搜档网
当前位置:搜档网 › 手性药物拆分技术的研究进展

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展
手性药物拆分技术的研究进展

手性药物拆分技术的研究进展

摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。

关键词:手性药物; 外消旋体; 手性拆分

自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。

不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。

手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。

1结晶法拆分

结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。

对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

构体混合物的方法,利用这对非对映异构体盐的溶解度和结晶速率的差异,通过结晶法进行分离,最后脱去拆分剂即得单一构型的异构体。最常见的拆分剂是手性酸或手性碱。

抗惊厥药普瑞巴林( pregabalin, 1)可采用非对映异构体拆分法合成: 1)以(S)-扁桃酸为拆分剂对外消旋终产物进行手性拆分; 2)以(S)-α-甲基苄胺为拆分剂对关键中间体(2)进行拆分,得到R型异构体,对映体过量值( enantiom eric excess, ee)接近100% ,收率为35% ,再通过Hoffm ann降解获得S构型的普瑞巴林[ 11 ]。2004年上市的镇静催眠新药右佐匹克隆( eszop iclone, 3)是佐匹克隆( zop ic lone)实现手性转换的产物,也可以利用结晶法达到拆分目的。用于治疗儿童多动症的盐酸右哌甲酯( dexm ethylphenida te hydrochloride, 4)通过二对甲苯基-d-酒石酸拆分,可得到(1R, 2R)- 4, ee为9915% ,收率为40% [ 12 ]。

非对映异构体拆分(又称为经典拆分法)已有一百多年的历史,其技术含量虽不高,但仍然是当今应用最广泛的一种拆分方法。结晶诱导的不对称转化使光学纯异构体的理论收率超过50%成为可能。近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术,是对非对映异构体拆分的有效补充。

1 . 1组合拆分

组合拆分(combinatorial resolution)是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族( resolving agent family)代替单一拆分剂进行外消旋化合物拆分的新方法[ 1 ]。拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α-氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物。在拆分剂家族中,每个化合物之间要具有非常强的结构类似性和立体化学均一性。这种方法与经典的手性拆分方法相比具有结晶速度快、收率高、纯度好等优点。

实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1的比例溶在某一种溶剂中,进行结晶拆分。与单一拆分剂相比,拆分剂家族以高选择性和高收率与外消旋体快速地形成非对映体的结晶。如以( S, S )-酒石酸衍生物(5)构成的拆分剂家族对32( 1, 4-亚乙基哌啶基)苯甲酸酯( 6)和3, 4-二苯基四氢吡咯( 7)进行拆分:将此拆分剂家族与等物质的量的化合物6、7分别溶在2-丁酮、甲醇中, 析出的结晶用2.78 mol ·L - 1氢氧化钠溶液处理,得到左旋的游离胺, ee分别为99%、98% [ 13 ]。利用( S, S) -酒石酸及其衍生物 5 (X = H, CH3)构成的拆分剂家族,可成功地拆分β- 2 受体激动剂沙丁胺醇( salbutam ol , 8)和特布他林( te rbutaline, 9) ,得到(R)- 8和(R) - 9, ee大于99% ,重结晶收率超过50% [ 14 ]。

1 . 2复合拆分

如果外消旋化合物结构中无酸性或碱性官能团时,那么结晶法拆分的应用将受到限制,复合拆分( comp lex resolution)便是一个补充。复合拆分适用于含有π电子的烯烃、芳香族化合物以及富有孤对电子的有机硫、有机磷类化合物的拆分,在拆分过程中,烯烃或芳香族化合物与具有π电子的拆分剂通过π-π键形成电子转移复合物,或与手性有机金属配合物形成配合物,它们具有非对映异构体的特点而易于被分离。有机硫、有机磷类化合物的孤对电子能与L ew is酸性或L ew i s碱性拆分剂中含有的电子空轨道形成复合物而被分离。

化合物6- 溴-α-(二庚氨基)甲基–9-菲甲醇(10)与α-( 2, 4, 5, 7-四硝基-9-芴亚氨氧基)丙酸(11)可形成π电子转移复合物,将10与( + ) - 11或( - ) - 11溶解在丙酮中并经适当后处理,分别获得( + ) - 10、( - ) -10, ee值大于98% ,重结晶收率超过60% [ 15 ]。N- 仲丁基苦胺( 12)是一个弱酸性化合物,以具有π电子的2-萘基莰基胺(13)为拆分剂,可达到拆分的目的[ 16 ]。

在复合拆分中,多用有机过渡金属配合物作为拆分剂,如使用金属铂化合物(14)对2- 乙烯基四氢吡喃( 15)进行拆分,得到( - ) - 15和( + ) -15, ee值分别为92%和82% [ 17 ]。

1 . 3包合拆分

包合拆分( inclusion resolution)是利用拆分剂分子的空穴与构成外消旋化合物的两种对映异构体之间形成氢键或范德华力能力的不同,对其中一个异构体优先包合,再通过结晶法将两种异构体分离。包合物的形成主要有洞穴包合物( cavita tes)和笼状包合物(cla thra tes)两种方式。在洞穴包合物中,被拆分化合物分子全部或部分地被拆分剂分子中的手性洞穴包合,而在笼状包合物中,被拆分化合物分子被数个拆分剂分子包合形成笼状或隧道的形状。与经典的结晶法拆分相比,包合拆分更有效、更简单。例如,通过对拆分剂进行筛选,利用2, 32 二甲氧基- N, N, N′, N′-四环己基琥珀酰胺(16)与9, 9′-螺二芴烯2 1, 1′-二酚(17)二者

之间形成笼状包合物,成功完成了对化合物17的拆分[ 18 ]。

1 . 4包结拆分

包结拆分( inc lus ion based2resolu tion)是利用拆分剂分子选择性地与外消旋化合物中的一个异构体通过氢键、范德华力等弱的分子间作用力形成稳定的超分子配合物,即包结配合物( inclusioncomplex)而析出,达到手性拆分的目的。在包结拆分中,双羟基化合物联萘二酚( 18)是常用的拆分剂,这个化合物体积较大,而且它们之间可以形成氢键,这样使得客体分子能被容纳在两个双羟基化合物之间,进而形成网状结晶形式。例如,抗溃疡药兰索拉唑( lansoprazole, 19)的拆分:将外消旋的19与( S)-( - ) 2 18溶解在苯\正己烷(体积比2∶1)混合溶剂中,经后处理后得到白色的(S)--( - )- 18和( S )-( - ) -19的包结络合物,其ee值为90.12%。母液经浓缩后得到(S) -( - ) - 18和(R)-( + )- 19的混合物,其ee值为65.11% [ 19 ]。

2动态动力学拆分

经典的动力学拆分与底物消旋化相结合的方法即为动态动力学拆分( dynam ic kine tic resolution)[ 20 ],经典动力学拆分的缺点是最大理论产率仅为50% ,而动态动力学拆分的理论产率可以达到100%。底物消旋化有化学法消旋和酶法消旋,酶法较化学法副反应少、产率高、条件温和,而且无毒、易降解,具有环境友好性,因此更适合工业化生产[ 21 ]。

酶作为一种特殊的催化剂正日益受到人们的重视,从生物体系到非生物体系的酶催化,从酶的固定化到非水相酶反应,酶的应用研究正日益广泛。大部分药物水溶性差,所以利用非水相酶反应对手性药物进行动态动力学拆分,进而获得单一立体异构体的拆分技术在近几年内有了很大的发展。

洛曲非班( lotrafiban, 20)是一个正在进行Ⅲ期临床研究的非肽类糖蛋白拮抗剂,可用于抑制血小板聚集。利用酶法可实现其关键中间体SB-235349 (21)的动态动力学拆分:使用念珠菌属南极洲脂酶B (Candida an ta rc tica li p ase B ) ,以离子液体[BMIM ] [ PF6 ]为溶剂,得到(S) -酸( 22) , ee值大于99.5% [ 22 ]。

3色谱分离法拆分

色谱法不仅广泛用于立体异构体的含量分析,而且利用色谱方法可分离手性药物或手性外消旋中间体。气相色谱( gas chrom a tog raphy, GC)、液相色谱( liquid chrom atograp hy, LC)、超临界流体色谱( sup erc ritical f luid chrom a tog raphy, SFC)、毛细管电泳( cap illa ry elec trophores is, CE)和分子印迹技术(m olecular imp rinting technique, M IT)等色谱法在立体异构体分离中均有应用。

LC分离法又分为手性固定相法( chiral s ta tionalphase, CSP)和手性流动相添加剂法( chria l m obilephase add itive, CM PA ) ,前者应用广泛。例如,抗抑郁药物舍曲林( sertralin, 23)的合成新工艺是将手性拆分从最后一步提前到第一步,对起始原料以多糖为固定相进行手性色谱柱分离得到( 4S) -tetrolone ( 24) ,收率为98% , ( 4R) -tetrolone定量回收且实现消旋化。在依地普仑(escitalopram, 25)的生产工艺中,应用模拟移动床色谱( simulated moving bed chromatography, SMBC)实现了手性拆分。

SFC具有高效、快速、操作条件易于变换等特点,在手性药物的制备方面有独到的优越性。CE根据离子迁移速度的差异实现对不同立体异构体的分离,具有简便、快速、高效的优点。MIT模仿天然抗原/抗体反应原理,对模板分子具有专一性识别作用,具有操作简单、易于产业化等优点。下面主要介绍这3种技术。

3 . 1超临界流体色谱

超临界流体色谱( SFC )是一种流动相温度、压力均高于或略低于临界点的色谱技术,所用流动相有CO2、N2O、NH3、n-C4 H10 ,其中CO2最为常用。超临界流体具有粘度小、扩散系数大、密度高等特点,具有强的溶解能力,可以迅速将产物洗出,且适于分离难挥发和热稳定性差的物质。SFC已经从对手性药物进行分析转向能生产几毫克到几百克样品的半制备或制备规模。益康唑( econazole, 26)、贝康唑( becliconazole, 27) ,联苯康唑( bifonazole, 28)等抗真菌药物的分离即是通过SFC实现的[ 23 - 24 ],相关数据见表1。

3 . 2毛细管电泳

毛细管电泳(CE)是近年来用于拆分手性药物的一种新技术,基本原理是在电场作用下,以毛细管为通道,依据离子迁移速度的差异实现对不同立体异构体的分离。CE具有简便、快

速、高效的优点。利用该项新技术成功实现2-芳基苯丙酸类非甾体抗炎药菲诺洛芬( fenop rofen, 29)、舒洛芬( sup rofen, 30)、吡洛芬(p rip rofen, 31)等药物的手性拆分[ 25 ]。随着拆分机制的深入研究,这一技术将得到进一步完善。

3 . 3分子印迹技术

分子印迹技术(MIT)是模拟天然抗原/抗体作用原理制备对模板分子具有预定选择性的分子印迹聚合物的技术[ 26 ]。首先将具有适当功能基的功能单体与模板分子结合形成分子复合物,其次选择适当的交联剂将功能单体相互交联起来形成聚合物,从而使功能单体上的功能基在空间排列和定向固定,最后通过一定方法脱去模板分子,这样就在高分子聚合物中留下与模板分子在空间结构上完全匹配、并含有与模板分子专一结合的功能基的三维空穴。这些空穴可以选择性地重新与模板分子结合,即对模板分子具有专一性识别作用。该技术具有有效、操作简单、易于产业化等优点,已越来越受到人们的关注。利用该技术,以(S)-萘普生(32)为模板, 4-乙烯基吡啶和双甲基丙烯酸亚乙酯共聚制备了非共价型烙印分子作HPLC手性固定相,以四氢呋喃/正庚烷/冰醋酸(体积比250∶250∶1)作为流动相,成功地从外消旋体中将烙印分子分离出来。当载样量为20μg时,分离因子(α)为1126,拆分因子(RS )为0.169。

4膜拆分

膜拆分方法(membrane based separation )以其能耗低、操作简单、批处理量大、可连续操作等优点,在手性拆分领域得到了广泛关注,具有良好的应用前景。膜拆分的本质是实现对两种对映异构体的选择性转运,依据其转运方式可分为手性液膜拆分( liquid membrane based separation)和手性固膜拆分(solid membrane based separation)两类。手性液膜拆分的机理是将具有手性识别功能的物质溶解在一定溶剂中制成有机相液膜,以膜两侧浓度差为动力,外消旋体有选择地从高浓相向低浓相迁移,由于液膜对两种异构体的选择性差异使二者迁移速率不同,即迁移较快的一种异构体在低浓相中得到富集,从而达到手性分离目的。固膜拆分则利用膜内外自身的手性位点对两种异构体亲和力的差异,在压力差、浓度差或电势差等推动力下造成两种异构体的选择性通过,进而实现拆分的目的。根据手性拆分的要求,所用的拆分膜应具有较高的对映体选择性、较大的膜通量、且选择性及通量应稳定。

利用手性固膜拆分方法可完成心血管药物普萘洛尔(propranolol , 33)的拆分:利用一对对映异构体对纤维素衍生物( 34a、34b、34c)介导的有机硅橡胶膜的吸附差异将其分离,实验表明,普萘洛尔吸附在这3种膜上的S/R (不同对映异构体之比)值分别为1135、2135、2161,因此纤维素衍生物(34c)更适于该药物的手性拆分[ 27 ]。

5萃取拆分

与传统的萃取分离不同,萃取拆分技术( etractive sep aration)要求互相接触的两种液相中至少有一种具有旋光性。从理论上讲,只要两个对映异构体的分离因数大于1,在足够多的级数下即可实现拆分。目前至少存在配位萃取拆分体系、亲和萃取拆分体系以及形成非对映体异构体萃取拆分体系等3种萃取拆分体系。例如苯丙氨酸的拆分即为配位萃取拆分,它是以N-癸基-L-羟基脯氨酸与二价铜离子配合物作为萃取拆分剂该拆分剂与苯丙氨酸形成配合物,由于构型的差异使所形成配合物的稳定性不同,表现不同的物理性质,致使不同构型配合物在两相间的分配行为不同从而实现拆分的目的[ 28 ]。

6旋转带蒸馏技术

旋转带蒸馏技术( spinning band distillation )是一种分离能力较强的新型蒸馏技术,通过选择旋转带蒸馏塔中的电机转速和加热套温度,进而控制采样速度,经过数次重复蒸馏、富集、再蒸馏来达到分离目的。该技术已成功地用于精细化工产品如香精香料的分离,也能够实现同分异构体的分离。外消旋的2, 4-二氯戊二醇的分离提纯就是利用这种技术实现的(含量可达99.18% ) [ 29 ]。如果将该技术用于对映异构体或非对映异构体的拆分,那么将会取得满意的效果。

目前很多重要的手性药物或它们的手性中间体是利用传统的结晶法拆分制备的,随着人们对对映异构体与非对映异构体的性质(如相图)认识的深入和全面,结晶法拆分的合理性和有效性将大大提高。另外,结晶诱导的不对称转化使理论收率超过50%成为可能,非目标异构体的转化利用将大大提高结晶法拆分的经济价值。近几年组合拆分、复合拆分、包合拆分以及包结拆分等新方法的发展和应用,扩大了结晶法拆分的适用范围。结晶法拆分具有过程简便、稳定、适于自动化操作等特点,在手性药物生产中将继续发挥重要的作用。超临界流体色谱、毛细管电泳、分子印记技术等在色谱分离法中的应用,动态动力学拆分的发展,膜拆分、萃取拆分等技术在手性拆分中的应用对结晶法拆分无疑是极大的挑战,有些手性药物的工业化生产已从使用经典的结晶法拆分转为利用色谱分离法、酶催化的动力学拆分方法。多种手性拆分方法的组合应用、手性拆分方法与不对称合成的串联应用,对于复杂结构的手性药物的合成是个必然趋势。总之,随着以手性拆分、不对称合成和手性源合成为核心的手性技术的不断发展和完善,手性制药工业正在进入快速发展阶段。

参考文献:

[ 1 ]尤启东,林国强. 手性药物-研究与应用[M ].北京:化学工业出版社, 2004: 149 - 177 . [ 2 ]李根荣,李志良.手性药物拆分技术研究进展[ J ].中国新药杂志, 2005, 14 (8) : 969 - 974 .

[ 3 ]NGU YEN L A, HE H, PHAM 2 HU Y C. Chira l drugs . A n ove rview [ J ]. Int J B iomed Sci , 2006, 2 ( 2 ) : 85 - 100 .

[ 4 ]MURA KAM I H. From racem ates to single enantiomers chiral synthe tic drugs over the last 20 years [ J ]. Top Curr Chem, 2007, 269: 273 - 299 .

[ 5 ]YU E H F, BU X, YOUNG J, e t a l . Chira lm e thod developm ent s tra tegies for early phase of drug development : a case s tudy [ J ]. Am Pha r m Rev, 2008, 11 (3) : 113 - 118 .

[ 6 ]ERB S. S ingle2 enantiom er drugs poised for furthe rm a rket grow th [ EB /OL ]. [ 2006 - 03 ]. http: / /www. technology catalysts .com /pdf /TCI PharmaTech 1006 . pdf .

[ 7 ]郑熙,胡小玲. 手性拆分液膜及固膜的研究进展[ J ].化工进展, 2008, 27 (11) : 1703 - 1709 .

[ 8 ]X IE R, CHU L Y, D ENG J G. M em branes and membrane p rocesses for chiral resolution [ J ]. Chem SocRev, 2008, 37 (6) : 1243 - 1263 .

[ 9 ]杨座国,许振良.固膜手性拆分机理及其应用[ J ].膜科学与技术, 2005, 25 (2) : 69 - 74 .

[10]TSU KUB E H, SH I NODA S, U EN ISH I J, et al . Molecular recognition with lanthanide (Ⅲ) tris (β-dike tonate ) comp lexes: extrac tion, transport , and chiralrecognition of unp rotec ted am ino ac ids [ J ]. InorgChem, 1998, 37 (7) : 1585 - 1591 .

[ 11 ]HO EKSTA M S, SOB IERA Y D M , SCHW I ND TMA, et al . Chem ica l deve lopm ent of C I2 1008, an enantiom e rica lly pure anticonvulsant [ J ]. O rg Process Res D ev, 1997, 1 (1) : 26 - 38 .

[ 12 ]KAL I N I N A, Q I U G, MARREN T J, et a l . Process of enantiom eric resolution of d, l-( ±) –threo- meth-ylphenidate: US, 2008 /0167470 [ P ]. 2008 - 07 - 10 .

[ 13 ]HULSHO F L A, BROXTERMAN Q B, VRIESTR, et al . Sepa ra tion of m ixtures of enantiom e rs us ingone orm ore resolving agents: EP, 1998 /838448 [ P ]. 1998 - 04 - 29 .

[ 14 ]邓金根,彭小华,华正茂,等.光学纯的肾上腺素类的β-2 激动剂的组合拆分制备法: 中国, 1999 /1273966 [ P ]. 1999 - 10 - 19 .

[ 15 ]CARROLL F I , B ERRANG B, L I NN C P . Resolution of antim a larial agents via comp lex for m ationw ithα2( 2, 4, 5, 72te tranitro2 92 f luorenylideneam inoox y) p rop ionic ac id [ J ]. J Med Chem, 1978, 21 ( 4) : 326 - 330 .

[ 16 ]R ICHARD W , AL FRED A. Sepa ra tion of racem atesinto their op tica lly active components by m eans of addition compounds [ J ]. M ona tsh Chem, 1932, 59: 238 - 240 .

[ 17 ]RA FFA ELLO L, GLOR I A U B, DAR I O P, e t al . ( + ) 2(R) 2 and ( - ) 2( S) 2 vinylte trahydropyran viaresolution of the racem ate by chira l p latinum complexes [ J ]. J Chem Res Synop, 1983 ( 11 ) : 286 -287 .

[ 18 ]CHENG X, HOU G H, X IE J H, et al . Synthes is and optical resolution of 9, 9′2 sp irobif luorene2 1, 1′2 diol [ J ]. O rg L e tt , 2004, 6 (14) : 2381 - 2383 .

[ 19 ]邓金根,彭小华,崔欣,等.光学纯兰索拉唑的制备方法:中国, 2000 /1329003 [ P ]. 2000 - 06 - 19 .

[ 20 ]林志强,王安明,王华,等.手性化合物的动态动力学拆分研究进展[ J ]. 分子催化, 2008, 22 ( 5 ) : 473 - 480 .

[ 21 ]KAMAL A, A ZHAR M A, KR ISHNAJ I , e t a l . Approaches based on enzym e m edia ted kinetic to dynam ic kine tic resolutions: a ve rsa tile route for chira linte r m ediates [ J ]. Coord Chem Rev, 2008, 252 ( 5 /7) : 569 – 592

[ 21 ]BROWN H C, CHANDRASEKHARAN J , RAMACHANDRAN P V. Chiral synthesis via organoboranes . 14 . Selective reducti ons . 41 . Diis op inocampheylchl oroborane, an excep ti onally efficient chiral reducing agent[ J ]. J Am Chem Soc, 1988, 110 ( 5) : 1539- 1546 .

[ 22 ]PA TERS ON I , GOODMAN J M, L ISTER M A, et al . Enanti o and diastereoselective aldol reacti ons of achiral ethyl and methyl ket ones with aldehydes : the use of enol diis op inocampheylborinates[ J ]. Tetrahedron, 1990, 46 (13 /14) : 4663 - 4684 .

[ 23 ]J I ANG X,L I U B, de BRABANDER J K, et al . Total synthesis and structure revisi on of the marine metabolite Pal mer olide A [ J ]. J Am Chem Soc, 2007, 129 (20) : 6386 - 6387 .

[ 24 ]PA TERS ON I , F I NDLAY A D, FLORENCE G J . Total synthesis and stereochemical reassignment of ( + ) -dolastatin 19 [ J ]. Org Lett, 2006, 8 ( 10 ) : 2131 –2134 .

[ 25 ]BOECK MAN JR R K, PERO J E, BOEHMLER D J . Toward the devel opment of a general chiral auxiliary . Enanti oselective alkylati on and a new catalytic asymmetric additi on of silyl oxyfurans : app licati on t o a t otal synthesis of ( - ) 2 Rasfonin [ J ]. J Am Chem Soc, 2006, 128 (34) : 11032 - 11033 .

[ 26 ]SR I HAR I P, RAJENDAR G, RAO R S, et al . First stereoselective t otal synthesis of ( + ) 2 dodoneine[ J ]. Tetrahedron Lett, 2008, 49 (39) : 5590 - 5592 .

[ 27 ]KUMARAS WAMY G,MARK ONDA I AH B. Enanti oselective t otal synthesis of ( - ) -tetrahydroli p statin using Oppolzer′s sultam directed aldol reacti on [ J ]. Tetrahedron Lett, 2008, 49 (2) : 327 - 330 .

[ 28 ]TS UCH IY A S, S UNAZ UKA T, H I ROSE T, et al . Asymmetric t otal synthesis of ( + ) 2K012 0509 B: determinati on of abs olute configurati on [ J ]. Org Lett, 2006, 8 (24) : 5577 - 5580 .

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性化合物的拆分技术

手性化合物的拆分技术研究进展 许多药物具有光学活性。一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 1.生成非对映体拆分 此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。 还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。组合拆分提高了产品收率和纯度。 2.动力学拆分 利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。 3.液膜拆分 将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。 4.固体膜拆分 此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性药物的检测方法研究进展

2 019年第3期分析仪器Analy tical InstrumentationNo.3May .2019 1 基金项目:江苏省高等学校自然科学研究项目(18KJD150003 )。檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱殗 殗 殗 殗 综 述 手性药物的检测方法研究进展 李周敏* 曾 韬 姚开安 李心爱 宣 婕 (南京大学金陵学院,南京210089 )摘 要:对手性药物的分析一直是药学领域的一个研究热点,近年来各种检测新方法也不断应用于手性药物的分析中。本文主要介绍了近十年来手性药物的检测方法。比较目前已有的手性药物检测方法的优势与不足,并对手性药物检测方法的发展趋势进行了展望。 关键词:手性药物 对映异构体 手性检测 综述DOI:10.3969/j .issn.1001-232x.2019.03.001Research on progress in detection methods of chiral drugs.Li Zhoumin*,Zeng Tao,Yao Kaian,Li Xi'nai,Xuan Jie(Nanjing University Jingling College,Nanjing2 10089,China)Abstract:This article introduced detection methods of chiral drugs in the past decade,compared theadvantages and disadvantages of these methods,and prospected the trends.Key  words:Chiral drugs;Enantiomer;Chiral detection;Review1 前言 手性药物即在药物分子结构中引入手性中心所得到的一对互为镜像与实物的对映异构体。目前,临床上使用的药物约有三分之一是手性药物。在药代动力学方面,手性药物也可能在体内的吸收、分布、代谢和排泄中表现出一定程度的立体选择性。因此手性药物的检测在新药研发、活性化合物筛选和药物检验中均十分重要。本文就手性药物的检测方法进行综述。 2 手性药物的检测方法 近年来各种检测新方法不断应用于手性药物的分析中,包括旋光法(polarimetry)和旋光色散法(optical rotation dispersion method,ORD)、圆二色性法(电子圆二色性法electron circular dichroism,ECD、振动圆二色性法vibration circular  dichroism,VCD)、手性拉曼光谱法(Raman optical activity ,ROA)、质谱法(mass sp ectrum,MS)、核磁共振法(nuclear magnetic resonance,NMR),电化学法(Electrochemical)、光学传感器等。2.1 旋光法和旋光色散法 旋光法(polarimetry)一直是人们最常用来检测手性分子的方法,以其操作简单、检测价格低而极受欢迎,也是现在《中国药典》中广泛使用的方法。虽然影响因素较多,包括温度、检测光波长、样本杂质等,但其在一定条件下满足手性分析基本需求。在实验中通常以光学纯度来对样品进行分析。通常将供试品在钠光谱D线处的旋光度与相同条件下同种纯品旋光度的比值定义为光学纯度(opticalpurity ,O.P),其值某种意义上反映了供试品纯度。戴月华等人[1] 用旋光法测定硫酸西索米星氯化钠注 射液中西索米星的含量。郝玲花等人[2]用旋光度法 测定布洛芬注射液中精氨酸的含量,主药布洛芬不 干扰精氨酸测定。杨振林等人[3]用旋光法测定氯霉素滴耳液中氯霉素的含量。董杰[4]用旋光法测定盐

毛细管电泳色谱在手性药物拆分中的应用

毛细管电泳色谱在手性药物拆分中的应用 摘要:毛细管电泳色谱法是手性药物拆分的重要方法之一,是一种高效、快速、简便的手性分离手段。该技术在药物对映体的拆分、定量方面发挥了重要作用。近年来,手性药物的毛细管电泳拆分技术得到快速发展,本文参阅了国内外相关文献,对毛细管电泳技术的手性拆分模式及主要手性选择剂作了简单介绍,并介绍了一些新的手性选择剂在手性药物拆分中的应用。 关键词:毛细管电泳手性试剂手性拆分

The Application of Capillary Electrophoresis in Chiral Drug Separation Abstract:Capillary Electrophoresis is one of the crucial methods in chiral drug analysis. It is an important method with highly efficient, rapid and convenient features. This technology plays a crucial role in enantiomeric separation and quantitative analysis. In recent years, the application of capillary electrophoresis in chiral drug analysis has been developing rapidly. According to recent references, this paper makes a brief discription about the application of capillary electrophoresis in chiral drug separation. Keywords: Capillary electrophoresis; Chiral reagent; Chiral separation; 引言 手性是自然界的基本属性,也是生命系统最重要的属性之一,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质都是手性的。据统计,在研发1200种新药中,有820种是手性的,占世界新药开发的68 %以上[1],而用于治疗的手性化合物中约88 %为外消旋体,作为单一对映体用药的只占手性药物的11%左右[2]。手性药物的立体结构与其生物活性有着密切的关系。药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用和不良反应。如著名的“反应停事件”,沙利度胺只有( S ) -对映体具有致畸作用,( R ) -对映体具有镇静作用而无致畸作用。 目前,手性药物的拆分方法主要有经典结晶法、化学拆分法、生物拆分法、膜分离法、手性液-液拆分法和色谱法等[3, 4],其中色谱法由于简便快捷、分离效

我国手性药物研发现状

我国手性药物研发薄弱 手性药物的巨大市场,也引起了我国学术界、工业界的注意。国内已经有一些机构开始重视手性药物的研发,尤其是中国科学院下属相关研究所的手性药物研发工作取得了明显的成果,部分研究达到了国际先进水平,还获得了多项具有自主知识产权的成果。 手性药物在我国的市场潜力不容忽视。波士顿咨询集团的一项研究报告指出,中国目前的药物市场居全球第7位,居美国、日本、德国、法国、英国和意大利之后。到2010年,中国的药物市场将达到240亿美元,超越英国和意大利列第5位。随着人们对用药安全、高效等方面要求,手性药物的需求会逐年增长。 然而,我国现在手性药物的研究还远远跟不上市场发展的需求。有专家指出,总体来说,我国对手性药物的化学合成和生物合成研究不多,基础性和创新性研究更少,与世界手性药物领域的研发水平还存在较大差距。如果国内科研机构不做进一步的探索研究,将来医药生产厂家采用国外技术的时候就要交付大量的专利费用。 一直以来,手性药物的研发是我国新药研发的一个弱项。但日前中国科学院 成都有机化学公司“手性药物国家工程研究中心”项目通过发改委的评估和中国 科学院上海有机化学研究所与日本大赛璐(中国)投资有限公司联合成立“SIOC- DAICEL手性分析技术合作研究中心”,堪称为我国手性技术的发展添上了浓墨重 彩的一笔。 回首今年,我国手性药物研究有了长足进展,表现在合成技术、制备技术等 方面取得了诸多成果。 ■更多合成新方法被发现 前一段时间,通过评估的由中国科学院上海有机化学研究所林国强院士负责 的“手性与手性药物研究中的若干科学问题研究”项目组,在手性药物的合成方 面取得了一些重要进展:发展了构筑手性季碳中心及合成砌块的新方法,并用于 合成了一系列具有药用价值的天然产物及类似物;建立了几种手性配体及金属催 化剂的负载化新方法,以及“均相催化-液/液两相分离”催化剂分离回收新方法, 发展了以水和聚乙二醇为反应介质的环境友好的不对称反应,将负载手性催化剂 应用于羰基还原反应及抗抑郁症的手性药物的合成;对苯环壬酯和戊乙奎醚光学 异构体的合成进行了较系统的研究,建立了M受体各亚型特异性评价和筛选模型, 研究了各个光学异构体的药理活性和毒性;发现了两个目标药物的活性异构体, 为进一步开发打下了基础。 日前湖南理工学院又传来捷讯,该院唐课文教授所领导的研究组以D-酒石酸 和正辛醇为原料合成了手性拆分剂D-酒石酸正辛酯,其结构经过了红外光谱(IR )确证。该研究以对甲苯磺酸为催化剂,甲苯作带水剂,对D一酒石酸正辛酯的 合成做了较为详细的探讨。通过正交实验得到的优化反应条件为:D-酒石酸100 毫摩尔,n(D-酒石酸):n(正辛醇)=1.0:2.8,对甲苯磺酸0.5克,甲苯55毫升, 慢速搅拌,酯化率在98%以上,收率达90%。 唐课文教授指出,常用的生物分离法、结晶法、色谱法等都存在这样或那样

手性拆分进展

手性拆分技术进展

手性拆分技术进展 手性拆分(chial resolution)称光学拆分或外消旋体拆分(optical resolution),为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构的方法。近几十年在工业上应用很广,尤其在手性药物开发上,已逐渐成为新药发展重要方向和热点领域。当前,用于手性物质拆分的方法主要有:化学拆分法、毛细管电泳技术、色谱分析法、萃取拆分法、聚合膜拆分法。 一、化学拆分法 (一)晶种结晶法是在饱和或过饱和的外消旋体溶液中加入其中一个对映异构体的晶种, 使该对映异构体稍稍过量而造成不对称环境, 结晶就会按非平衡的过程进行。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体, 而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在, 但在某一定的温度范围内,只可以用聚集物的形式结晶出来,而不是产生外消旋化合物的结晶。1934 年,Duschinsky【1】首次应用该方法实现了盐酸组氨酸的分离。 (二)外消旋体的不对称转换一对合成的外消旋体由于在非手性条件下物理、化学性质相同,普通的分离方法如蒸馏、重结晶等在这种情况下时无能为力的。因此要设法先将一对对映异构体变成非对映体,然后再借用二者物理、化学性质的区别,将他们分开,制纯,再分别将非对映异构体分解,得回两个纯的对映体。这种方法一般需要被拆分的分子中有一个易发生反应的基团,如羧酸、碱基等,然后让它们与一个纯的(+)或(-)光活性化合物反应,形成盐或酯,这样就形成了一对非对映异构体。如: 常用的光化学试剂有:光活性碱:奎宁、马钱子碱等 光活性酸:酒石酸、樟脑磺酸等 1853 年,Pastrure【2】对该种拆分方法进行了全面概括酸碱性的外消旋体的拆分方面具有明显的优势,但也存在一定的局限性拆分过程中使用的手性试剂是拆分成功与否的关键合适的拆分剂应具备以下条件: 1 、必须容易与外消旋体中的2、个对映体结合生成非对映异构体,经拆分后又容易实现原

手性药物的研究发展

手性药物的研究发展 学号:312011********* 姓名:王震班级:2011级化学2班 摘要:在生命过程中发生的各种生化反应过程均与手性的识别和变化有关,从而联系到药物的手性,由于手性药物的对映异构体的药效也有差别,导致在药物合成过程中不对称合成成为重中之重。 另外虽然手性药物的物理化学性质基本相同,但是由于药物分子所作用的受体或靶位是氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,它们对与其结合的药物分子的空间立体构型有一定的要求,因此,对映体药物在体内往往呈现很大的药效学、药动学等方面的差异。因此手性拆分已成为药理学研究和制药工业日益迫切的课题。 关键词:手性药物的定义手性药物合成手性药物拆分发展趋势 1手性药物的定义: 人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。手性是人类赖以生存的自然界的本质属性之一。生命现象中的化学过程都是在高度不对称的手性环境中进行的。由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物。药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的[3]。 在许多情况下,化合物的一对对映异构体在生物体内的药理活性、代谢过程、代谢速率及毒性等存在显著的差异。按药效方面的简单划分,可能存在三种不同的情况: (1)只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用; (2)一对对映异构体中的两个化合物都有等同的或近乎等同的药理活性; (3)两种对映体具有完全不同的药理活性,如镇静药沙利度胺,(R)-对映体具有缓解妊娠反应作用,(S)-对映体是一种强力致畸剂[2]。 2手性药物的合成: 自19世纪以来作为手性药物的合成的主要手段——不对称反应研究已经有了100多年的历史,其发展历程经历了四个阶段: (1)手性源的不对称反应; (2)手性助剂的不对称反应; (3)手性试剂的不对称反应; (4)不对称催化反应: 在底物A进行不对称反应时加入少量的手性催化剂C,使它与反应底物和试剂形成高反应活性的中间体,催化剂作为手性模板控制反应物的对映面,经不对称反应得到新的手性产物T,而C在反应中循环使用,达到手性增值或手性发大效应。由于不对称催化反应是催化量的反应,对于产

手性拆分

手性拆分 手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。[1]为生产具有光学活性药物的重要工具。 与不对称合成法比较,手性拆分的缺点为尽有50%的产率。有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。这种方法称为动态动力学拆分。酮的烯醇化是常用的外消旋化反应。 拆分方法 结晶拆分法 晶种结晶法:也称优先结晶法。是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。冷却到一定的温度。这时稍微过量的与晶种相同的异构体就会优先结晶出来。滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。这时另一个稍微过剩的异构体就会结晶出来。理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。 没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。 晶种结晶法是在路易·巴斯德的工作的基础上发现的。文献上最早报道的应用是肾上腺素的拆分。 路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。 直接结晶拆分法:也称自发结晶拆分法。这是巴斯德最早发现的拆分方法。是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。对映结晶可以人工分开。 外消旋美沙酮可以通过这种方法拆分。[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

手性药物拆分技术研究进展—

药物分析实验论文手性药物拆分技术研究进展 专业制药工程 班级制药工程101班 姓名苏阳 学号 3100822018 二零一三年七月

目录 手性药物拆分技术研究进展 (1) 摘要 (1) 1. 结晶法 (2) 2. 组合拆分 (5) 3. 复合拆分技术 (5) 4. 色谱拆分技术 (6) 5. 手性液-液萃取拆分法 (9) 6. 膜分离法 (9) 7. 酶法拆分技术 (10) 8. 总结与期望 (10)

手性药物拆分技术研究进展 苏阳 (西安理工大学应用化学系,西安 710048) 【摘要】手性药物在当今世界的药物市场上发展十分迅猛,其根本原因即为当下很多手性药物都具有非常高的药理活性,在对抗一些恶性疾病上发挥着重要的作用。而由于手性物质的不同对映体对生物体的生理活性有差异,这种差异不但遏制了手性药物的发展,更让人们付出了极大的代价。基于此,手性药物的合成、分离又变得火热起来。本文目的即在于综述前人对手性药物的分离方法,如色谱法、结晶法等,总结各种方法的优缺点,并关注当今世界前沿的拆分新技术,以求让手性药物能更好地为人类服务。 关键词:手性药物;拆分分离;外消旋体; Advances in the chiral drug resolutions SU Yang (Faculty of Applied Chemistry, Xi’an University of Technology, Xi’an 710048 China) Abstract There is a fast development of chiral drugs in the modern medicine market throughout the world, for the essencial reason that so many chiral drugs have a high performance in treating diseases, which other ingredients can’t replace. Whereas the chiral substances, which is called raceme, contain two different enantiomorphs that have distinctive effect on our body. Based on the condition, the essay is to trace the approaches that have discovered for separation as well as the lastest technology of chiral drugs’split. All in all, my aim is to make a clear summary of every way for its disadvantages or drawback and make the full use of the chiral medicine. Key Words: chiral drug; separation ; raceme;

手性药物的结晶拆分方法

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可经过反复的重结晶实现。 在实际应用过程中,尤其在工、限生产过程中,利用优先结晶方法的特点进行循环往复的结晶分离。这一方法从20世纪50年代起用于抗生素氯霉素(chloramphenicol,9)的中间体D—苏型?1—对硝基苯基—2—氨基—1,3—丙二醇(10)的拆分,至今工业生产中仍然在使用。循环优先结晶方法又称为“交*诱导结晶拆分

手性药物及中间体的发展现状及趋势

手性药物及中间体的发展现状及趋势 刘庆彬 (河北师范大学化学化工研究所,石家庄050091) 1.手性药物及中间体发展起因及意义 在生命的产生和进化过程中,造成了生物体内的蛋白质,核酸, 酶和细胞表面受体具有特定的手性结构,因此生物体对不同立体手性分子具有不同的生理和化学反应,从而导致光学活性不同的手性分子具有不同的药理和毒理作用。最著名的例子是20世纪50年代中期,欧洲的反应停事件,反应停(沙利度胺Thalidomide)作为镇静剂,用于减轻孕妇清晨呕吐,结果导致产生1.2万海豹畸形儿的悲剧。后来研究表明只有R-沙利度胺具有镇静作用,S-沙利度胺具有至畸作用。大多数手性药物中不同的光学异构体具有不同的药理和毒理作用,如:L-多巴(L-dopa)是治疗帕金森的药物,而D-多巴却有严重的副作用。β-受体阻断剂普萘洛尔S-体的活性是R-体的98倍。左旋西替利嗪的抗过敏活性是混旋体二倍。其右旋体没有活性且有副作用。不仅医药如此,农药,除草剂,植物生长调节剂,甜味剂和香料都表现出不同的手性识别,如甜冬素的右旋体具有甜味,其左旋体具有苦味。柠檬烯的左旋体为柠檬味,其右旋体为橘子味。 除草剂Metolachlor四种异构体中只有两种异构体有活性。鉴于不同的光学活性的手性分子具有如此大的差异,1984年荷兰药理学家Ariens极力倡导手性药物以单一对映体上市,他的观点得到药物部门的重视,欧洲,日本和美国的药政部门相继做出了相应的管理规定,如美国FDA1992年5月规定:手性药物以单一对映体的形式能更好的控制病情,简化剂量-效应关系。虽然不排除以消旋体申请药物,但要分离对应体,分别进行实验,说明手性药物中所含单一对映体的药理,毒性和临床效果。否则对映体有可能作为50%的杂质对待,难以批准。自此之后,手性药物的市场一直保持快速增长的态势,手性药物的研发已成为当今世界新药研发的发展方向和热点领域。从而也带动了手性中间体的发展。 2.目前手性药物及中间体的市场状况 自1992年以来,手性药物的市场一直保持快速增长的趋势。1995年全球手性药物的销售额为557亿美元,比1994年增长23%,占世界药品销售额22%。1996年为729亿美元,增长30.9%,1998年为994亿美元,占药品市场总额30%。1999年超过1千亿美元为1150亿美元,1995-1999年5年内全球单一光学活性体的手性药物销售额翻了一翻。2003年达到1460亿美元并以8%年增长速度增长。据统计在2003年世界十大销售的药物中,以单一光学活性体销售的手性药物就有六个(表1)。 除此之外,全球新上市的药物中, 手性药物也呈现明显上升趋势;1990-1993年共批准36个, 平均每年为9个,1994年26个,1996年为29个。1998-1999年上市的手性药物占上市药物50%以上。目前正在开发的1200种药物中, 手性化合物为820种,单一光学活性体为620个,而处于Ⅱ/Ⅲ临床的实验药物中, 80%是单一光学活性体。专家预测到2005年全球上市的化学合成新药有60%的为单一光学活性体。从以上分析看出手性药物的时代已经来临。从而也促进了手性中间体和手性技术的迅速发展。 2002年手性化合物的市场为70亿美元,55%使用传统技术(手性源和拆分)获得的。 35%使用化学催化生产的。10%是生物催化获得的。预计2004年手性化合物的销售额可达85.7亿美元。2005年可达到95亿美元,但所用的手性技术变化不大。49%来源于手性源和拆分;36%来源于化学催化;16%来源于生物催化。2009年手性工业的市场可达到149.4亿美元,年增长为11.4%。所用的手性技术变化为41%来源于手性源和拆分;

手性拆分技术

手性拆分技术 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。化学控制技术:普通化学合成、不对称合成和手性源合成. 生物控制技术:天然物的提取分离技术和控制酶代谢技术。 手性拆分法: 结晶法拆分、动力学拆分、色谱分离法拆分、膜拆分法、萃取拆分法 1.结晶拆分法 结晶法拆分包括直接结晶法拆分和非对映异构体拆分分别适用于外消旋混合物和外消旋化合物的拆分。 在一种外消旋混合物的过饱和溶液中, 直接加入某一对映体的晶种,即可得到一定量的该对映体, 这种直接结晶的拆分方法仅适用于外消旋混合物, 其应用几率不到10% 外消旋化合物较为常见, 大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物, 扩大直接结晶法拆分的应用范围使部分外消旋化合物转变为外消旋混合物。也可采用与另一手性化合物(即拆分剂)形成非对映异构体混合物的方法, 利用这对非对映异构体盐的溶解度和结晶速去率的差异, 通过结晶法进行分离, 最后脱去拆分剂即得单一构型的异构体。最常见的拆分剂是手性酸或手性碱。 近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术, 是对非对映异构体拆分的有效补充。 1.1 组合拆分 组合拆分是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族代替单一拆分剂进行外消旋化合物拆分的新方法。拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α-氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物。在拆分剂家族中, 每个化合物之间要具有非常强的结构类似性和立体化学均一性。 实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1

相关主题