能保证其原有的特点,对人体皮肤无任何过敏性不良庋应,并对人体皮肤具有保健作用。现已大量应用于口罩、绷带、手术服、护士服等医用防护品和毛巾、袜子、内衣、床上用品等亲肤日用品。另外,竹纤维与其他材料融合的应用也非常广阔。比如,用竹纤维制备的经济墙板综合了竹纤维和水泥两者的良好特性,具有防火、隔音、隔热、耐水、防蛀及安装简便、经济实用等 优点。用竹纤维与玻璃纤维复合建筑材料为主体骨架的模板组成的活动房屋,具有以下几个优点:减轻建筑物的自重:节约能源;可靠性高;经久耐用。此外,它还具有耐腐蚀、不怕风吹雨淋及雨水浸泡、防火性强等特点。用竹纤维和树脂复合制作的竹纤维增强塑料的强度相当高,可以作为许多土建工程的主、次承力构件,耐腐性比钢材好,也可以应用于交通运输、建筑、家具等行业。1.2海藻纤维 从广义上来说,将含有海藻成分的纤维统称为海藻纤维。海藻酸纤维又称碱溶纤维、藻蛋白酸纤维,其原材料来自天然海藻中所提取的海藻多糖。海藻多糖

远红外纤维的分类及应用

远红外纤维的分类及应用 1、远红外纤维的概念 红外线是著名科学家赫歇尔在一次科学实验中发现的,他发现在太阳光的可见光范围以外存在着一种神奇的光线,人的肉眼无法看见这种光线,但它的物理特性与可见光线极为相似,存在明显的热辐射。由于它位于可见光中红光的外侧,故而称之为红外线,红外线的波长范围很宽,介于0.75-1000um,在红外线中,波长较短的为近红外线,波长比较长的为远红外线,根据使用者要求的不同,划分的标准也不尽相同,通常将波长在2.5um以上的红外线称为远红外线。

2、远红外线的产生方法 产生远红外线主要方法选择热交换能力强、能放射特定波长远红外线的材料,然后加工制造成各种形式、各种用途的的产品。远红外线纤维产品所采用的材料能有效放射5.6um-15um的远红外线,占整体波长90%以上。 常用发生远红外线的材料和产品有如下种类: 1、生物炭:例如高温竹炭、备长炭、竹炭粉、竹炭粉纤维以及各种制品等。 2、电气石:例如电气石原矿、电气石颗粒、电气石粉、电气石微粉纺织纤维以及各种制品等。 3、远红外陶瓷:例如利用电气石、神山麦饭石、桂阳石、火山岩等高负离子、远红外材料按照不同比例配各种用途的陶瓷材料,再烧制成各种用途的产品。 4、远红外陶瓷制品:例如远红外陶瓷球、陶瓷装饰建材、陶瓷涂料、陶瓷酒具餐具、陶瓷灯具、陶瓷工艺品、陶瓷微粉纺织纤维、陶瓷能量板、家用电器陶瓷元件等等。

3、远红外纤维的概念 远红外纤维是功能性纤维的一种。它是指在纺纱的过程中,加入了含有远红外功能的粉体(一些具有功能的金属或者非金属氧化物,如氧化铝、氧化锆、氧化镁等,粉碎达到纳米级或者微纳米级粉末,俗称远红外陶瓷粉),混合均匀后,抽丝纺纱而成。该纤维及其制品具有较好的保温性、抑菌性和生活医学保健作用。

聚酰亚胺的结构与性能分析及运用

聚酰亚胺的结构与性能分析及运用 李名敏051002109 摘要:聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认 识。本文介绍了其基本结构与性能及应用。 关键词:聚酰亚胺;工程塑料;聚合物;结构与性能;应用;结晶度;共轭效应; 分子量 1 引言 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI) ,是目前工程塑料中耐热性最好的品种之一。PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将PI的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"[1]。 2 聚酰亚胺的基本结构 聚酰亚胺是指主链上含有酰亚胺环的一类聚合物。均苯型聚酰亚胺是以均苯四甲酸二酐与二胺基二苯醚采用非均相悬浮缩聚法,首先合成出聚酰胺酸(PA酸)再经加热脱水、环化(亚胺化)反应,即得到聚酰亚胺[3]。其亚胺化化学反应式通常为: 在主链重复结构单元中含酰亚胺基团,芳环中的碳和氧以双键相连,芳杂环产生共轭效应,

这些都增强了主键键能和分子间作用力。 3 聚酰亚胺的基本结构与性能的关系 3.1热性能 主链键能大,不易断裂分解。耐低温性好,很低的热膨胀系数。聚酰亚胺大量用于薄膜,突出特点是耐热性好。在250℃下,可连续使用70000h以上。在200℃时拉伸强度达98MPa(1000Kgf/cm2)以上;在300℃经1500h的热老化后,其拉伸强度仍可保持在初始值的2/3以上[5]。分子间距离主要决定于分子的三维堆积密度,分子越规整、对称性越强(越有利于结晶),分子堆积密度就越高,分子间距离就越小。对于同种类的分子,结晶的晶相密度总是高于非晶相密度,这就是结晶有利于耐热性提高的原因。分子主链上引入芳香基团,链刚性增大,使无规热运动链段增大,需要更高的温度链段才能运动(这也是对称的硬链段优先结晶的原因),这就是芳香基团的引入有利于耐热性提高的原因。总之分子间作用力越强、分子间距离越小,分子链刚性越大,所需平衡的无规热运动程度(温度)就越高,耐热性就越好[2]。依此推论,耐热性好的材料,应为分子主链是全芳香(大刚性)、分子间作用力强、分子主链无任何取代基(高对称)的材料,而聚酰亚胺这些条件都符合,所以其具有良好的耐热性。 3.2力学性能 拉伸、弯曲、压缩强度较高;突出的抗蠕变性,尺寸稳定性。聚酰亚胺具有很好的机械性能。作为工程塑料,其弹性模量仅次于碳纤维。纤维增强的PI 塑料的强度[8]、模量能得到进一步提高。聚酰亚胺具有优良的耐磨减摩性,其机械性能随温度波动的变化小,高温下蠕变小,其蠕变速度甚至比铝还小,主要原因是聚酰亚胺分子链中含有大量的芳杂环的共轭效应。 3.3电性能 优良的电绝缘性能。偶极损耗小,耐电弧晕性突出,介电强度高,随频率变化小[7]。聚酰亚胺的大分子中虽然含有相当数量的极性基(如羰基和醚基),但其电绝缘性优良,原因是羰基纳入五元环,醚键与相邻基团形成共扼体系。使其极性受到限制,同时由于大分子的刚性和较高的玻璃化温度,因此在较宽的温度范围内偶极损耗小,电性能十分优良。同时,聚酰哑胺还具有优异的耐电晕性能。这些性能在宽广的温度范围和频率范围内仍能保持较高的水平。 3.4耐化学药品性

醋酸纤维的制备工艺、结构性能及发展趋势

醋酸纤维的制备工艺、结构性能及发展前景 天津工业大学 纺科1201 游兵 1210110115 摘要:介绍了醋酸纤维的制备工艺、结构、性能以及研究未来的发展趋势,并对醋酸纤维的国内外生产情况和市场需求,应用前景做了详细分析。 关键词:醋酸纤维、制备工艺、结构性能、发展趋势 一、概述 醋酸纤维,化工产品,英文名cellulose acetate,简称CA。又称醋酸纤维素、乙酸纤维或乙酸纤维素纤维。醋酸纤维分为二醋酯纤维和三醋酯纤维,是人造纤维的一种。是用纤维素为原料,经化学成法转化成醋酸纤维素酯制成的化学纤维。首次制备于1865年,是纤维素的乙酸酯。纤维素以醋酸或醋酐在催化剂作用下进行酯化,而得到的一种热塑性树脂,纤维素分子中羟基用醋酸酯化后得到的一种化学改性的天然高聚物。其性能取决于乙酰化程度。 二、醋酸纤维的制备工艺 1. 工艺分类 醋酸纤维生产有干法纺丝、二步湿法和一步湿法三种纺丝工艺路线, 因湿法纺丝缺点较多, 目前国外主要醋酸纤维生产企业都采用干法纺丝。 2.主要流程 活化后的纤维素进人硫酸、醋酸配组成的乙酰化剂中进行乙酰化, 在对乙酞化后的三醋酸纤维素部分皂化, 以改善纤维素在丙酮溶液中的溶解性, 同时使纤维素分子量有一定程度的下降, 经皂化后的混合液, 加人一定量的沉淀剂使二醋酸纤维素酯沉淀, 再蒸去溶剂使二醋酸纤维素酯析出, 经洗涤去除残留的醋酸, 再经稳定化处理除去残留的硫酸, 最后经压榨、干燥、粉碎制得二醋酸纤维素酯

3.纺丝及后处理 纺丝原液通过每个纺丝位的计量泵、烛型滤器、调温器, 从喷丝帽中喷出, 借助纺丝甫道中的热空气加热, 使原液中的丙酮蒸发出来, 其自身则固化成形。固化的丝条由纺丝甫道的底部出来, 经集束后卷绕在丝筒上, 经加捻后处理得到成品醋醋长丝。 经集束后投人对流的水中, 再经切断、皂洗、压榨、干燥, 即得到醋醋短丝。 三、醋酸纤维的结构性能与用途 1.醋酸纤维素的结构 1.1醋酸纤维素分子式:(C6H7O2)(OOCCH3)3n ●式中x=1.8(醋酸含量为46%)为一醋酸纤维素 ●式中x=2.4(醋酸含量为54.8%)为二醋酸纤维素 ●式中x=3.0(醋酸含量为62.5%)为三醋酸纤维素 1.2醋酸纤维的纵向和截面形态 1.2.1纵向纤维表面形态光滑,较为均一,有明显的沟槽;由其截面形态可看出,纤维无皮芯结构,呈苜蓿叶形,周边较为光滑,少有浅的锯齿。 1.2.2在醋酸纤维的分子结构中,纤维素葡萄糖环上的羟基被乙酰基取代,

棉纤维的性能及其应用

棉纤维的性能及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

课文翻译: 吸湿性和良好的吸湿排汗性能使棉纤维的一个更舒适的一个比较高的水平。因为在纤维素的羟基基团,棉花对水有很强的吸引力。当水进入纤维棉,膨胀,其截面变得更圆。水分和膨胀时湿让棉花吸收水的重量约四分之一的高亲和力的能力。这意味着,在炎热的天气里,身体的汗会吸收棉织品,沿运纱布的外表面和蒸发到空气中。因此,身体会帮助维持其温度。 不幸的是,棉花的亲水性使得它容易受到水渍。如在咖啡或葡萄汁的水溶性色素会渗入纤维随着水;当水分蒸发,着色剂是困在纤维。也许主要的缺点,棉织品是他们的倾向,皱纹和去除皱纹的困难。棉纤维的刚度降低纱线抗起皱能力。当纤维弯曲的一种新的配置,氢债券持有的纤维素链在一起破裂和分子滑动以减少纤维中的应力。在新的位置的氢键的改革,所以当破碎力去除纤维保持在新的位置。这是氢键,有助于保持皱纹的断裂和改革,使棉织品要熨。 棉花是具有良好的耐磨性和尺寸稳定性好,中等强度的纤维。这是抵抗酸,碱和有机溶剂,通常提供给消费者。但由于它是一种天然物质,它是受攻击的昆虫,霉菌和真菌。最突出的是棉花霉烂的倾向,如果允许存在潮湿。 棉花抗太阳光和热,虽然直接暴露于恒定的强烈的阳光会引起黄的最终降解纤维。变黄时也可能出现在气干燥器干燥棉织品。颜色的变化是一种化学反应的纤维素和氧或氮氧化物之间在热空气中干燥的结果。棉花将保留其白度较长时,线干或在电干燥器中干燥。 主要感兴趣的是事实,棉纱时干时湿比。此属性的宏观和微观结构特征的纤维的结果。当水被吸收,纤维膨胀,其截面变得更圆。通常这种大量的外来物质的吸收会导致内部应力较高,导致纤维弱化。然而,棉花,水的吸收导致的内部应力减少。因此,减少内部应力来克服,肿胀的纤维变得更强。同时,在纱线溶胀纤维按对彼此更强烈。的内部摩擦增强纱线。此外,所吸收的水作为一个内部润滑剂,赋予纤维较高水平的灵活性。这说明棉花衣服更容易熨潮湿时。纯棉织物易收缩不利于洗涤。 也许比任何其他纤维,棉满足服装,家居家具,休闲的要求,和工业用途。它提供了强大的,面料轻薄,柔软,易干燥,易清洗。在服装,棉提供服装,舒适,容易干燥,在明亮的,持久的色彩,容易照顾。主要的缺点是一种棉纱和棉布收缩起皱的倾向。收缩可以由应用程序的控制防缩整理。免烫性能可以通过化学处理或由棉纤维混纺传授更多的抗皱,如涤纶。 在居家摆设,耐用是棉花,织物一般服务。虽然他们可能缺乏来自其他纤维材料的形式出现,棉织品提供一个舒适,温馨的环境。棉织物一直是几十年来的床单和毛巾的支柱,因为他们是舒适,耐用,和吸湿剂。涤/棉混纺织物提供没有铁的床单和枕套,保持一个清晰的现代消费,新鲜的感觉。 用于娱乐用途,棉花已被用于帐篷和野营装备,船帆,运动鞋和运动服。棉花是特别适合的帐篷。一个帐篷织物必须能够“呼吸”,让居住者不被自己的二氧化碳。此外,与外界空气交换减少湿度在帐篷和使它变得闷。机织物棉可以打开足够舒适,提供良好的透气性。帐篷也流下的水,当被雨水打湿,棉纱膨胀,降低纱线和抗水渗透之间的间隙。今天,然而,沉重的帆布齿轮被取代的轻质尼龙检测设备。

醋酸纤维长丝市场分析..

醋酸纤维长丝 以棉浆和木浆为原料,提取其中的纤维素,漂白后的纤维素与酸和催化剂混合后生产三乙酸纤维素,再经过稀释和沉淀生成固体白色薄片称醋酸纤维素。薄片溶解于丙酮,形成粘稠溶液,溶液通过喷丝头被挤压出。液体流过养护室,暖气使丙酮蒸发,形成固体醋酸长丝,拉在一起成为连续的长丝纱线。 从生产过程来说,相对于需要大量酸、碱液和会产生含重金属废液的粘胶纤维和铜氨纤维,醋酸纤维在对环境的友好性上更胜一筹。通过对丙酮等辅料的回收利用,也在成本管理上具备一定的优势。同时,与粘胶纤维、铜氨纤维相同的原料使得醋酸纤维也具有可降解的环保属性,增加了与真丝的相似度。 目前全球醋酸纤维产量基本保持在 74 万吨左右,其中烟用丝束总产量增加至约 70 万吨,纺织用醋酸纤维全球产能只余约4 万吨。后者的生产企业目前主要集中在美国伊士曼、日本三菱等企业,其中伊士曼占比在 60%以上,是全球最大的醋酸长丝制造商。 可以发现虽然醋酸纤维的整体产能规模仍在,但主要是应用更为简单的烟用丝束的占比有了极大的提高,纺织用纤维长丝的产量仅存 1/5,成为了名副其实的高端稀缺纺织原料,以至于在聚酯纤维盛行多年的现在,尤其是中国,已经少有纺织业人士了解,或者听说过这种纤维。目前醋酸纤维仅在欧美和日韩有相对稳定的市场应用。

虽然醋酸纤维的整体产能规模仍在,但主要是应用更为简单的烟用丝束的占比有了极大的提高,纺织用纤维长丝的产量仅存 1/5,成为了名副其实的高端稀缺纺织原料,以至于在聚酯纤维盛行多年的现在,尤其是中国,已经少有纺织业人士了解,或者听说过这种纤维。目前醋酸纤维仅在欧美和日韩有相对稳定的市场应用。 醋酸长丝的性能 首先,醋酸长丝的干强度几乎是所有纤维中最低的,因此其织物上容易出现断纹,影响整体的美观度,这对于织造、印染等工序的技术难度较大;另一方面,其织物也更不耐磨。同样,其湿强度的数据也并不优越,而据了解,目前已有生产企业在着手改善这方面的指标,计划逐步将干强度提高至 1.5-1.6,甚至是 2.0 或更高,同时提高湿强度数据。 第二,醋酸长丝的撕裂伸长率和湿态伸长率相对偏大,这意味着其弹性,或者说韧性较好,在这方面更为接近蚕丝,其织物具有柔软的手感。 第三,醋酸长丝的回潮率介于粘胶长丝和涤纶之间。通常粘胶被称为“会呼吸的纤维”就是因为其回潮率保证了良好的吸湿透气性能,涤纶面料则透气性差但能快干,而醋酸长丝的面料则既保持了良好的吸水吸湿性能和抗静电性,又保留了洗水后快速脱去的特点,是一个独特的优势。 第四,与真丝相近的密度让醋酸纤维面料具有神似真丝织物的

四组份凉爽纱线的开发实践

多组份凉爽纱线的开发实践 赵瑞芝汪吉艮 (江苏大生集团有限公司) 摘要:探讨冰氧吧纤维/丝麻纤维/粘胶/精梳棉多组份凉爽纱线的开发。根据夏季针织服装面料的组合功能要求,合理选配原料,研究设定各工序纺纱工艺参数,使条干、毛羽等纱线质量指标和面料性能满足后道高品质产品的要求。 关键词:冰氧吧纤维、丝麻纤维、多组份、凉爽、透气、条干、毛羽 目前,自然舒适、功能性和生态性兼具的针织面料产品越来越受到消费者的青睐。根据客户对夏季针织面料的开发要求,面料必须具有凉爽、透气、抗皱、抗起毛起球、易于打理的特点,并且价格贴合大众消费,我们设计开发了一系列多组份凉爽纱线。本文以冰氧吧纤维30/丝麻纤维30/粘胶25/精梳棉15混纺60支针织用纱为例,简要介绍该产品生产过程中的技术难点及工艺措施。 基金项目: 作者简介:赵瑞芝(1968-),女,高级工程师,南通,226002 1 原料选配 由于客户要求成品面料不经后整理工艺就达到多种性能组合的效果,因此我们必须通过纱线本身的设计,即采用多组份纤维混纺去实现不同性能的叠加互补,来满足客户需求。我们选用25%粘胶和15%精梳棉为基础原料,使面料具有良好的舒适性和吸湿透气性;加入30%冰氧吧纤维使面料获得凉爽的触感;加入30%丝麻纤维,使面料凉爽透气、亲肤护肤。纤维素纤维与改性聚酯的合理搭配,使面料既柔软悬垂,又具有一定的骨架感,并且抗皱、易打理。四种纤维的组合不仅满足客户对面料特性的需求,而且价格比较适中,性价比较高。 冰氧吧纤维是一种凉爽保健型改性聚酯,是运用萃取和纳米技术,使玉石和其他矿物质材料达到亚纳米级水平,然后与具有蜂窝状微孔结构的聚酯改性切片熔融纺丝而制成的。用玉石纤维制成的织物,人体感觉有较好的凉爽感。特别适合在炎热的夏天或运动的时候穿着使用。实验证明,在32℃以上温度时,织物相对能降温1.2~2℃,太阳光长时间照射会产生降低体表温度5~6℃的凉感温差。由于玉石中含有丰富的对人体有益的矿物质和微量元素,对人体还具有一定的保健功效。 丝麻纤维是一种纤维素纤维,通过延缓成型技术赋予纤维空腔结构,注入麻浆粕,改变了普通粘胶的柔软特点,提升了纤维的身骨感,可使面料呈现麻类面料的挺爽风格。丝蛋白的嵌入和圆边“花瓣”截面的形成,赋予面料丝滑手感和真丝般的光泽,纤维富含丝氨酸、胱氨酸等17种氨基酸,具有良好的亲肤和护肤作用。纤维兼具真丝和麻的优点,具有良好的吸湿导湿性和穿着舒适性。 2 原料质量技术指标分析

远红外纤维

远红外纤维在针织产品的应用 摘要 随着社会的不断地发展,针织工业在稳定的发展,生产技术更趋完善,水平进一步提高,特别是高新技术获得了广泛应用,应用领域更为宽广。因此,针织产品在世界范围内日益得到人们的青睐。 关键词:远红外纤维针织产品智能性材料 针织产品的发展趋势: 一、新的原料品种不断涌现 二、技术含量高的服饰产品逐渐增多 三、向装饰、产业用品延伸发展 随着经济全球化、市场国际化,以及服装材料技术的开发与进步,人们的物质生活水平越来越高,对服装材料的性能要求也越来越高。人们服装的特殊功能越来越重视。如:气候适应功能、卫生保健功能、防护功能、专业防护功能等。为了进一步的阐述功能性面料在针织产品的应用,下面针对远红外纤维的具体特性及其在针织产品的应用进行畅谈。 远红外功能纤维的性能:主要有三大作用:保温,保健,抗菌. 1、释放的远红外线与体内水分子的共振作用能够有效活化水分子,提高细胞渗透性能,从而提高身体的含氧量 2、平衡身体的酸碱度:远红外线能净化血液,改善皮肤质素,预防因尿酸过高而引致骨骼关节疼痛。 3、改善微循环:活性水分子自由出入细胞之间,以及远红外线的热效应,促使血流速度加快,微丝血管扩张;微丝血管开放愈多,心脏的压力便可以减少。 4、促进新陈代谢:微循环系统若得到改善,新陈代谢产生的废物便可迅速排出体外,减轻肝脏及肾脏的负担 5、能与水分子及有机物产生共振而具有良好的热效应,因此远红外纺织品具有良好的保暖性。 远红外线材料的来源相对来说还是比较广泛的。常用发生远红外线的材料和产品有如下种类: 1、生物炭:例如高温竹炭、备长炭、竹炭粉、竹炭粉纤维以及各种制品等。 2、碳纤维制品:例如用来取暖的碳纤维地暖片、碳纤维发热电缆、碳纤维暖气片等,通电后的碳纤维中的碳分子做“布朗运动”,在产生热量的同时,会产生85%左右的远红外线来辐射热量。 3、电气石:例如电气石原矿、电气石颗粒、电气石粉、电气石微粉纺

聚酰亚胺薄膜的改性分类及其在电子行业中的应用

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数,介电损耗仅~。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。

关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言 聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随着科技的日新月异与工业技术的蓬勃发展,聚酰亚胺薄膜(Polyimide Film,简称PI)除能符合各类产品的基本物性要求,更具备高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,可符合轻、薄、短、小之设计要求,是一种具有竞争优势的耐高温的绝缘材料。经过四十多年的发展,已经成为电子、电机两大领域上游重要原料之一,广泛应用于软板、半导体封装、光伏(太阳能)能源、液晶显示器等电子领域,在电机领域应用于航天军工、机械、汽车等各产业绝缘材料[2]。本论文通过介绍聚酰亚胺膜的各种改性方法及研究进展,来进一步认识其在电子行业中的应用。 2.对聚酰亚胺的不同改性尝试 根据Clausius-Mosotti方程,材料的介电常数与其摩尔极化率和摩尔体积密切相关[3]。如果分子的对称性好,在外加电场中不容易被极化,材料就具有较低的介电常数,如有机高分子;若分子变形能力强容易被极化,材料就具有较高的介电常数,如金属离子。因此,要得到低介电常数PI 绝缘材料,一种行之有效的方法就是引入原子序数小的元素,如氟元素,并减少离子键的数目。降低PI 介电常数的方法主要包括引入氟原子降低PI 的极化率、引入硅氧烷增大PI 分子的自由体积、引入孔洞降低PI 材料的密度等。事实上,这些方法常常被结合起来使用以达到更好的效果[4]。 引入氟原子降低PI 的极化率 由于C—F键的偶极极化能力较小,且能够增加分子间的空问位阻,因而引入C—F 键可以有效降低介电常数,使得含氟聚酰亚胺(Fluorinated Poly.imide,FPI)在微电子领域的应用相当广泛。人们相继开发出了一系列含有全氟脂肪链、含三氟甲基和六氟丙基、芳氢氟代、含氟侧基以及全氟的聚酰亚胺。其中,以通过在单体化学结构中引入三氟甲基提高含氟量的方法最为常见,这是因为庞大的三氟甲基的引入既能够阻止高分

相关主题