搜档网
当前位置:搜档网 › 无线传感网络实验报告

无线传感网络实验报告

无线传感网络实验报告

无线传感网络实验报告

引言:

无线传感网络(Wireless Sensor Network,WSN)是一种由大量分布式的传感

器节点组成的网络系统,用于收集、处理和传输环境信息。WSN具有低成本、

低功耗、自组织等特点,广泛应用于环境监测、智能交通、农业等领域。本实

验旨在通过搭建一个简单的无线传感网络,探索其工作原理和性能特点。

一、实验环境搭建

1. 硬件准备:选用多个传感器节点和一个基站节点。传感器节点包括传感器、

微处理器、无线通信模块等;基站节点负责接收和处理传感器节点发送的数据。

2. 软件准备:选择适合的操作系统和开发工具,例如TinyOS、Contiki等。编写传感器节点和基站节点的程序代码。

二、传感器节点部署

1. 部署传感器节点:根据实验需求,在待监测区域内合理布置传感器节点。节

点之间的距离和布置密度需根据具体应用场景进行调整。

2. 传感器节点初始化:节点启动后,进行初始化工作,包括自身身份注册、与

周围节点建立通信连接等。

三、无线传感网络通信

1. 数据采集:传感器节点根据预设的采样频率,采集环境信息,并将数据存储

到本地缓存中。

2. 数据传输:传感器节点通过无线通信模块将采集到的数据传输给基站节点。

传输方式可以是单跳或多跳,根据节点之间的距离和网络拓扑结构进行选择。

3. 数据处理:基站节点接收到传感器节点发送的数据后,进行数据处理和分析。可以根据具体需求,对数据进行滤波、聚合等操作,提取有用信息。

四、无线传感网络能耗管理

1. 能耗模型:根据传感器节点的工作状态和通信负载,建立能耗模型,评估节

点的能耗情况。

2. 能耗优化:通过调整传感器节点的工作模式、通信协议等方式,降低节点的

能耗。例如,采用睡眠唤醒机制、自适应调整通信距离等。

五、实验结果与分析

1. 数据传输性能:通过实验测试,评估无线传感网络的数据传输性能,包括数

据传输延迟、传输成功率等指标。

2. 能耗分析:根据实验结果,分析传感器节点的能耗情况,探讨能耗优化策略

的有效性和可行性。

3. 网络拓扑结构:观察和分析传感器节点之间的网络拓扑结构,了解节点之间

的通信关系和数据流动路径。

六、实验总结与展望

1. 实验总结:总结实验过程中遇到的问题和解决方案,总结实验结果和分析,

对实验的有效性和可行性进行评价。

2. 实验展望:展望无线传感网络在未来的发展方向,探讨更多的应用场景和挑战,提出进一步的研究方向和改进措施。

结论:

通过本次实验,我们对无线传感网络的工作原理和性能特点有了更深入的了解。无线传感网络具有广泛的应用前景,但在实际应用中还面临许多挑战,如能耗

管理、安全性等。未来的研究和改进将进一步推动无线传感网络的发展,为各个领域提供更好的环境监测和数据采集解决方案。

无线传感网实验报告

C ent ral SouthUniversity 无线传感器网络 实验报告 学院: 班级: 学号: 姓名: 时间: 指导老师: 第一章基础实验 1了解环境 1.1实验目的 安装 IAR开发环境。 CC2530 工程文件创建及配置。 源代码创建,编译及下载。 1.2 实验设备及工具 硬件:ZX2530A 型底板及CC2530 节点板一块,USB 接口仿真

器,PC 机 软件:PC 机操作系统 WinXP,IAR集成开发环境,TI 公司的烧写软件。 1.3实验内容 1、安装IAR 集成开发环境 IAR 集成开发环境安装文件所在光盘目录:物联网光盘\工具\C D-EW8051-7601 2、ZIBGEE 硬件连接 安装完IAR 和 Smartrf Flash Programmer 之后,按照图所示方式连接各种硬件,将仿真器的20 芯 JTAG口连接到ZX2530A 型 CC2530 节点板上,USB 连接到PC 机上,RS-232串口线一端连接ZX2530A 型 CC2530节点板,另一端连接 P C机串口。 3、创建并配置 CC2530 的工程文件 IAR是一个强大的嵌入式开发平台,支持非常多种类的芯片。IAR 中的每一个 Project,都可以拥有自己的配置,具体包括Device 类型、堆/栈、Linker、Debugger 等。 (1)新建Workspace 和Project 首先新建文件夹ledtest。打开 IAR,选择主菜单File ->New -> Workspace 建立新的工作区域。 选择Project ->Create New Project -> Empty Pro

无线传感实验报告

无线传感实验报告 无线传感实验报告 引言 无线传感技术是一种基于无线通信的传感器网络技术,它可以实时地感知、采 集和传输环境中的各种信息。本实验旨在通过搭建一个简单的无线传感网络, 探索其在实际应用中的潜力和限制。 实验目的 1.了解无线传感技术的基本原理和应用领域。 2.学习搭建无线传感网络的基本步骤和方法。 3.研究无线传感网络在环境监测、智能家居等方面的实际应用。 实验步骤 1.硬件准备:准备一台主控节点和多个从属节点,主控节点负责接收和处理从 属节点发送的数据。 2.网络搭建:通过无线通信模块将主控节点和从属节点连接起来,形成一个无 线传感网络。 3.传感器连接:将各个从属节点上的传感器与主控节点相连接,实现数据的采 集和传输。 4.数据采集:设置从属节点的采样频率和采样范围,开始采集环境中的各种数据。 5.数据传输:从属节点将采集到的数据通过无线通信模块发送给主控节点。 6.数据处理:主控节点接收到数据后,进行数据处理和分析,得出有用的信息。实验结果

通过本实验,我们成功搭建了一个简单的无线传感网络,并实现了环境数据的 采集和传输。在实际应用中,无线传感技术可以广泛应用于环境监测、智能家居、农业等领域。例如,在环境监测方面,我们可以通过无线传感网络实时监 测空气质量、温湿度等参数,并及时采取相应措施保障人们的健康。在智能家 居方面,无线传感技术可以实现家庭设备的自动控制和远程监控,提高生活的 便利性和舒适度。在农业方面,无线传感技术可以监测土壤湿度、光照强度等 参数,帮助农民科学种植,提高农作物的产量和质量。 实验总结 通过本次实验,我们深入了解了无线传感技术的原理和应用。无线传感网络可 以实现分布式的数据采集和传输,具有灵活性和可扩展性。然而,在实际应用中,我们也发现了一些问题和挑战。首先,无线传感网络的能耗问题仍然存在,如何延长节点的电池寿命是一个需要解决的关键问题。其次,无线传感网络的 安全性也需要重视,如何保护数据的隐私和防止网络攻击是一个亟待解决的问题。最后,无线传感技术的成本也是一个限制因素,如何降低节点的制造成本 和维护成本是一个需要思考的问题。 展望未来 随着科技的发展和应用的推广,无线传感技术将会在更多领域发挥重要作用。 未来,我们可以进一步研究和改进无线传感网络的性能和能力,提高其在环境 监测、智能交通、医疗健康等方面的应用效果。同时,我们也需要加强对无线 传感技术的标准化和规范化,以便更好地推动其产业化和商业化进程。 结语 通过本次实验,我们对无线传感技术有了更深入的了解,并认识到其在实际应

无线传感网络实验报告

无线传感网络实验报告 无线传感网络实验报告 引言: 无线传感网络(Wireless Sensor Network,WSN)是一种由大量分布式的传感 器节点组成的网络系统,用于收集、处理和传输环境信息。WSN具有低成本、 低功耗、自组织等特点,广泛应用于环境监测、智能交通、农业等领域。本实 验旨在通过搭建一个简单的无线传感网络,探索其工作原理和性能特点。 一、实验环境搭建 1. 硬件准备:选用多个传感器节点和一个基站节点。传感器节点包括传感器、 微处理器、无线通信模块等;基站节点负责接收和处理传感器节点发送的数据。 2. 软件准备:选择适合的操作系统和开发工具,例如TinyOS、Contiki等。编写传感器节点和基站节点的程序代码。 二、传感器节点部署 1. 部署传感器节点:根据实验需求,在待监测区域内合理布置传感器节点。节 点之间的距离和布置密度需根据具体应用场景进行调整。 2. 传感器节点初始化:节点启动后,进行初始化工作,包括自身身份注册、与 周围节点建立通信连接等。 三、无线传感网络通信 1. 数据采集:传感器节点根据预设的采样频率,采集环境信息,并将数据存储 到本地缓存中。 2. 数据传输:传感器节点通过无线通信模块将采集到的数据传输给基站节点。 传输方式可以是单跳或多跳,根据节点之间的距离和网络拓扑结构进行选择。

3. 数据处理:基站节点接收到传感器节点发送的数据后,进行数据处理和分析。可以根据具体需求,对数据进行滤波、聚合等操作,提取有用信息。 四、无线传感网络能耗管理 1. 能耗模型:根据传感器节点的工作状态和通信负载,建立能耗模型,评估节 点的能耗情况。 2. 能耗优化:通过调整传感器节点的工作模式、通信协议等方式,降低节点的 能耗。例如,采用睡眠唤醒机制、自适应调整通信距离等。 五、实验结果与分析 1. 数据传输性能:通过实验测试,评估无线传感网络的数据传输性能,包括数 据传输延迟、传输成功率等指标。 2. 能耗分析:根据实验结果,分析传感器节点的能耗情况,探讨能耗优化策略 的有效性和可行性。 3. 网络拓扑结构:观察和分析传感器节点之间的网络拓扑结构,了解节点之间 的通信关系和数据流动路径。 六、实验总结与展望 1. 实验总结:总结实验过程中遇到的问题和解决方案,总结实验结果和分析, 对实验的有效性和可行性进行评价。 2. 实验展望:展望无线传感网络在未来的发展方向,探讨更多的应用场景和挑战,提出进一步的研究方向和改进措施。 结论: 通过本次实验,我们对无线传感网络的工作原理和性能特点有了更深入的了解。无线传感网络具有广泛的应用前景,但在实际应用中还面临许多挑战,如能耗

无线传感网实验报告

无线传感网实验报告 一、实验目的 本实验的主要目的是了解无线传感网(Wireless Sensor Network,WSN)的基本原理和特点,以及进行一些简单的WSN实验,掌握其基本应用方法。 二、实验器材 1.电脑 2. 无线传感器节点(如Arduino) 3. 无线通信模块(如XBee) 4.传感器(如温度传感器、光照传感器等) 三、实验步骤和内容 1.了解无线传感网的基本概念和特点。 2.搭建无线传感网实验平台。将无线传感器节点和无线通信模块进行连接。 3.编程控制无线传感器节点,收集传感器数据并通过无线通信模块进行传输。 4.在电脑上设置接收数据的接口,并接收传感器数据。 5.对传感器数据进行分析和处理。 四、实验结果和讨论

在实验中,我们成功搭建了一个简单的无线传感网实验平台,并通过 无线通信模块进行数据传输。通过编程控制,我们能够收集到传感器节点 上的温度数据,并通过无线通信模块将数据传输到电脑上进行接收。 在实验过程中,我们发现无线传感网的优点是具有灵活性和扩展性。 通过无线通信模块,传感器节点之间可以进行无线通信,灵活地传输数据。同时,我们还可以通过添加更多的传感器节点来扩展整个无线传感网的功 能和覆盖范围。 然而,无线传感网也存在一些限制和挑战。首先,无线通信模块的传 输距离和传输速率有限,可能会受到环境因素的影响。其次,无线传感器 节点的能耗问题需要考虑,因为它们通常是使用电池供电的,而且在实际 应用中通常需要长时间连续工作。 五、结论 通过本次实验,我们对无线传感网的基本原理和特点有了一定的了解,并掌握了一些简单的无线传感网应用方法。我们成功搭建了一个实验平台,并通过无线通信模块和传感器节点进行数据传输和接收。实验结果表明, 无线传感网具有一定的灵活性和扩展性,但同时也面临着一些挑战。对于 以后的无线传感网应用和研究,我们需要进一步探索和解决这些挑战。

第四次无线传感器网络实验.doc

南昌航空大学实验报告 二O 一六年四月20 日 课程名称:无线传感器网络实验名称:CC2530 数据采集及AD 转换实验班级:姓名: 指导教师评定:签名: 一、实验目的 1. 通过实验掌握CC2530 芯片GPIO和AD转换寄存器的配置方法 2. 掌握AD 转换函数程序的编程方法 3. 掌握光敏传感器的操作使用 4. 掌握光照传感器采集程序的编程方法 二、实验内容 1. 在IAR 集成开发环境中编写光照传感器采集程序,设计实验检测光照的 强度,通过AD转换将光照强度通过串口调试助手显示出来。 三、基础知识 1. 光照传感器介绍 采用GL7516 光敏电阻进行光照强度的检测。光敏电阻式一种半导体材料制成的电阻,其电导率随着光照度的变化而变化。利用这一特性可以制成不同形状和受光面积的光敏电阻。GL7516 就是其中的一种,光越强阻值越大。 光敏电阻工作原理简介: 本实验采用光敏电阻来采集光照度信息。它的工作原理是基于光电效应。 在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻。为了增加灵敏度,两电极常做成梳状。构成光敏电阻的材料有金属的硫化物、硒化物、碲化物等半导体。半导体的导电能力取决于半导体导带内载流子数目的多少。当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电

阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子‐空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小。 2. 光照传感器的接口电路 光照传感器的接口电路如下图所示。通过CC2530 的AD 口,采集光照传感器和固定电阻分压后的电压值,从而感知光照传感器随光强变化的情况。 3.AD 转换寄存器 CC2530的ADC支持14位模拟数字转换,转换后的有效数字位高达12位。ADC 包括一个8路独立可配置通道的模拟多路转换器和一个参考电压发生器。CC2530的ADC转换结果可以通过DMA方式写入存储器,也可直接读取ADC寄存器获取。CC2530的ADC具有多种不同的运行模式。 CC2530的P0口可作为ADC输入,其中AIN0~AIN7分别对应P0.0~P0.7。ADC 输入可配置成单端或差动输入,如选择差动输入,则对应的输入分别为AIN0~AIN1、AIN2~AIN3、AIN4~AIN5、AIN6~AIN7,需要注意引脚电压不能为负电压,也不能大于VDD。在差动输入中,每个差动输入的转换模式是不一样的。除了AIN0~AIN7作为ADC输入之外,片内温度传感器也可以作为测量温度的ADC输入,AVDD5/3电压同样可以作为一个ADC输入。AVDD5/3作为ADC输入主要用于电池测量,需要注意的是不能以待测的电池电压作为参考电压。 CC2530ADC有两种转换方式,第一种是连续转换,此时需要配置ADCCON1 和ADCCON2 寄存器,寄存器APCFG的设置将会影响连续序列转换的通道数,CC2530的8路ADC输入不一定要求全部设置为模拟输入。如果只用到了序列转换中的部分通道,可以屏蔽APCFG寄存器中其他通道的相应模拟输入位,此时该通道在转换时将被跳过;第二种是单次转换,此时只需要配置寄存器ADCCON3 即可。 (具体寄存器配置见数据手册)

zigBee实验报告

ZIgBee学习心得 实验报告 项目名称基于无线传感器网络的采温实验专业班级软件1105 学号 姓名

目录 《计算机网络》................................................................................................错误!未定义书签。实验报告. (1) 一、实验目的 (3) 二、实验内容和报告简介 (3) 三、实验相关设备环境 (3) 四、实验内容 (7) .内容简介 (7) 4.2. 无线传感器网络采温系统实验 (7) 实验简介 (7) 4.2.2 工程结构简介 (8) 4.2.3 设备功能及网络拓扑结构介绍 (10) 4.2.4 main()函数和OSAL (10) 4.2.5 设备相关功能主要函数介绍 (14) 4.3 ZigBee协议和ZStack分析 (26) 4.3.1 ZigBee协议和ZStack简介 (27) 4.3.2 OSAL原理分析和实现 (28) IEEE 802.15.规定的PHY层 (35) IEEE 802.15.规定的MAC层 (37) 4.3.5 ZigBee2007的网络层。 (40) 4.3.6 ZigBee2007的应用层 (45) 五、实验结果 (46) 六、实验结论 (47) 七、实验小结 (47) 7.1 短距离无线通信网络的现状和发展 (47) 7.2 ZigBee通信技术的应用 (48) 7.3 学习ZigBee开发的心得体会 (48) 7.4 下一步可能的学习计划 (49)

实验《基于无线传感器网络的采温实验》实验学时:1 实验地点:201 实验日期: 一、实验目的 1. 设计并实现一套无线传感器网络的采温系统。 2. 较为详细的分析ZigBee协议栈。 二、实验内容和报告简介 完成采集器、传感器设备的设计和实现。 对ZigBee2007协议和Zstack进行较为详细的分析。 三、实验相关设备环境 介绍了开发板、CC2530和协议栈 四、实验内容 第一部分详细描述了开发的工作,附上了关键代码和注释。 第二部分分析了ZIgBee协议操作系统,描述了其运行机制;以及PHY 层、MAC层、网络层、应用层。在网络层描述了其网络拓扑结构,并针对Ad-Hoc 路由算法提出了一个我自己的一个想法。 五、实验结果 通过照片展示了实验效果。 六、实验结论 说明了温度数据偏差的原因。 六、实验小结 谈了些无线通信的现状;学习的心得,不足和未来的能力方向。 三、实验相关设备环境 1. 主要的硬件环境 ZigBee开发板(两个)本实验利用的开发板是在淘宝上买的。应该是一个小店参考TI公司产品生产的。 外形如图1所示:

无线传感器网络实验报告

无线传感器网络实验报告 无线传感器网络实验报告 引言: 无线传感器网络(Wireless Sensor Networks,简称WSN)是一种由大量分布式无线传感器节点组成的网络系统。这些节点能够感知环境中的各种物理量,并 将所感知到的信息通过无线通信传输给基站或其他节点。WSN广泛应用于农业、环境监测、智能交通等领域。本实验旨在通过搭建一个简单的无线传感器网络 系统,了解其工作原理和性能特点。 一、实验背景 无线传感器网络是现代信息技术的重要组成部分,其应用领域广泛且前景十分 广阔。通过实验,我们可以深入了解WSN的工作原理和应用场景,为今后的 研究和开发提供基础。 二、实验目的 1. 掌握无线传感器网络的基本概念和原理; 2. 理解无线传感器网络的组网方式和通信协议; 3. 了解无线传感器网络的性能特点和应用领域。 三、实验设备 1. 无线传感器节点:本实验使用了10个无线传感器节点,每个节点都具备感知和通信功能; 2. 基站:作为无线传感器网络的中心节点,负责接收并处理来自传感器节点的 数据; 3. 电脑:用于控制和监控整个无线传感器网络系统。

四、实验步骤 1. 搭建无线传感器网络:将10个传感器节点分别放置在不同的位置,并保证它们之间的通信范围有重叠部分; 2. 配置传感器节点参数:通过电脑连接到基站,对每个传感器节点进行参数配置,包括通信频率、传输功率等; 3. 数据采集与传输:传感器节点开始感知环境中的物理量,并将采集到的数据通过无线通信传输给基站; 4. 数据处理与展示:基站接收到传感器节点的数据后,进行数据处理和分析,并将结果展示在电脑上。 五、实验结果与分析 通过实验,我们成功搭建了一个简单的无线传感器网络系统,并进行了数据采集和传输。我们发现,传感器节点能够准确地感知环境中的物理量,并将数据可靠地传输给基站。基站对接收到的数据进行了处理和分析,展示了环境中物理量的变化趋势。 六、实验总结 通过本次实验,我们深入了解了无线传感器网络的工作原理和性能特点。无线传感器网络具有广泛的应用前景,可以在农业、环境监测、智能交通等领域发挥重要作用。在今后的研究和开发中,我们将进一步探索无线传感器网络的优化和应用。 七、参考文献 1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114.

无线传感器网络实验报告

无线传感器网络实验报 告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

无线传感器网络实验报告 专业计算机科学与技术 班级 13级计科1班 学号 姓名 目录 实验一 CC2530 I/O基础实验 实验二 CC2530按键中断 实验三 CC2530定时器的使用 实验四串行通信接口发送与接收 实验五 Zigbee点到点无线通信 实验六 Zigbee串口实验 实验七无线温度检测实验 实验八 Zigbee组网实验 实验一 CC2530 I/O基础实验 一、实验目的 1.掌握IAR编译软件界面的功能; 2.掌握配置通用IO寄存器的方法; 3.掌握如何编写代码及程序下载。 二、实验内容 1.使用CC2530的IO来控制LED灯循环闪烁;

2.判断按键是否被按下,如果按下,改变LED灯的状态,原先亮的灯灭,原先灭的亮,如此循环下去。 三、相关知识点 cc2530有21个可编程的I/O引脚,P0、P1口是完全的8位口, P2口只有5个可使用的位。通过软件设定一组SFR寄存器的位和字节,可使这些引脚作为通常的I/O口或作为连接ADC、计时器或USART部件的外围设备I/O口使用。 2.I/O口特性: (1)可设置为通常的I/O口,也可设置为外围I/O口使用; (2)在输入时有上拉和下拉能力; (3)全部21个数字I/O口引脚都具有影响外部的中断事件也能被用来唤醒休眠模式。 3.I/O端口的寄存器如下: P0:端口0 P1:端口1 P2:端口2 PERCFG:外设控制寄存器 APCFG:模拟外设I/O配置 P0SEL:端口0功能选择寄存器 P1SEL:端口1功能选择寄存器 P2SEL:端口2功能选择寄存器 P0DIR:端口0方向寄存器 P1DIR:端口1方向寄存器 P2DIR:端口2方向寄存器 P0INP:端口0输入模式寄存器 P1INP:端口1输入模式寄存器 P2INP:端口2输入模式寄存器 P0IFG:端口0中断状态标志寄存器 P1IFG:端口1中断状态标志寄存器 P2IFG:端口2中断状态标志寄存器 PICTL:中断边缘寄存器

无线传感网络实验报告

无线传感网络实验报告 一、实验目的 本实验旨在通过无线传感网络的搭建和实际应用,掌握无线传感网络的基本原理和实验技术,以及了解无线传感网络在实际中的应用。 二、实验内容 1.搭建无线传感网络 2.学习和掌握无线传感器节点的编程和调试 3.设计并实现无线传感网络的数据收集和传输功能 4.进行无线传感网络的实时数据采集和监控 三、实验步骤 1.搭建无线传感网络:按照实验指导书的要求,搭建无线传感网络的基础设施,包括基站和一定数量的传感器节点。 2.学习和掌握无线传感器节点的编程和调试:通过阅读相关资料,掌握无线传感器节点的编程语言和开发工具,并进行代码调试。 3.设计并实现无线传感网络的数据收集和传输功能:根据实验要求,设计无线传感网络的数据收集和传输方法,并进行代码编写和调试,确保数据能够准确地收集和传输。 4.进行无线传感网络的实时数据采集和监控:将搭建好的无线传感网络应用于实际场景中,实时采集并监控传感器节点的数据,验证无线传感网络的可靠性和稳定性。

四、实验结果与分析 通过搭建和实际应用无线传感网络,我们成功地实现了数据的收集和传输功能,并能够实时采集和监控传感器节点的数据。在实际应用中,无线传感网络能够有效地进行环境信息的监测和采集,为后续的数据处理和分析提供了基础。 五、实验总结 通过本次实验,我们深入了解了无线传感网络的基本原理和应用,掌握了无线传感器节点的编程和调试技术,并成功地搭建和应用了无线传感网络。通过实际操作和实验,我们不仅巩固了理论知识,还提高了实践能力和解决问题的能力。无线传感网络作为一种新兴的技术,具有广阔的应用前景,我们对其未来的发展充满信心。 七、附录

无线传感网技术实验课程教学与改革

无线传感网技术实验课程教学与改革 随着信息技术的发展,无线通信技术得到了飞速的发展,无线传感网技术应用也变得 越来越广泛。在这样的背景下,无线传感网技术实验课程成为了高等教育中的一门重要课程,对于培养学生的实践能力和创新意识起到了重要的作用。鉴于这一情况,对无线传感 网技术实验课程进行教学与改革显得尤为重要。 无线传感网技术实验课程是计算机、通信、电子等相关专业的重要课程之一。这门课 程主要介绍了无线传感网技术的基本原理、协议、算法以及应用。在这个课程中,学生需 要掌握传感器网络的组网原理、传感器节点的设计和部署、数据采集与传输等基本知识和 技能。学生还需要了解传感器网络中的功耗管理、数据处理与存储、远程监测与控制等方 面的知识。 在实验环节中,学生需要通过实际的硬件和软件操作,掌握传感器节点的组装与调试、传感器数据的采集与传输、传感器网络的搭建与管理等实际操作技能。这样的实验内容可 以让学生更好地理解课程中的理论知识,提高他们的实践能力和解决问题的能力。 二、教学方式的改革 针对传统的无线传感网技术实验课程教学方式,可以考虑以下方面的改革: 2. 强化案例教学:可以根据实际的传感器网络应用案例,设计一些具有实际意义的 实验项目,让学生们在实验中感受到传感器网络技术的价值和作用。还可以邀请一些从事 传感器网络技术研究和应用的专家学者,为学生们讲解一些相关的案例,让学生们更好地 了解传感器网络技术的发展现状与未来趋势。 3. 强化实践操作环节:实验课程的核心是实践操作,因此可以增加实验环节的时间,让学生们有更多的时间去进行实际的操作,提高他们的动手能力和实际问题解决能力。 4. 强化团队合作:在实验课程中,可以设置一些团队合作的项目,让学生们组成小组,在实践操作中互相协作,共同完成一些传感器网络技术的应用实验项目。这样可以提 高学生们的团队合作能力和沟通协调能力。 三、评价体系的完善 1. 实验报告评价:传感器网络技术实验课程中,学生需要完成一定数量的实验,并 撰写实验报告。在评价过程中,不仅要注重对实验结果的评价,还需要对实验过程、方法 的设计和创新性等方面进行评价。 2. 实验成绩和表现评价:传感器网络技术实验课程是一门实践性较强的课程,因此 可以采用平时考核和实验成绩相结合的方式进行评价,充分考虑学生的实际表现和动手能力。

安徽工业大学WSN无线传感器网络实验报告

《无线传感器网络实验报告》 指导教师:卫琳娜 班级:物联网131班 实验箱序号:3,13等 组员姓名学号:程少锋

(注:报告中有部分实验截图) 实验日期:2016年4月28日3,4节 实验一、软硬件平台使用 [1]感知 RF2 实验箱-WSN 系统结构 该系统根据不同的情况可以由一台计算机,一套网关,一个或多个网络节点组成。系统大小只受PC 软件观测数量,路由深度,网络最大负载量限制。 感知 RF2 实验箱无线传感器实验平台内配置ZigBee2007/PRO 协议栈在没有进行网络拓补修改之前支持 5 级路由,31101个网络节点。传感器网络系统结构图如下图所示。

[2]感知 RF2 实验箱-WSN 系统工作流程 基于ZigBee2007/PRO协议栈无线网络,在网络设备安装过程,架设过程中自动完成。完成网络的架设后用户便可以由PC 机发出命令读取网络中任何设备上挂接的传感器的数据,以及测试其电压。 [3]感知RF2 实验箱-WSN 硬件介绍 感知 RF2物联网实验箱的无线传感器网络开发平台主要硬件包括:C51RF-CC2530-WSN 仿真器、ZigBee 无线高频模块、节点底板、传感器模块以及其它配套线缆等。 网关节点由节点底板+ZigBee 无线高频模块组成。 传感器节点由节点底板+ZigBee 无线高频模块组成+传感器模块组成。 路由节点硬件组成与传感器节点相同,软件实现功能不同。 [4]实验目的:熟悉实验平台前期架构,便于后面程序的烧写。[5]实验步骤: 1安装必要软件(实际实验室中软件已经下载安装完毕,只要通过仿真器C51RF-3进行程序在线下载、调试、仿真即可) 1)在实验室机器E盘的《无线龙实验箱相关资料/无线传感器实验资料201604》中安装 Zi gBee开发集成环境IAR7.51A,详细请参考“\C51RF-CC2530-WSN 使用说明书\”目录下的“IAR安装与使用”。 2)安装传感器网络PC 显示软件环境,软件位于“\C51RF-CC2530-WSN 开发软件 \C51RF-CC2530-WSN 监控软件”目录下的“Framework Version 2.0.exe” 3)安装网关与计算机 USB连接驱动,驱动位于“\C51RF-CC2530-WSN 开发软件\”目录下的“CP2102”。

无线传感器网络课程设计报告

无线传感器网络 课程设计报告 (2018-2019学年第一学期) 题目安全的无线传感器网络数据传输系统的设计指导老师 班级

目录1需求分析 2传感器网络概述 2.1传感器网络体系结构 2.2传感器网络协议栈 3数据传输方式 4设计 4.1主要数据结构 4.2 课程设计的条件 5测试 6使用说明 6.1应用程序功能的详细说明 6.2应用程序运行环境要求 6.3输入数据类型、格式和内容限制 6.4各模块程序段说明 7总结提高 7.1课程设计总结 7.2课程设计评价

1 需求分析 1.1 功能与技术需求 随着信息时代的逐渐来临,物联网的建设也越来越完善,为信息的存储和传输提供了完善的路径,而无线传感网是物联网的重要组成部分,它的建设成为物联网建设的关键。无线传感器网络是由大量微型传感器节点以自组织和多跳的方式构成的网络。它具有资源非常受限、无线通信链路质量不稳定和网络拓扑动态变化等诸多显著特点,与现有的互联网和其它无线网络存在较大差别,向可靠数据传输提出新的挑战和要求。在数据传输可靠性保障方面,采用了加密算法保证在传输过程中的安全性。 2 传感器网络概述 2.1传感器网络体系结构 典型的传感器网络结构包括传感器节点、汇聚节点和管理节点。随即部署在监测区域内的大量传感器节点通过自组织方式构成网络。传感器节点的监测数据沿着其他节点逐跳传输,监测数据可能被多个节点处理,经过多跳后被路由到汇聚节点,最后通过互联网或者卫星到达管理节点和用户。管理节点对传感器网络进行配置和管理。传感器网络体系结构如图所示

2.2传感器网络协议栈 与互联网协议栈(TCP/IP)的五层相对应,传感器网络协议栈包括:物理层、数据链路层、网络层、传输层和应用层。另外协议栈还包括时间同步、节点定位、网络管理、QoS保障、移动管理、任务管理、能量管理和安全机制等。物理层提供信号调制、无线收发和相应的密码服务:数据链路层负责信道接入、拓扑生成、差错控制、介质访何控制、数据成帧以及数据帧监测等;网络层主要负责路由生成,路由选择和拓扑管理等;传输层负责数据流的传输控制,网络的协同工作等:时间同步、节点定位、网络管理、QoS 保障、移动管理、任务管理、能量管理和安全机制等通常跨越多个网络协议栈层次

无线传感网络实验报告

《无线传感网络技术与应用》 实验报告

目录 一、研究背景 (1) 二、研究内容 (1) 三、传感器原理介绍 (1) (一)MQ-2 气体传感器简介 (1) (二)声音检测传感器简介 (2) (三)声光报警器原理 (3) (一)烟雾传感器模块 (4) (二)声音检测传感器模块 (5) (三)声光报警器模块 (7) (四)协调器与终端模块 (8) 五、实验分析 (9) (一)烟雾传感器数据分析 (9) (二)声音检测传感器模块数据分析 (9) (三)声光报警检测传感器模块数据分析 (10) 六、实验中出现的问题 (11) (一)打开文件存在缺失 (11) (二)串口无法识别 (11) (三)安装stm8或stem32时无法打开文件 (11) (四)做数据透传模型实验时无法通信 (11) 七、实验总结 (11)

一、研究背景 近几年,随着我国经济的不断发展和构建和谐社会理念的提出,特别是重大工程对安防行业的刺激和需求,安防行业面临着前所未有的发展机遇。结合当前先进技术提高安全防范系统性能,成为当前安防发展的一个重要课题。 在分析了无线传感网络在国内外安防系统应用现状的基础上,针对安防系统存在的问题,提出一种基于无线传感网络的智能安防系统设计方案。与传统安防系统相比,具有免布线、费用低、布置方便等优点。在综合考虑了当前流行的无线通信技术后,选择具有数据吞吐量小、低功耗、网络容量大等优点的ZigBee 技术作为构建智能安防无线通信网络的关键技术。可以预计,ZigBee 技术将在家庭智能化、安防行业、工业控制等领域获得广泛应用。 二、研究内容 本次课题研究涉及到三个传感器,分别是烟雾传感器、声音检测传感器、声光报警传感器,通过相关程序的烧写到实验板上,根据每个传感器的特点对每个传感器进行测试,通过观察串口终端的数字变化,检查外部环境的变化是否有数据变化。最后根据实验现象进行总结分析。 三、传感器原理介绍 (一)MQ-2 气体传感器简介 MQ-2 气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化 锡(SnO2)。当传感器所处环境中存在可燃气体时,传感器的电导率随空气中可燃气体浓度的增加而增大。使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。 MQ-2 气体传感器对液化气、丙烷、氢气的灵敏度高,对天然气和其它可燃蒸汽的检测也很理想。这种传感器可检测多种可燃性气体,是一款适合多种应用的低成本传感器。它的特点在较宽的浓度范围内对可燃气体有良好的灵敏度、液化气、丙烷、氢气的灵敏度较高、长寿命、低成本、简单的驱动电路即可。 该传感器需要施加 2 个电压:加热器电压(VH)和测试电压(VC)。其中VH 用于为传感器提供特定的工作温度。VC则是用于测定与传感器串联的负载电阻(RL)上的电压(VRL)。这种传感器具有轻微的极性,VC 需用直流电源。在满足传感器电性能要求的前提下,VC和VH 可以共用同一个电源电路。为更好利用传感器的性能,需要选择恰当的RL值。

【精编范文】wsn实验报告0909100825郑祖辉-word范文模板 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == wsn实验报告0909100825郑祖辉 《无线传感器网络》 课程设计报告 学号: 0909100825 姓名: 专业班级: 物联网1001 指导教师: 高建良 一、概述 实验内容及实验目的 无线传感器网络是物联网的基本组成部分,是物联网用来感知和识别周围环境的信息生成和采集系统,传感器网络对信息处理来说如同人体的感觉突触一样重要,为了方便感知和部署并提高网络的可扩展性,传感器网络一般采用无线通信方式,从而形成了节点之间可自组织拓扑结构的无线传感器网络。本课程设计的目的综合应用学生所学知识,建立系统和完整的传感器网络概念,理解和巩固无线传感器网络基本理论、原理和方法,掌握无线传感器网络开发的基本技能。本次课程设计的主要任务是无线传感器网络软件仿真与实验箱运用,理解ZStack协议栈,其中: 实验一多点自组织组网实验的实验目的是: 1、理解 zigbee 协议及相关知识。 2、在 ZX2530A 型 CC2530 节点板上实现自组织的组网 3、在 ZStack 协议栈中实现单播通信。 实验二信息广播、组播实验的实验目的是: 1、理解 zigbee 协议及相关知识。

2、在 ZStack 协议栈下实现信息的广播和组播功能。 实验三网络拓扑选择实验目的是: 1、理解 zigbee 协议及相关知识。 2、在 ZStack 协议栈下实现网络拓扑的控制。 二、实验原理及设计 一、多点自组织组网实验 1、实验原理 程序执行在进行一系列的初始化操作后程序就进入事件轮询状态。对于终端节点,若没有事件发生且定义了编译选项 POWER_SAVING,则节点进入休眠状态。 协调器是 Zigbee 三种设备中重要的一种。它负责网络的建立,包括信道选择,确定唯一的PAN 地址并把信息向网络中广播,为加入网络的路由器和终端设备 分配地址,维护路由表等。 本实验在 Zstack 的事例代码 simpleApp 修改而来。首先介绍任务初始化的概念,由于自定义任务需要确定对应的端点和簇等信息,并且将这些信息在 AF 层中注册,所以每个任务都要初始化然后才会进入 OSAL 系统循环。在 Z-Stack 流程图中,上层的初始化集中在 OSAL 初始化(osal_init_system)函数中。包括了存储空间、定时器、电源管理和各任务初始化。其中用户任务初始化的流程如下: 开始 指定任务ID 网络状态初始化 指定目的地址 注册应用对象 结束 用户任务初始化流程图 任务 ID(taskID)的分配是 OSAL 要求的,为后续调用事件函数、定时器函数提供了参数。网络状态在启动的时候需要指定,之后才能触发

无线传感网络实验报告

-------无线传感网络实验报告 学院:信息工程学院 专业:网络工程 学号:201216213 姓名:张新龙 LEACH协议

LEACH协议简介 分簇算法LEACH 协议是Wendi B. Heinzelman , AnanthaP. Chandrakasan , Hari Balakrishnan (MIT ,电子与计算机系) 2000 年提出的分层的传感器网络协议, 它采用分层的网络结构. LEACH,协议是通过基于簇的操作使WSN减少功耗,LEACH,协议的目的是在网络中动态地选择传感器节点作为簇头并形成簇。在LEACH 算法中, 节点自组织成不同的簇, 每个簇只有一个簇首.各节点独立 地按照一定概率决定自己是否做簇首,周期性的进行簇首选举和网络重组过程, 避免了簇首节点能耗过多, 影响网络寿命. LEACH 算法建立在所有节点都是平等且无线电信号在各个方向上能耗相同的假设上。 LEACH协议有时候也会动态地改变簇的活跃动态,如果采用高功率的方式使网络中的所有传感器节点与汇聚节点进行通信。 LEACH协议原理 LEACH 协议分为两个阶段操作, 即簇准备阶段(set - up phase)和就绪阶段(ready phase). 为了使能耗最小化, 就绪阶段持续的时间比簇准备阶段长簇准备阶段和就绪阶段所持续的时间总和称为一轮(round). [ 7-8]在簇准备阶段, 随机选择一个传感器节点作为簇首节点(cluster head node), 随机性确保簇首与Sink 节点之间数据传输的高能耗成本均匀地分摊到所有传感器节点. 簇首节点选定后, 该簇首节点对网络中所有节点进行广播, 广播数据包含有该节点成为簇首节点的信息. 一旦传感器节点收到广播数据包, 根据接收到的各个簇首节点广播信号强度, 选择信号强度最大的簇首节点加入, 向其发送成为其成员的数据包.以便节省能量.簇头建立阶段:初始阶段,每个节点从0 和1中随机产生一个数,如果这个数小于阀值T(n),该节点就成为当前轮的簇头。 其中,P是期望的簇头数在所有节点中占的百分比,r是选举轮数,r mod (1/p)代表这一轮循环中当选过簇头的节点个数,G是这一轮循环中未当选过簇头的节

无线传感网实验报告

无线传感网实验报告 冯聪 122207202113 测控一、引言 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍, DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 二、实验内容 2.1传感器简介 本设计选择采用DS18B20温度场暗器,DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻比,他能够直接读出北侧温度并可以根据实际要求通过简单的编程实现9-12位的数字值读数方式。可以分别在93.75ms和750ms内完成九位和十二位的数字量,并且从18B20读出的信息或写入DS18B20的信息仅需要一根口线读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外加电源。 它的温度测量范围是-55~+1250C。使用DS18B20可使系统结构趋于简单,可靠性更高。他在测量精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

2.2 电路原理图 图1 2.21 电机测速即驱动部分: 电机选用美国史普拉格公司生产的 3000 系列霍尔开关传感器 3013,它是一种硅单片集成电路,器件的内部有稳压电路,霍尔电视发生器,放大器,施密特触发器和集成开路输出电路,具有工作电压范围宽,可靠性高,外电路简单,输出电平可与各种数字电路兼容等特点。 电动机测试部分原理图如图2:

无线传感器网络实验报告

无线传感器网络实验报 告 Modified by JACK on the afternoon of December 26, 2020

郑州航空工业管理学院 无线传感器网络实验报告 (第1版) 20 14– 2015 第2学期 赵成编着 院系:电子通信工程 姓名: 专业:物联网工程 学号:

电子通信工程系2015年6月制

实验一WSNs开发环境的建立 一、实验目的 了解基于TI CC2431/CC2530的WSNs基础知识,熟悉WSNs的开发环境,掌握Cygwin、TinyOS、SDCC、SmartRF Studio 7等软件的安装方法。 二、实验内容 1.认识并观察WSNs节点模块的电路板; 2.WSNs开发环境的建立: (1)Cygwin仿真软件的安装; (2)TinyOS 操作系统的安装; (3)SDCC小型设备C编译器的安装; (4)SmartRF Studio 7编程软件的安装; 三、预备知识 了解无线传感器网络的基本概念;熟悉无线传感器网络的结构及开发环境的建立。 四、实验设备

1. 硬件环境配置 计算机:Intel(R) Pentium(R) 及以上; 内存:1GB及以上; 实验设备:CC2431无线传感器网络节点模块; 2. 软件环境配置 操作系统:Microsoft Windows 7 Professional Service Pack 1; WSNs开发环境:Cygwin、TinyOS、SDCC、SmartRF Studio 7。 五、实验分析 1.安装的Cygwin仿真软件时选择□Install from Internet还是√□Install from Local Directory。(在正确的前面打勾) 2.在安装Cygwin时,需要选择安装包,如下图所示,在箭头所指向的位置,表示对所有(All)包的操作,点击循环按钮,观察四种安装方式格式什么?写在下面。

相关主题