搜档网
当前位置:搜档网 › 飞行器动力工程导论

飞行器动力工程导论

飞行器动力工程导论
飞行器动力工程导论

飞行器动力工程导论

————课程作业

姓名:学号:

学院:专业:

1、谈谈你对我校飞行器动力工程专业的认识

(1)作为我校在网络上推荐指数较高的专业之一的飞行器动力工程专业,是我校的特色专业,同时作为天津市的品牌专业,它以航空维修工程为特色,培养适应国内外现代民航发展需求,具备较高思想政治素质,掌握系统的航空发动机专业知识和扎实的航空维修及管理理论基础,具有较强的实际操作能力和严谨的工作作风,了解民航发展动态,能够从事航空发动机的运行监控、故障诊断、维护修理及维修管理等相关技术、管理工作,宽口径、厚基础、强能力、高素质,具有创新精神,德、智、体、美全面发展的应用型高级工程技术人才和管理人才。(2)飞行器动力工程专业属于典型的工科专业,它分为两个方向:航空动力工程专业方向和航空器工程专业方向。其所涉及的课程包括:电工学、机械设计基础、工程热力学、气体动力学、航空发动机原理、航空发动机构造、航空发动机控制、机务工程英语、航空维修工程管理、发动机机队管理、航空发动机强度与振动、发动机状态监控与故障诊断、航空发动机维修技术、发动机失效分析、飞机结构与系统等。

(3)飞行器动力工程专业前景:中国的航空科学发展较晚,飞行器知识大部分源于国外,中国的航空技术还有许多不完善、有待改进或者创造的地方。中国急需航空技术人才,尤其是经过系统培训的高级应用型国际人才。因此航空技术职业市场广阔

(4)飞行器动力工程专业所培养的人才目标:了解民用航空科学与技术的前沿及发展趋势,具备较强的工程实践能力和严谨的工作作风。通过本专业的培养,使学生能够胜任民用航空器维修、制造、运行监控、故障诊断及维修管理等相关工程技术和管理工作,成为宽口径、厚基础、强能力、高素质,具有创新精神,德、智、体、美全面发展的高级工程技术人才和管理人才。为中国民航业培养和提供大批优秀的机务工程和管理人才,不断为民航业输送新鲜血液,推进中国民航业的快速发展。

(5)飞行器动力工程专业就业方向:航空公司运行、维护和技术管理部门、机场、航空器维修企业、适航管理部门以及高校、飞行器设计与制造与航空科研院所等单位,也可以继续攻读本专业或相关交叉学科的硕士学位。

2、简述航空燃气涡轮发动机的类型,分析各自的特点

航空燃气涡轮发动机主要分为5大类,分别是:涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和浆扇发动机。

(一)涡轮喷气发动机

(1)定义:

涡喷发动机是一种涡轮发动机。是完全依赖燃气流产生推力,通常用作高速飞机的动力。油耗比涡轮扇发动机高。涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。

相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。

(2)结构特点:

由进气道、压气机、燃烧室、涡轮和尾喷管组成。轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。压气机由定子叶片与转子叶片交错组成,一对定子叶片与转子叶片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。空气经过压气机压缩后进入燃烧室与煤油混合燃烧,膨胀做功;紧接着流过涡轮,推动涡轮高速转动。因为涡轮与压气机转子连在一根轴上,所以压气机,压气机与涡轮的转速是一样的。最后高温高速燃气经过喷管喷出,以反作用力提供动力。

(3)主要用途:军用飞机

(二)涡轮风扇发动机

(1)定义:

全称为涡轮风扇发动机是飞机发动机的一种,由涡轮喷气发动机发展而成。与涡轮喷气比较,主要特点是首级压缩机的面积大很多,同时被

用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向後推。

发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。

(2)结构特点:

涡轮风扇发动机由在压气机前安装的一级或多级风扇形成的外涵气流与内涵喷管排出的或内外涵气流掺混后排出的燃气共同产生推力的燃

气涡轮发动机。它由涡轮喷气发动机发展而成。与涡轮喷射比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向后推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。现在多数的飞机引擎都是采用涡扇作为动力来源。

优点: 推力大、推进效率高、噪音低、燃油消耗率低,飞机航程远。缺点: 风扇直径大,迎风面积大,因而阻力大,发动机结构复杂,设计难度大。

(3)主要用途:干线飞机和军用飞机

(三)涡轮螺旋桨发动机

(1)定义:

是一种通常用于飞机上的燃气涡轮发动机(gas turbine engine)。涡桨发动机的驱动原理大致上与使用活塞发动机作为动力来源的传统螺旋桨

飞机雷同,是以螺旋桨旋转时所产生的力量来作为飞机前进的推进力。其

与活塞式螺桨机主要的差异点除了驱动螺旋桨中心轴的动力来源不同外,还有就是涡桨发动机的螺旋桨通常是以恒定的速率运转,而活塞动力的螺旋桨则会依照发动机的转速不同而有转速高低的变化。

(2)结构特点:

当来自涡喷发动机的燃气发生器的排气用于旋转附加的涡轮并通过减速器驱动螺旋桨时,这就是涡浆发动机。在某些涡浆发动机,附加功率直接从压气机传动轴驱动螺旋桨减速器产生,这种类型称为直接传动涡轮螺旋桨发动机。现代涡轮螺旋桨发动机中更多的有自由涡轮,它独立于驱

动压气机的涡轮,在发动机排气流中自有转动,自有涡轮轴通过减速器驱动螺旋桨。涡浆发动机综合了涡喷发动机的优点同螺旋桨的推进效率。涡浆发动机对相对大的空气质量施加较少的加速产生拉力。涡浆发动机将输出较多的推力直到中高亚音速飞行,其功率随空速增加而减小。在正常巡航转速范围,涡浆发动机推进效率保持高于或低于常数,而涡喷发动机推进效率随空速增加而迅速地增加。

(3)主要用途:用于支线飞机

(四)涡轮轴发动机

在工作和构造上,涡轮轴发动机同涡轮螺桨发动机根相近。它们都是由涡轮风扇发动机的原理演变而来,只不过后者将风扇变成了螺旋桨,而前者将风扇变成了直升机的旋翼。除此之外,涡轮轴发动机也有自己的特点:它一般装有自由涡轮(即不带动压气机,专为输出功率用的涡轮),而且主要用在直升机和垂直或短距起落飞机上。

主要用途:用于直升机、垂直/短距起落飞机。

(五)浆扇发动机

又称无涵道风扇发动机。燃气通过动力涡轮输出轴功率传动桨扇的燃气涡轮发动机,既可看作带先进高速螺旋桨的涡轮螺旋桨发动机,又可看作除去外涵道的超高涵道比涡轮风扇发动机,结合了涡轮螺旋桨发动机耗油率低和涡轮风扇发动机飞行速度高的优点。先进高速螺旋桨是这种发动机的特有关键部件,它带有多个宽弦、薄叶型的后掠桨叶,能在较高的飞行速度下保持较高的效率。螺旋桨可以是单排的或双排的。双排螺旋桨往往采用对转设计,后排螺旋桨可以校直前排螺旋桨出口的旋流,从而提高效率。传动方式分为通过减速器传动和直接传动。主要用途:螺旋桨及风扇组合

1.分析航空燃气涡轮喷气发动机的组成及各部分功用

(1)进气道

进气道是指由飞机(或发动机短舱)进气口至发动机压气机进口的这一段管道r它的作用是供给发动机所需要的空气量,并能提高气流的压力,尤其在超音速飞行的情况下,进气道对气流的压缩作用就更为重要。

(2)压气机

压气机的作用是提高流进气体的压力。由于压气机工作轮旋转,对进气道流来的气流进行压缩,获得机械能,而提高温度和压力。压气机工作的好坏,直接影响到发动机的推力图和经济性,对发动机能否正常运转关系极大,因此,压气机当然成为发动机的重要组成之一。

压气机分为轴向式和离心式两类。铀向式压气机迎风面积较小,效率较高,并且便于多级拼拢,能得到很高的增压比,因此获得了广泛应用。离心式压气机结构简单可靠,目前主要用于小流量的发动机中。

轴向式压气机由静子和转子组成。静子上的一排整流叶片组成一个整流环,各个整流环与外壳(机匣)固定在一起。转子也由好几排叶片和固定这些叶片的部件组成。转子上叶片叫做工作叶片,由一排工作叶片所组成的轮子叫做叶轮(或工作轮),这些叶轮与涡轮的工作轮相连,被涡轮带动高速旋转。

轴向式压气机的叶轮和整流环是交错排列的。一个叶轮和一个整流环组成轴向式压气机的一个级。它是多级轴向式压气机的基本单元,单级轴向式压气机的增压能力较低,因此燃气涡轮发动机的轴向式压气机都是采用多级的。

轴向式压气机的各级都是利用扩散增压原理来提高空气压的。其办法是将工作叶片和整流叶片的叶型制成一定弯度,此时叶片出口的安装角(叶片中弧线后缘切线与圆周速度的夹角)大于叶片进口安装角(叶叶片中弧线后缘切线与圆周速度的夹角)。这样,在叶片进口处和出口间距相等的情况下,叶片通道出口面积就大子进口面积( > )。气流扩散减速后,压力也就增大。

离心式压气机也是由发动机的涡轮驱动,,来对空气进行压缩的。但是离心式压气机给出的是离心气流。离心压气机的单级增压比相对较高,一般为3~4.5。如果再提高增压比,就要采用超音速离心压气机了。-否则效率下降很多。

离心压气机主要由叶轮、扩压器和集气管组成,在发动机的进口还装有导流器,使空气进入压气机前产生预旋。从压气机叶轮出来的空气进入扩压器和集气管,然后流向燃烧室。

(3)燃烧室

燃烧室的作用是使压气机输入的大量空气与喷咀喷出的燃油充分混合燃烧,释放出热量,使燃气,影胀加速,在涡轮所处的各种状态下提供具有一定温度场的

燃气流。

对燃烧室要求是安全燃烧、工作稳定、点火可靠,出口温度场合乎要求等。从保证稳定燃烧来说,燃油和空气混合气的浓度应能使火焰传播的速度最快,燃烧既稳定又安全。可是这样的混合气浓度,燃烧后温度太高,可以达到2000K以上,大大超过涡轮安全允许的最高温度。从保证涡轮的工作安全来说,燃烧室的出口温度必须降低。人们经过不断实践和研究,在燃烧室内采用了具体办法是在燃烧室内装一个火焰筒,焰简。

燃烧区的位置在火焰筒的前半段,进入燃烧区的空气称为第一股空气,约占总空气量的25-35%,这部分空气与喷入燃烧室的燃料组成混合气,燃烧后的温度约为2200K。稀释区的位置在火焰筒的后半段,进入稀释区的空气称为第二段空气,约占总空气量的65-75%,第二股空气穿过火焰筒后段筒壁的气孔,进入稀释区与炽热的燃气掺合,一方面使燃气温度降到能保证涡轮安全工作的温度;另一方面,还可使尚未完全燃烧的混合气进行补充燃烧。

燃气涡轮发动机使用的燃烧室主要有三种类型:单管燃烧室,环管燃烧室和环形燃烧室。涡轮在航空上之所以重要,是因为在燃气涡轮发动机上带动压气机压缩空气往往需要很大的功率,二般在一万千瓦以上,这样大的功率,活塞式发动机是无法办到的。

涡轮的基本组成部分是导向器和工作轮,导向器装在工作轮的前面,固定不动。导向器和旋转的工作轮组成了涡轮的一个级。为了产生较大的驱动功率,涡轮要由数级组成。涡轮级数取决于单轴结构还是双轴结构、涡轮需要从燃气中所得到的能量、涡轮的转速以及涡轮所允许的直径大小等诸因素。

(5)尾喷管

尾喷管的作用是把涡轮排出的燃气以一定的速度和规定的方向喷出发动机。显然,当涡轮喷气发动机保持空气流量不变时,喷气速度比进口气流速度大得多,发动机产生的推力越大。尾喷管通常由排气段和喷口组成。排气段内装有整流锥,使横截面积顺气流方向由环形逐渐变成圆形,而构成扩散通道。以降低气流的速度,同时防止燃气流出涡轮时产生涡流损失。整流锥用流线形的支板支撑,可以把涡轮出口扭转的气流扭直方向,沿铀向流出喷口。

(6)消音器

噪声严重影响人们的生息和身心健康,降低噪声已成为人们十分关注的问题。

噪声包括音调和声压。测量其强度的单位是分贝。在一般情况下,人们睡眠要求周围的噪声不超过35分贝,工作、学习时不超过55分贝,但是,现代涡轮喷气发动机的噪声却远远超过人的听觉器官所能承受的标准,而高达120分贝以上。

近二十年来,随着民用航空的发展,不但飞机的数量增多,而且飞机的尺寸和飞机速度也不断增大,发动机的噪声日益严重,人们长期受噪声的剌激,不仅会产生“噪声性耳聋",还会使中枢神经系统、心血管系统、消化系统等发生功能紊乱,导致“充耳不闻",预防的办法只能从限制的声源开始。

发动机喷管喷出的高温燃气流入静止的或流速较慢的气流中,流动气体和静止气体之间的剪切力,使射流边界层中的气体形成强烈的紊流脉动,从而产生高频噪声,随着燃气向后流动,喷气射流的掺混区逐渐扩大,噪声频率逐渐下降。在完全混合区产生低频噪声。可见,喷气噪声是由各种频率组成的所谓“白"噪声(类似于自光)。

喷气的声功率与喷气速度的八次方成正比。所以喷气速度对声功率影响最大。如离飞机250米处,加力式涡轮喷气发动机的排气速度为720米/秒时,声强级为124-125分贝;亚音速涡轮喷气发动机排气速度为600米/秒时,声强级为118分贝;涡轮风扇发动机较低,约为360米/秒时,声强级为108分贝。

飞行器动力工程专业(卓越工程师)本科培养方案

飞行器动力工程专业(卓越工程师)2017级本科培养方案一、专业简介 沈阳航空航天大学“飞行器动力工程专业”(原名“航空发动机专业”)成立于1952年,1978年正式更名为飞行器动力工程专业,是国内成立最早的航空动力专业之一,现有飞行器动力工程和飞行器动力工程(航空发动机维修)两个专业方向。该专业依托航空宇航科学技术学科,将航空发动机作为重点对象,具有突出的专业特色。该专业是辽宁省首批示范性专业、国家特色专业、国家级综合改革试点专业以及国家级“卓越计划”专业。该专业具有航空工程国家级实验教学示范中心、辽宁省飞行器及动力装置虚拟仿真实验教学中心、辽宁省航空推进系统先进测试技术重点实验室、机械振动国家级双语教学示范课、发动机构造强度及振动系列课程省级教学团队等优势学科与优质教学资源的支撑。 该专业注重工程教育与工程训练相结合,注重信息技术在设计、分析和实验技术中的应用;教学与航空发动机厂、所密切结合,突出学生工程实践能力;学生在航空发动机试验与测试和航空发动机维修与维护方面具有优势与特色。 二、培养目标及服务面向 培养适应社会主义现代化建设需要的德、智、体、美等全面发展,热爱航空航天及能源事业,掌握本专业所必需的理论知识,具有较强工程实践能力和综合素质、具有较强的敬业精神和团队协作精神、具有创新意识的热动力工程类专业的应用型高级专门人才。兼顾为学生毕业后继续深造做准备,并为终身学习和发展打下基础。 培养飞行器动力工程领域内,具备飞行器动力装置及其控制系统等方面知识,能在航空、航天部门从事航空发动机及其它热动力机械的设计、研究、制造、试验、运行维护和技术管理,航空、民航部门从事航空发动机维修和运行维护等方面工作,也可在交通、能源、环境等部门工作的高级工程技术人才。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识;

微型扑翼飞行器的现状及关键技术

无人机 本文2007-08-02收到, 作者分别系海军航空工程学院讲师、副教授和助教 图1 微型蝙蝠飞行器 微型扑翼飞行器的现状及关键技术 郭卫刚 贾忠湖 康小伟 摘 要 微型扑翼飞行器是高新技术的产物,是当前国内外研究的热点。简述了微型扑翼飞行器目前的发展现状,提出发展微型扑翼飞行器的几项关键技术,并对微型扑翼飞行器的发展趋势进行了展望。 关键词 扑翼机 微型飞行器 微机电系统(ME M S) MAV(M icro A ir Veh icle微型飞行器)由于具有特殊的用途(如侦察、电子干扰、搜寻、救援、生化探测等)而倍受关注。根据美国国防高级研究计划局(DARPA)提出的要求,微型飞行器的基本技术指标是:飞行器各个方向的最大尺寸不超过150mm,续航时间20m i n~60m in,航程达到10km以上,飞行速度22k m/h~45km/h,可以携带有效载荷,完成一定的任务[1]。 按飞行原理的不同,MAV分为固定翼、旋翼、扑翼三大类型。固定翼布局有许多问题亟待解决,如升阻比相对较小,在低雷诺数状态下机翼不能提供足够的升力,遭遇突风难以保持稳定等。旋翼布局尽管能够垂直起降和悬停,但其飞行速度低,质量大,仅适宜于在比较狭小的空间或复杂地形环境中使用。而综观生物的飞行,无一例外都是采用扑翼飞行方式。同常规布局相比,扑翼布局仅用一套扑翼系统就可代替螺旋桨或喷气发动机提供推力;扑翼可以使MAV像昆虫和鸟类那样低速飞行、盘旋、急转弯甚至倒飞;扑翼下面可以产生一种涡流,这是扑翼飞行器飞行的必要助推力,扑翼飞行器可以通过自身机翼扇动产生的上下大气压差来飞行。微型扑翼飞行器具有一般航空飞行器无法比拟的机动和气动性能,与无人侦察机相比,具有以下优势:可以低速飞行,可以随意改变方向,可以悬停,还可以向后倒退。 1 研究现状 在DARPA的资助下,微型扑翼飞行器的研究得到了很大进展,主要有加州理工学院与加利福尼亚洛杉矶大学共同研制的微型蝙蝠(M icrobat[2]),斯坦福研究中心和多伦多大学共同研制的引导者(M en-tor),乔治亚理工研究院及其协作者研制的昆虫机(Ento m opter)。 1.1 微型蝙蝠 微型蝙蝠是最早的电动扑翼飞行器,其机翼是采用微电机系统(ME MS)技术加工制作而成的。通过质量轻、摩擦低的传动机构将微电机的转动变为机翼的扑动。 加州理工学院在DARPA的倡议下依据仿生昆 19 飞航导弹 2007年第12期

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

(企划文案)飞行器动力工程专业职业规划书范文

飞行器动力工程专业职业规划书范文初入大学就应该树立正确的职业生涯规划理念,大一就进行职业规划,从一开始就不走弯路。 大一时期,学好基础课全面发展。大学学习与高中不一样,在思想上将被动学习转变为主动学习,逐步培养自己的自学能力,脚踏实地学好基础课程,特别是英语和与专业课相关的课程。在大规划下要做小计划,坚持每天去图书馆学习,坚持每天记英语单词、练习口语,并从大一开始就坚持学下去。大一的学习任务相对轻松,参加了学生会来锻炼自己,提高自己的组织能力和语言表达能力,为以后求职面试而锻炼自己。 大二时期,一方面,稳抓基础课程的学习,另一方面做好由基础课程向专业课程的过渡,并且尽可能多的去图书馆看一些电子信息工程相关的深层次书籍。这一年,手中应握有一两张有分量的英语和计算机认证书,并适当选读其它专业的课程,使自己知识多元化,尽可能的扩大自己的知识面。积极参加有益的社会实践,尽可能多的体验社会生活。 大三时期,主动加深专业课程的学习,准备考研,关注考研信息,确定自己考研目标,尽可能多的搜集考研资料及自己想要报考学校的近几年考研信息。 大四时期,全面备考。既然选择了考研,只有风雨兼程。大四是考研的关键时期和冲刺期,下足功夫,争取把目标拿下,实现自己继续深造的理想。经

过大学三年的学习,自己已储备了足够的知识,经常去检验自己的知识储备,拟好考研目标,尽量往大目标上靠拢,努力考研。 过来人分享:我的职业规划和大学四年规划 主干学科热,力,电;相对来说,偏热多一些,我就是飞动的,本科阶段涉及控制什么的都很浅,基本上可以说是科普,能够了解各种发动机,主要还是训练思维,气动,热力,机械,力,熟练掌握这些。发动机这个学科太大了,而且涡喷这类的东西不是一两个人解决的了的。 职业生涯规划结束语 简单的事,想深了,就复杂了。复杂的事,看淡了,就简单了。有些事,笑笑就能过去。有些事,过一阵就能让你笑笑。在等待的日子里,刻苦读书,谦卑做人,养得深根,日后才能枝叶茂盛。——《修好这颗心》飞行器动力工程专业就业方向分析: 由于我国飞行器动力行业已得到国家多项专项计划支持,未来该专业将具有很好的发展前景。毕业生可在航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门等从事设计、试验、研究等方面的工作。飞行器动力工程专业毕业生毕业后可以从事飞行器推荐系统及热机系统的理论研究、技术开发、总体论证、方案设计、实验技术研究与技术管理等工作、航空发动机研制、设计、生产部门,舰用燃气轮机研制、设计、生产部门及民用燃气轮机研制、生产部门等。

能源动力导论课程报告

本科生课程考核试卷 科目:能源与动力工程导论教师: 姓名:学号: 专业: 上课时间: 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

摘要 能源问题是目前全世界范围面临的最为突出的问题之一,而太阳能是人类取之不尽、用之不竭的清洁能源。如今太阳能材料的研制和应用已取得显著进步。理想的新型太阳能功能材料不仅能够解决世界面临的能源短缺问题,而且还可以避免环境的污染。所以太阳能材料具有十分诱人的前景,并且可以预见在不久的将来,太阳能材料将在人类生活中扮演极为重要的角色。以重庆地区的气象资料为基础,从太阳月总辐射、日照时长、云量、太阳高度角等方面,对太阳能资源的分布特点、应用措施及潜力进行了分析。结果表明,重庆地区太阳能资源具有明显的季节性;5~9月份的太阳能热水可满足标准要求。 关键词:太阳能资源;重庆地区;太阳能热水系统;发展方向

ABSTRACT The energy problem is one of the most prominent issues facing worldwide solar energy is a human inexhaustible, inexhaustible source of clean energy. Today, significant progress has been made in the development and application of solar material. The the ideal new solar Functional Materials not only can solve the problems the world is facing energy shortages, but also to avoid environmental pollution. Solar material has a very attractive prospect, and can be expected in the near future, solar material will play an extremely important role in the life of mankind. Based, Chongqing meteorological data from the monthly total radiation of the sun, sunshine duration, cloud cover, solar elevation angle, etc., the characteristics of the distribution of solar energy resources, the application of measures and potential analysis. The results show that the solar energy resources of the Chongqing area has obvious seasonal; 5 to Sept. solar hot water to meet the standard requirements. Keywords:Solar energy resources; Chongqing area; solar water heating system; development direction

骑士飞行棋实训报告

山东理工大学计算机学院 实训报告 《DOS界面开发基础实训》 班级 姓名 学号 指导教师 二○一二年七月五日 实训任务书及成绩评定 课题名称骑士飞行棋 Ⅰ、题目的目的和要求: 1、设计目的 本实训是实践性教学环节之一,旨在锻炼学生的实践操作能力和综合应用能力,希望通过案例实践,帮助学生掌握DOS界面的开发和应用,具备熟练使用C语言开发界面、感受游戏开发过程等。 2.要求学生掌握: (1)、C语言的规范、结构和标记。 (2)、数组、链表的定义和使用。 (3)、C语言的程序设计基础、面向对象编程、操作、事件处理和特效,感受游戏的开发过程等 (4)、综合应用各种前台技术开发DOS页面。 2、设计题目要求: 第一部分 游戏端首页 (1)角色的分配及及游戏规则: 游戏规则和传统的飞行棋一样,支持两人对战 采用100格小型游戏棋盘 游戏规则:对战双方轮流掷骰子控制自己的骑兵前进或后退,在游戏棋盘上设置有关卡普通 地雷 暂停 时空隧道

幸运轮盘(提供两种运气:交换位置和轰炸) 棋盘上的关卡只在骑兵第一次移动遇到时有效 (2)棋盘示例: 第二部分:游戏过程 (1)地图显示思路: 将对战地图划分成4个部分分别显示 奇数行:顺序输出地图数组中代号对应图像 右竖行:先输出空格,再输出数组中代号对应图像 偶数行:逆序输出地图数组中代号对应图像 (2)游戏进行中的界面 第三部分:游戏结束,玩家胜负已分 Ⅱ、设计进度及完成情况 日期内容 分析所给题目,初步划分侧重点,并初步制定流程 对所给题目进行详细的研究并细读有关资料 做出所给题目,讨论研究并调试检查错误, 对所给题目进行综合考虑,并进行再次修改 答辩,思考老师的评价 Ⅲ、系统实现--主要功能代码 void Welcome() { printf("※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※\n"); printf("操 2.孙权 3.刘备 \n"); printf("请玩家1选择角色:");个玩家轮流掷骰子,如果上轮走到暂停关卡,停掷一次\n\n"); printf("2.若玩家走到幸运轮盘,则和对方交换位置或者对方后退6步\n\n"); printf("3.若玩家走到某格,而对方也在此格,则对方退回原点\n\n"); printf("4.若遇到地雷后退6步\n\n"); printf("5.若遇到暂停则此玩家下一回合停止掷骰子\n\n"); printf("6.若遇到时空隧道再前进10步\n\n");

微型扑翼飞行器机翼气动特性研究

微型扑翼飞行器机翼气动特性研究⒇ 杨淑利,宋文萍,宋笔锋,邵立民 (西北工业大学航空学院翼型叶栅空气动力学国防科技重点实验室,陕西西安 710072) 摘 要:依据微型扑翼飞行器产生升力和推力的机理,设计了一套能够快速、有效求得扑翼飞行器机翼气动特性的计算方法。计算程序通过Visual Basic和Fo rtra n语言混合编程来实现,核心部分是利用改进的片条理论方法估算扑翼机翼的气动性能。计算结果与在西北工业大学微型飞行器专用风洞中所进行的吹风试验结果吻合良好,证明了该方法的正确性和有效性。在此基础上,研究了不同机翼平面形状、不同展弦比、不同上下扑时间比对微型扑翼飞行器机翼气动性能的影响,这些参数对微型飞行器的设计有一定的指导和参考意义。 关 键 词:微型扑翼飞行器,片条理论,机翼,风洞试验 中图分类号:V211.3 文献标识码:A 文章编号:1000-2758(2006)06-0768-06 于20世纪90年代提出的微型扑翼飞行器通过机翼扑动不仅可以产生升力,还可以产生维持扑翼飞行的推力,取代了用螺旋桨或喷气式发动机作为推进器,因此气动效率较固定翼飞行器高出很多[1]。 在研制微型扑翼飞行器时,为了能快速、有效地估算机翼气动特性,本文发展了一套基于改进的片条理论[2]的扑翼气动力计算方法,计算程序是通过Visual Basic和Fo rtra n语言混合编程实现的。计算方法在应用片条理论的基础上,还综合考虑了结构弹性、涡尾迹、失速、翼剖面平均迎角和摩擦阻力等因素的影响。 采用本文方法能够求解扑翼机翼的平均升力、推力、输入和输出功率及推进效率等。所得计算结果和风洞吹风试验结果吻合良好,证明了本文方法的正确性和有效性。另外,本文还研究了机翼平面形状、展弦比、上下扑时间比对机翼气动特性的影响,这些参数对微型飞行器的设计有一定指导和参考意义。 1 机翼气动特性计算方法简述 应用改进的片条理论计算机翼的气动参数,首先,沿展向方向将机翼分成2n个翼剖面,在机翼扑动运动中的每一时刻,求出每个翼剖面的升力和推力,然后叠加得到整个机翼的瞬时升力和推力。 图1显示了第i个翼剖面所受的力和力矩示意图。机翼扑动轴为左右机翼对称轴,弹性轴为机翼的前梁,机翼随前梁的弯曲而弯曲,随其扭转而扭转。第i个翼剖面的弯曲和扭转用h i和θi表示。h i垂直于扑动轴,表示第i个翼剖面的位移;θi位于h i和扑动轴所组成的平面内,表示第i个翼剖面弦向与来流方向的夹角。首先要求得h i和θi运动参数,进而求得i段机翼的气动参数 。 图1 第i个翼剖面的力和力矩示意图 由图1可知 h i=(h0)i+h~i 2006年12月第24卷第6期 西北工业大学学报 J o urnal o f N o rthw estern Po ly technica l U niv er sity Dec.2006 V o l.24N o.6 ⒇收稿日期:2006-02-21 作者简介:杨淑利(1982-),女,西北工业大学硕士生,主要从事微型飞行器的研究。

微型飞行器

图1:微型飞行器图2:微型直升机

命题教师:1.出题用小四号、宋体输入打印, 纸张大小为8K. 考 生:1.不得用红色笔,铅笔答题,不得在试题纸外的其他纸张上答题,否则试卷无效。2.参加同卷考试的学生必须在“备注”栏中填写“同卷”字样。3.考试作弊者,给予留校察看处分;叫他人代考或代他 人考试者,双方均给予开除学籍处理。并取消授予学士学位资格,该科成绩以零分记。 监测化学、核或生物武器,侦察建筑物内部情况。可适用于城市、丛林等多种战争环境。因为其便于携带,操作简单,安全性好的优点,可以在部队中大量装备。在非军事领域,配置有相应传感器的微型飞行器可以用来搜寻灾难幸存者、有毒气体或化学物质源,消灭农作物害虫等。 1.4主要特点 微型飞行器不同于传统概念上的飞机,它是MEMS (微机电系统)集成技术的产物。微型飞行器的姿态控制系统中的微型地平仪、微型高度计,导航系统中的微型磁场传感器和微型加速度计、微陀螺仪等,飞行控制系统中的微型空速计、微型舵机等,在微型飞行器上应用的微型摄像机、微型通讯系统等,都需要MEMS 技术的支持,以减少体积和重量,改善飞行器的性能。微型飞行器的动力——微型发动机也需利用MEMS 技术制造,所以说,微型飞行器除机身和机翼外,都需依靠MEMS 技术,甚至机翼也可以用MEMS 技术制造灵巧蒙皮,以控制飞行器的飞行姿态。 2 研究现状 从已有的研究情况看,大致可将微型飞行器分为两类:一类是以DARPA 定义为基础相应研制的15厘米左右的微型飞行器;另一类是尺寸更加微小的只有几个厘米或毫米大小的微型飞行器或微型飞行机器人。 根据发展情况,微型飞机主要有三大类别,分别是固定翼微型飞行器,微小扑翼机和微型直升机,以下列举几种: (1) Aero Vironment 公司的“Black Widow ” 该微型飞行器采用固定翼飞行模式,外形类似于盘装飞碟。最大直径15厘米,由微电机驱动前置螺旋桨产生拉力,采用锂电池提供能源,微型飞控系统由计算机、无线接收器和三个微电机驱动的执行器组成。经试飞其留空时间为16分钟,最大飞行速度70公里/小时。设计人员目前正在为其添加必要的通信系统和导航设备,以使其更加具备实用要求。“Black Widow ”代表了目前为飞行器的较高技术水平。 (2) Lockheed Martin 公司的“MicroST AR ” “MicroST AR ”也是一种采用固定翼飞行模式的微型飞行器,他的设计总重为85克,留空时间20分钟,未来将具备GPS 导航定位系统和摄像功能。Lockheed Martin 公司计划将“MicroST AR ”设计成为战场上前所未有的高效侦察工具。 图3: “Black Widow ”微型飞行器 图4:“MicroST AR ”微型飞行器 (3) Lutronix 公司与Auburn 大学合作研制的“Kolibri ” 该微型飞行器是一种旋翼飞机,能够垂直起降和悬停,其直径为10厘米,总重316克,有效负载约100克,可飞行时间30分钟,装有Draper 实验室研制的GPS 、加速度计和陀螺仪集成系统等,动力装置为D-STAR 公司提供的微型柴油发动机。旋翼微型飞行器与固定翼微型飞行器相比的最大优点是能够垂直起降和悬停,因此比较适宜于在室内等狭小空间或较复杂地形环境中使用。 (4) Caltech 的扑翼“MicroBat ” “MicroBat ”是一种防生物飞行方式的扑翼微型飞行器,其机翼是通过模仿蝙蝠和昆虫的翅膀,并用MEMS 技术加工制作而成。该微型飞行器的研究人员通过大量实验研究了扑翼飞行方式的非定常空气动力学特征,并制作了一种轻型传动机构将微电机的转动转变为了机翼的扇动。飞行试验表明该微型飞行器目前使用电池作为能源可飞行5-20秒。 图4:“Kolibri ”微型飞行器 图5: “MicroBat ”微型飞行器 (5) 美国环境航空公司研制的“黑寡妇”微型飞机

飞行器动力工程-专业培养方案(新)

西北工业大学本科生培养方案专业名称飞行器动力工程 专业代码0203 0701 学院名称航天学院动力与能源学院 培养方案制定人签字年月日 院长签字年月日 校长签字年月日 西北工业大学 1 1

2 1

飞行器动力工程专业本科培养方案 一、专业介绍 西北工业大学飞行器动力工程专业以航空航天飞行器动力为对象,以航空宇航推进理论与工程、 动力工程与工程热物理学科为依托,以动力、能源、机械及控制等学科为延拓,历经60多年的发展,已成为我校最具航空航天特色的专业之一。本专业拥有2个国家级重点实验室、2个省部级重点实验 室和工程中心,是陕西省本科“名牌专业”、国防科工委“重点建设专业”和教育部“特色专业”。 本专业涵盖航空发动机和火箭发动机设计、燃烧与流动、叶轮机械、发动机结构与强度等多个研 究方向,参与并支持了我国多个航空飞行器动力装置、航天飞行器动力系统等方面的科研工作,已形 成了一支教学水平高、科研能力强的师资队伍。本专业以国民经济发展和国防建设需求为牵引,充分 发挥国防特色的突出优势,教学与科研紧密结合,培养的学生基础扎实、实践能力强、综合素质高、 创新意识强,得到用人单位的一致好评。 毕业生就业方向主要分布在航天、航空研究院(所)、大专院校、大型企业及部队,从事发动机设计、制造、试验、测试等方面的研究、开发和管理等工作;也可选择报考本专业及相关学科专业的硕 士研究生,近年来平均读研率在60%以上。 二、培养目标 培养适应社会主义现代化建设需要的德智体全面发展,掌握航空航天动力系统设计基本理论和工程应用等专门知识,具备航空航天热动力机械方面设计、分析和解决实际问题的能力,能从事航空航天动力系统总体设计、性能仿真、燃烧组织、流动模拟、传热分析及相关软件开发等,并能从事通用机械设计及制造的高级研究人员和工程技术人员。 三、培养要求 通过通识通修、学科专业和综合实践等培养环节,使学生具有高尚的人文素养、掌握宽广的基础科学理论、具备解决实际问题的基本方法和创新能力;并可结合自身的兴趣、爱好和就业取向,选修有助于拓展视野和提高能力的个性培养课程,从而达到综合素质的全面提升。 毕业生应获得以下几方面的知识和能力: 1、具有扎实的自然科学基础知识,良好的人文、艺术和社会科学基础及较强的语言表达和阅读写作能力。 3 1

飞行器动力工程专业职业生涯规划书范文(原创)

飞行器动力工程专业职业生涯规划书范 文(原创) 飞行器动力工程专业职业规划书范文 初入大学就应该树立正确的职业生涯规划理念,大一就进行职业规划,从一开始就不走弯路。 大一时期,学好基础课全面发展。大学学习与高中不一样,在思想上将被动学习转变为主动学习,逐步培养自己的自学能力,脚踏实地学好基础课程,特别是英语和与专业课相关的课程。在大规划下要做小计划,坚持每天去图书馆学习,坚持每天记英语单词、练习口语,并从大一开始就坚持学下去。大一的学习任务相对轻松,参加了学生会来锻炼自己,提高自己的组织能力和语言表达能力,为以后求职面试而锻炼自己。 大二时期,一方面,稳抓基础课程的学习,另一方面做好由基础课程向专业课程的过渡,并且尽可能多的去图书馆看一些电子信息工程相关的深层次书籍。这一年,手中应握有一两张有分量的英语和计算机认证书,并适当选读其它专业的课程,使自己知识多元化,尽可能的扩大自己的知识面。积极参加有益的社会实践,尽可能多的体验社会生活。 大三时期,主动加深专业课程的学习,准备考研,关注考研信息,确定自己考研目标,尽可能多的搜集考研资料及自己

想要报考学校的近几年考研信息。 大四时期,全面备考。既然选择了考研,只有风雨兼程。大四是考研的关键时期和冲刺期,下足功夫,争取把目标拿下,实现自己继续深造的理想。经过大学三年的学习,自己已储备了足够的知识,经常去检验自己的知识储备,拟好考研目标,尽量往大目标上靠拢,努力考研。 过来人分享:我的职业规划和大学四年规划 主干学科热,力,电;相对来说,偏热多一些,我就是飞动的,本科阶段涉及控制什么的都很浅,基本上可以说是科普,能够了解各种发动机,主要还是训练思维,气动,热力,机械,力,熟练掌握这些。发动机这个学科太大了,而且涡喷这类的东西不是一两个人解决的了的。 职业生涯规划结束语 简单的事,想深了,就复杂了。复杂的事,看淡了,就简单了。有些事,笑笑就能过去。有些事,过一阵就能让你笑笑。在等待的日子里,刻苦读书,谦卑做人,养得深根,日后才能枝叶茂盛。——《修好这颗心》 飞行器动力工程专业就业方向分析: 由于我国飞行器动力行业已得到国家多项专项计划支持,未来该专业将具有很好的发展前景。毕业生可在航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门等从事设计、试验、研究等方面的工作。飞行器动力工程专业

能源与动力工程专业导论论文

能源与动力工程专业导论论文 能动134班:文澜 2013年10月29日能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面包括内燃机、锅炉、航空发动机、制冷及相关测试技术。专业通过理论力学、材料力学、工程制图、机械设计、电工与电子技术、工程热力学、流体力学、传热学、控制理论、热工测试技术以及专业方向课程的学习,使我们具备工程热力学、流体力学、传热学和热工测试技术等能源与动力工程领域的基础理论、实验技能和基本专业知识,掌握制冷空调设备、制冷装置、动力机械与动力工程、流体机械等设计、制造和实验研究的基本技术。在此基础上,它是一个宽口径的专业,拓展空间很大,就业方向很广,目前我国有120多所院校开设有该专业,它由旧本科的九个相关专业合并而成,包括了原来的热力发动机、能源工程、流体机械及流体工程、能源工程与动力机械、制冷与低温技术、能源工程、工程热物理、水利水电动力工程、冷冻冷藏工程专业。同时,能动还是现代动力工程师的基本训练,可见能动是现代动力工程的基础。 能源问题在当今社会举足轻重,能能与动力工程专业在国民经济中的地位可想而知。改革开放以来,国民经济呈现出增长较快、结构优化、效益提高、民生改善的良好运行态势,同时,随着国民经济的发展,对能源的需求也日益增大。高耗能产品产量大幅增长,从而造成能源消费量增长过快。 在能源日益紧迫的当代社会中,能源与动力工程专业应运而生,半个世纪以来,能源与动力工程专业教育为社会输送了大量的高级技术人才和其他各类人才,是我国国家建设尤其是能源动力建设领域的中坚力量,为我国小康社会的建设和自立于世界民族之林作出了重大的贡献。 热模块 热模块,通俗地讲,就是发电、做功部分。主要研究锅炉、汽轮机、燃气轮机热端、内燃机、电厂运行及调控。它们都是依靠一定的能源来发电和做功的,也就是产生动力。 动力工程发电技术是电力生产的灵魂,它在国家发展中具有不可替代的作用。由于电能具有输送及使用方便,易于转变成其他形式的能量等优点,故已成为发展现代社会物质文明的重要条件。电力生产能力是一个国家发展水平的重要指标之一,工农生产及日常生活所需的电能,都是由发电厂集中生产和供应的。电力生产的主要方式有火力发电,水力发电及核能发电等。另外还有风力发电,太阳能发电,地热发电,潮汐发电,磁流体发电及燃料电池等辅助方式,因此,能源动力工程发电技术包括范围极广,有着多样性的特点。

飞行器控制实验报告剖析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 飞行器制导与控制 实验报告 专业:自动化 班级: 学号:1120410333 姓名: 设计时间:2015/12/12

上机实验1: 使用四阶龙格库塔法求解微分方程 sin()ω=+dy t b dx (1) 先定义参数,ωb ,初值条件可以自己任取。 1. 源程序: function [x,y] = M1(fun,x0,xt,y0,PointNum) if nargin<4 | PointNum<=0 PointNum=100; end if nargin<3 y0=0; end y(1,:)=y0(:)'; h=(xt-x0)/(PointNum-1); x=x0+[0:(PointNum)]'*h; for k=1:(PointNum) f1=h*feval(fun,x(k),y(k,:)); f1=f1(:)'; f2=h*feval(fun,x(k)+h/2,y(k,:)); f2=f2(:)'; f3=h*feval(fun,x(k)+h/2,y(k,:)); f3=f3(:)'; f4=h*feval(fun,x(k)+h,y(k,:)); f4=f4(:)'; y(k+1,:)=y(k,:)+(f1+2*(f2+f3)+f4)/6; end 2、运行文件: x0=0; xt=2; Num=100; h=(xt-x0)/(Num-1); x=x0+[0:Num]*h; a=1; yt=1-exp(-a*x); fun=inline('-y+1','x','y'); y0=0; PointNum=100; [xr,yr]=M1(fun,x0,xt,y0,Num); M1_x=xr'

大学职业生涯规划-飞行器动力工程专业

第一部分:认识自我 一.职业兴趣 我是一个性格属于中等的男孩,不骄不躁,易于相处,我乐于交朋友,也愿意帮助我的朋友。平时喜欢看军事新闻,了解飞机运行原理和各项性能。从小到大,我一直都喜欢都喜欢拆卸电器,机械等操作类的。因此我从小就养成了良好的动手能力。喜欢机械的我报了飞行器动力工程专业。 二.职业能力 对实际的机械操作认知和接受能力特别快,操作过程较为强,准,快;并且认真,细心;掌握基本的发动机结构和拆装步骤。掌握航空器的基本原理以及相关的内容;专业英语的认知程度高,有利于迅速对相关职业的认知,方便于日后工作,且避免犯错误造成损失。 三.个人特性 本人具有深思熟虑,沉着冷静,善于自控,活泼开朗,善于交际,独立性强,不拘小节,对人平等;喜欢对将要发生的事情作出决定,想努力成为一位优秀的领导者。在工作中形成一定个人魅力,得到大家的肯定及尊重。软硬兼用,以身作则,对自己未来有信心;喜欢追求各种不明确或明确的目标;热心于感兴趣的事物,了解其原理,研究其内部结构和外形设计;观察力强,工作自觉,热情,能够吃苦耐劳;主张少说多做,有要把事情做成的决心,爱学习,喜欢独立工作。坚信车到山前必有路。 四.职业价值观 从家庭条件方面,首先会考虑待遇较高的稳定的工作,对所选择的职业要有能从中不断学习并获得新知识的机会,并在实践总掌握很强的动手能力和领导能力;重视工作中人与人之间的关系,希望能建立良好的同事关系;本人喜欢过上幸福快乐的生活,并将追逐这种生活。在物质条件和精神满足的情况下,我将衷心于我所喜欢的职业,为之贡献,并起到带头作用,回报社会,带领更多此行业的求职者或者热爱者为中国崛起奋斗。我也不会为了名利而终止工作。 五.胜任能力

能源与动力工程专业培养计划

能源与动力工程专业培养计划 学科门类:工学专业类别:能源动力类专业代码:080501 培养目标:本专业培养德、智、体、美全面发展,具有良好的综合素质、扎实的流体与热科学基础理论、系统的能源与动力工程专业知识与技能、以及较强的现代信息技术应用能力,能胜任能源与动力工程和相关领域的研究、开发、制造、管理、营销和教学等各项工作的高级工程技术人才和管理人才。 培养要求:在具备扎实的能源与动力工程理论知识和技术知识的基础上,进行能源与动力工程典型研究对象的设计和分析,结合实践环节,对相关产品和工程问题的认识逐步深入,切实提高设计能力、创新能力、沟通能力与技术储备能力。具体要求取得以下几方面的知识和能力: 1.具有较扎实的自然科学理论知识和一定的人文社会科学知识; 2.系统地掌握本专业领域宽广的、必需的技术基础理论,主要包括力学理论(工程力学、流体力学)、热工学理论(工程热力学、传热学等)、电工电子学理论、自动控制理论等; 3.掌握本专业领域一个专业方向所必需的专业知识和基本技能,了解其学科前沿及发展趋势,并对其他专业方向的有关专业知识有一定的了解; 4.具有本专业必需的制图、计算、测试、基本工艺、操作、运行等技能; 5.掌握一门外语,要求能阅读专业书刊,并具有一定的听说能力; 6.具有计算机基础知识和较强的计算机应用能力,能较熟练地把计算机及控制技术应用于工程实践中; 7.具有较强的自学能力、独立工作能力、分析能力、创新意识和较高的综合素质。 主干学科:动力工程及工程热物理、机械工程 核心课程:工程力学、流体力学、机械原理与设计、电工电子学、工程热力学、传热学、燃烧学、能源与动力工程控制基础、能源与动力工程测试技术 修业年限与授予学位:基本学制四年,弹性学制三至八年,工学学士。 毕业最低学分:200 制定人:陈汇龙教学院长:康灿教务处长:许文荣分管校长:梅强

飞行控制系统大作业

《飞行控制系统》课程实验报告 班级 0314102 学号 031410224 姓名孙旭东 成绩 南京航空航天大学 2017年4月

(一)飞机纵向飞行控制系统的设计与仿真 1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。 在MATLAB环境下导入数据文件,输入damp(alon),得出结果: Eigenvalue Damping Freq. (rad/s) -2.29e+000 + 4.10e+000i 4.88e-001 4.69e+000 -2.29e+000 - 4.10e+000i 4.88e-001 4.69e+000 -3.16e-002 1.00e+000 3.16e-002 -7.30e-003 + 3.35e-002i 2.13e-001 3.42e-002 -7.30e-003 - 3.35e-002i 2.13e-001 3.42e-002 长周期的根为 -7.30e-003 + 3.35e-002i 和 -7.30e-003 - 3.35e-002i 阻尼为 2.13e-001 自然频率为 3.42e-002(rad/s) 短周期的根为 -2.29e+000 + 4.10e+000i 和 -2.29e+000 - 4.10e+000i 阻尼为 4.88e-001 自然频率为 4.69e+000(rad/s) 2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。 sys=ss(alon,blon,clon,dlon) [y,t]=step(sys,500) subplot(221) plot(t,y(:,1,1)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(222) plot(t,y(:,1,2)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(223) plot(t,y(:,2,1)) xlabel('t(s)') ylabel('\Delta\alpha(deg)') subplot(224) plot(t,y(:,2,2)) xlabel('t(s)') ylabel('\Delta\alpha(deg)')

免费飞机设计:MAV微型飞行器研究进展与总体设计

第30卷 11邹 辉 等:高超声速湍流高效模拟算法第30卷 第6期2010年 12月飞 机 设 计 AIRCRAFT DESIGN V ol. 30 No. 6 Dec 2010文章编号:1673-4599(2010)06-0011-06 MAV微型飞行器研究进展与总体设计 孙 瑜,张 杰,刘 虎,武 哲 (北京航空航天大学 航空科学与工程学院,北京 100191) 摘 要:系统地介绍了微型飞行器的定义、类型、任务和国内外发展现状,提出了现在微型飞行器设计的技术难点,即在气动力计算时,经典的空气动力学不再适用以及缺乏小展弦比机翼在低雷诺数下飞行的试验数据,针对这一难点提出了一套系统的设计方案,分为3个部分,分别是气动力建模、多学科优化和仿真与试验。在气动力建模中采用试验与数值计算相结合的设计方法,在基础试验数据的粗略估算后进行CFD计算达到准确设计的效果。在多学科优化中重点对续航能力进行了优化。最后通过比较仿真的结果和原型机飞行试验的数据对设计进行了验证和反馈。此套设计方法适用于大多数微型飞行器的设计。关键词:微型飞行器;研究进展;总体设计中图分类号:V221 文献标识码:A Research Status and Conceptual Design of Micro Air Vehicle SUN Yu , ZHANG Jie , LIU Hu , WU Zhe ( School of Aeronautic Science and Technology, Beijing University of Aeronautics and Astronautics , Beijing 100191, China ) Abstract : The de ? nition, classi ? cation and function of the Micro Air Vehicle (MA V) are introduced as well as its developing status in the world. The technical dif ? culty of MA V design is put forward, that is the classic aerodynamics is no longer applicable under a serious influence of low Reynolds numbers, and flight test data of low aspect ratio wing is lacked. According to that difficulty, a systematic design scheme is proposed that includes aerodynamic modeling, multi-disciplinary optimization and simulation and testing. Numerical calculation combined with experiment is used in aerodynamic modeling. Multi-disciplinary optimization is emphasized on the capacity of endurance, and ? nally, the design veri ? cation and feedback by comparing simulation results and prototype ? ight testing data. This design method applies to most MA V design.Key words : MA V ; developing status ; conceptual design 收稿日期:2010-03-17;修订日期:2010-09-20 微型飞行器(Micro Air Vehicle, MAV)又称纳米飞行器或微纳米飞行器。微型飞行器定义为一种尺寸为15 cm大小并能靠其自身能力飞行和完成各种探测任务的飞行器[1]。微型飞行器是于20世纪90年代发展起来,其应用技术基本上已超出 传统的飞机设计和空气动力技术的研究范畴,是对传统航空技术的一种挑战,同时它的出现也开拓了纳米技术和微机电系统技术在航空领域的应用。微型飞行器的发展和应用,必将推动国防科技工业的发展,并且具有广阔的民用前景。

相关主题