搜档网
当前位置:搜档网 › 变化率与导数、导数的计算

变化率与导数、导数的计算

变化率与导数、导数的计算
变化率与导数、导数的计算

第十一节变化率与导数、导数的计算

[备考方向要明了]

考什么怎么考

1.了解导数概念的实际背景.

2.理解导数的几何意义.

3.能根据导数定义求函数y=c(c为常

数),y=x,y=x2,y=x3,

y=

1

x的导数.

4.能利用基本初等函数的导数公式和

导数的四则运算法则求简单函数的导

数.

1.对于导数的几何意义,高考要求较高,主要以选择

题或填空题的形式考查曲线在某点处的切线问题,

如2012年广东T12,辽宁T12等.

2.导数的基本运算多涉及三次函数、指数函数与对数

函数、三角函数等,主要考查对基本初等函数的导

数及求导法则的正确利用.

[归纳·知识整合]

1.导数的概念

(1)函数y=f(x)在x=x0处的导数:

称函数y=f(x)在x=x0处的瞬时变化率

lim

Δx→0

f(x0+Δx)-f(x0)

Δx=lim

Δx→0

Δy

Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即

f′(x0)=lim

Δx→0

Δy

Δx=lim

Δx→0

f(x0+Δx)-f(x0)

Δx.

(2)导数的几何意义:

函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).

(3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0

f (x +Δx )-f (x )

Δx

为f (x )的导函数.

[探究] 1.f ′(x )与f ′(x 0)有何区别与联系?

提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.

(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.

3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗?

提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数

3.导数的运算法则

(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数

复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

[自测·牛刀小试]

1.(教材习题改编)f ′(x )是函数f (x )=1

3x 3+2x +1的导函数,则f ′(-1)的值为( )

A .0

B .3

C .4

D .-73

解析:选B ∵f (x )=1

3x 3+2x +1,∴f ′(x )=x 2+2.

∴f ′(-1)=3.

2.曲线y =2x -x 3在x =-1处的切线方程为( ) A .x +y +2=0 B .x +y -2=0 C .x -y +2=0

D .x -y -2=0

解析:选A ∵f (x )=2x -x 3,∴f ′(x )=2-3x 2. ∴f ′(-1)=2-3=-1. 又f (-1)=-2+1=-1,

∴切线方程为y +1=-(x +1),即x +y +2=0. 3.y =x 2cos x 的导数是( ) A .y ′=2x cos x +x 2sin x B .y ′=2x cos x -x 2sin x C .y =2x cos x D .y ′=-x 2sin x

解析:选B y ′=2x cos x -x 2sin x .

4.(教材习题改编)曲线y =sin x

x 在点M (π,0)处的切线方程是________.

解析:∵f (x )=sin x

x ,∴f ′(x )=x ·cos x -sin x x 2,

∴f ′(π)=-ππ2=-1

π

.

∴切线方程为y =-1

π(x -π),即x +πy -π=0.

答案:x +πy -π=0

5.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.

解析:由题意知f ′(5)=-1, f (5)=-5+8=3, ∴f (5)+f ′(5)=3-1=2. 答案:2

导数的计算

[例1] 求下列函数的导数 (1)y =(1-x )?

??

?1+

1x ; (2)y =ln x x ;

(3)y =tan x ; (4)y =3x e x -2x +e.

[自主解答] (1)∵y =(1-x )????1+1x =1

x

-x =x 1

2--x 1

2,

∴y ′=(x

1

2

-)′-(x 1

2

)′=-12x 32--12

x 1

2-

.

(2)y ′=????ln x x ′=(ln x )′x -x ′ln x x 2

=1x ·x -ln x x 2=1-ln x x 2.

(3)y ′=????sin x cos x ′ =(sin x )′cos x -sin x (cos x )′

cos 2x

cos x cos x -sin x (-sin x )cos 2x =1

cos 2x

.

(4)y ′=(3x e x )′-(2x )′+e ′

=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2=(ln

3+1)·(3e)x -2x ln 2.

若将本例(3)中“tan x ”改为“sin x

2????1-2cos 2x 4”如何求解? 解:∵y =sin x 2????1-2cos 2x 4=-sin x 2cos x 2=-1

2sin x ∴y ′=-1

2cos x .

—————

——————————————

求函数的导数的方法

(1)求导之前,应先利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;

(2)有的函数虽然表面形式为函数的商的形式,但可在求导前利用代数或三角恒等变形将其化简为整式形式,然后进行求导,这样可以避免使用商的求导法则,减少运算量.

1.求下列函数的导数

(1)y =x +x 5+sin x

x 2;(2)y =(x +1)(x +2)(x +3);

(3)y =11-x +11+x ;(4)y =cos 2x

sin x +cos x .

解:(1)∵y =x 1

2+x 5+sin x x 2

=x 3

2-+x 3+sin x

x 2, ∴y ′=(x

3

2

-)′+(x 3)′+(x -2sin x )′

=-32x 52-

+3x 2-2x -3sin x +x -2cos x .

(2)y =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.

(3)∵y =11-x +11+x =2

1-x

∴y ′=? ???

?21-x ′=-2(1-x )′(1-x )2=2

(1-x )2. (4)y =cos 2x

sin x +cos x =cos x -sin x ,

∴y ′=-sin x -cos x .

[例2] 求下列复合函数的导数: (1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2?

???2x +π

3;(4)y =ln(2x +5). [自主解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5 与u =2x -3复合而成,

∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′ =5u 4·2=10u 4=10(2x -3)4.

(2)设u =3-x ,则y =3-x 由y =u 12

与u =3-x 复合而成. ∴y ′=f ′(u )·u ′(x )=(u 1

2

)′(3-x )′ =12u -12(-1)=-12u 1

2

- =-123-x =3-x 2x -6

.

(3)设y =u 2,u =sin v ,v =2x +π

3,

则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin ????2x +π3·cos ????2x +π3 =2sin ?

???4x +2π

3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x , ∴y ′=12x +5·(2x +5)′=2

2x +5.

—————

——————————————

复合函数求导应注意三点

一要分清中间变量与复合关系;二是复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的任一环;三是必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其复合关系.

2.求下列复合函数的导数: (1)y =(1+sin x )2;(2)y =ln x 2+1;

(3)y =1

(1-3x )4

;(4)y =x

1+x 2.

解:(1)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x . (2)y ′=(ln x 2+1)′ =

1

x 2+1·(

x 2+1)′

1x 2+1

·1

2(x 2+1)1

2-·(x 2+1)′ =

x x 2+1

. (3)设u =1-3x ,y =u -4. 则y x ′=y u ′·u x ′=-4u -5·(-3) =12

(1-3x )5

.

(4)y ′=(x

1+x 2)′

=x ′·1+x 2+x (

)

1+x 2′ =1+x 2+

x 2

1+x 2=1+2x 2

1+x 2

.

导数的几何意义

[例3] (1)(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.

(2)已知曲线y =13x 3+43

.

①求曲线在点P (2,4)处的切线方程; ②求斜率为4的曲线的切线方程.

[自主解答] (1)y =x 2

2,y ′=x ,

∴y ′|x =4=4,y ′|x =-2=-2.

点P 的坐标为(4,8),点Q 的坐标为(-2,2), ∴在点P 处的切线方程为y -8=4(x -4),即 y =4x -8.

在点Q 处的切线方程为y -2=-2(x +2),

即y =-2x -2.解?????

y =4x -8,

y =-2x -2,

得A (1,-4),则A 点的纵坐标为-4.

(2)①∵P (2,4)在曲线y =13x 3+4

3上,

且y ′=x 2,

∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.

②设切点为(x 0,y 0),则切线的斜率k =x 20=4, x 0=±2.

切点为(2,4)或?

???-2,-4

3, ∴切线方程为y -4=4(x -2)或y +4

3=4(x +2),

即4x -y -4=0或12x -3y +20=0. [答案] (1)-4

若将本例(2)①中“在点P (2,4)”改为“过点P (2,4)”如何求解? 解:设曲线y =13x 3+4

3与过点P (2,4)的切线相切于点A ????x 0,13x 30+43, 则切线的斜率k =y ′|x =x 0=x 20. ∴切线方程为y -????13x 30+43=x 2

0(x -x 0), 即y =x 20·x -23x 30+43

.

∵点P (2,4)在切线上,

∴4=2x 20-23

x 3

0+\f(4,3),即x 30-3x 2

0+4=0. ∴x 30+x 20-4x 20+4=0.

∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0.

∴(x 0+1)(x 0-2)2=0.解得x 0=-1或x 0=2. 故所求的切线方程为4x -y -4=0或x -y +2=0.

—————

——————————————

1.求曲线切线方程的步骤

(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; (2)由点斜式方程求得切线方程为y -y 0=f ′(x 0)·(x -x 0). 2.求曲线的切线方程需注意两点

(1)当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;

(2)当切点坐标不知道时,应首先设出切点坐标,再求解.

3.已知函数f (x )=2

x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x 轴

和y 轴于A ,B 两点,O 为坐标原点.

(1)求x 0=1时,切线l 的方程;

(2)若P 点为????-23,233,求△AOB 的面积.

解:(1)f ′(x )=

1x +1

,则f ′(x 0)=

1

x 0+1, 则曲线y =f (x )在点P (x 0,f (x 0))的切线方程为 y -f (x 0)=

1x 0+1

(x -x 0),

即y =

x

x 0+1

+x 0+2

x 0+1

. 所以当x 0=1时,切线l 的方程为x -2y +3=0.

(2)当x =0时,y =

x 0+2

x 0+1

; 当y =0时,x =-x 0-2.

S △AOB =

12?????

???x 0+2x 0+1·(x 0+2)=(x 0+2)22 x 0+1, ∴S △AOB =???

?-23+222

-2

3

+1=839.

导数几何意义的应用

[例4] 已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是( )

A.????-1

2,+∞ B.?

???-∞,-1

2 C.[)-1,+∞

D.(]-∞,-1

[自主解答] 由题意知曲线上存在某点的导数为1, 所以y ′=2ax +3-1

x =1有正根,

即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;

当a <0时,需满足Δ≥0,解得-1

2≤a <0.

综上,a ≥-1

2.

[答案] A —————

—————————————— 导数几何意义应用的三个方面

导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;

(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0

求解.

4.若函数f (x )=sin ????3x +π

6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________. 解析:∵f (x )=sin ????3x +π

6+θ, ∴f ′(x )=3cos ?

???3x +π

6+θ. 于是y =f ′(x )+f (x )=sin ????3x +π6+θ+3cos ????3x +π

6+θ =2sin ????3x +π6+θ+π3=2sin ????3x +θ+π

2 =2cos(3x +θ),

由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数, ∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π

2.

答案:π

2

1个区别——“过某点”与“在某点”的区别

曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.

4个防范——导数运算及切线的理解应注意的问题

(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. (2)利用导数公式求导数时,只要根据几种基本函数的定义,判断原函数是哪类基本函数,再套用相应的导数公式求解,切不可因判断函数类型失误而出错.

(3)直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.

(4)曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.

易误警示——导数几何意义应用的易误点

[典例] (2013·杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+15

4x -9都相切,

则a 等于( )

A .-1或-25

64

B .-1或21

4

C .-74或-2564

D .-74

或7

[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),

即y =3x 20x -2x 3

0,又(1,0)在切线上,则x 0=0或x 0=32

, 当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-25

64

当x 0=32时,由y =274x -274与y =ax 2+15

4x -9相切可得a =-1,所以选A.

[答案] A [易误辨析]

1.如果审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点,则易误选B. 2.解决与导数的几何意义有关的问题时, 应重点注意以下几点: (1)首先确定已知点是否为曲线的切点是解题的关键;

(2)基本初等函数的导数和导数运算法则是正确解决此类问题的保证; (3)熟练掌握直线的方程与斜率的求解是正确解决此类问题的前提. [变式训练]

1.曲线y =sin x sin x +cos x -1

2在点M ????π4,0处的切线的斜率为( ) A .-12

B.12 C .-

22

D.22

解析:选B

y ′=cos x (sin x +cos x )-(cos x -sin x )sin x (sin x +cos x )

2 =1(sin x +cos x )2

,故y ′???

4

x π==12. ∴曲线在点M ????π4,0处的切线的斜率为1

2

. 2.已知函数f (x )=x 3+f ′????23x 2-x ,则函数f (x )的图象在点???

?23,f ???

?23处的切线方程是________.

解析:由f (x )=x 3+f ′????23x 2

-x ,

可得f ′(x )=3x 2+2f ′????

23x -1, ∴f ′????23=3×????232+2f ′????23×23-1, 解得f ′????23=-1,即f (x )=x 3-x 2-x . 则f ????23=????233-????232-23=-2227

, 故函数f (x )的图象在???

?23,f ????23处的切线方程是

y +22

27=-????x -23,即27x +27y +4=0. 答案:27x +27y +4=0

一、选择题(本大题共6小题,每小题5分,共30分)

1.(2013·永康模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )

解析:选D 据函数的图象易知,x <0时恒有f ′(x )>0,当x >0时,恒有f ′(x )<0. 2.若函数f (x )=cos x +2xf ′????π6,则f ????-π3与f ????π3的大小关系是( ) A .f ????-π3=f ????π

3 B .f ????-π3>f ????π

3 C .f ????-π3

?π3 D .不确定

解析:选C 依题意得f ′(x )=-sin x +2f ′????

π6, ∴f ′????π6=-sin π6+2f ′????π6, f ′????π6=12,f ′(x )=-sin x +1, ∵当x ∈???

?-π2,π

2时,f ′(x )>0,

∴f (x )=cos x +x 是????-π2,π2上的增函数,注意到-π3<π

3,于是有f ????-π3

2

D .2

解析:选C f ′(x )=3x 2-2tx -4, f ′(-1)=3+2t -4=0,t =1

2

.

4.曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1

D .y =-2x -1 解析:选A 依题意得y ′=(x +1)e x +2,则曲线y =x e x +2x -1在点(0,-1)处的切线的斜率为y ′|x =0,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即y =3x -1.

5.(2013·大庆模拟)已知直线y =kx 与曲线y =ln x 有公共点,则k 的最大值为( ) A .1 B.1e C.2e

D.2e

解析:选B 从函数图象知在直线y =kx 与曲线y =ln x 相切时,k 取最大值.y ′=(ln x )′=1x =k ,x =1k (k ≠0),切线方程为y -ln 1

k =k ????x -1k ,又切线过原点(0,0),代入方程解得ln k =-1,k =1

e

.

6.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2.下面的不等式在R 上恒成立的是( )

A .f (x )>0

B .f (x )<0

C .f (x )>x

D .f (x )

解析:选A 由已知,令x =0得2f (0)>0,排除B 、D 两项;令f (x )=x 2+14,则2x 2+1

2+

x ????x 2+14′=4x 2+12>x 2,但x 2+14>x 对x =1

2

不成立,排除C 项. 二、填空题(本大题共3小题,每小题5分,共15分) 7.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.

解析:f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4.∴f ′(0)=-4. 答案:-4

8.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.

解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.

答案:x -y -2=0

9.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解. 又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1

x =0有正实数解.

∴5ax 5=-1有正实数解.∴a <0. 故实数a 的取值范围是(-∞,0). 答案:(-∞,0)

三、解答题(本大题共3小题,每小题12分,共36分)

10.已知函数f (x )=ax -6

x 2+b 的图象在点(-1,f (-1))处的切线方程为x +2y +5=0,求y

=f (x )的解析式.

解:由已知得,-1+2f (-1)+5=0, ∴f (-1)=-2,即切点为(-1,-2). 又f ′(x )=(ax -6)′(x 2+b )-(ax -6)(x 2+b )′

(x 2+b )2

=-ax 2+12x +ab (x 2+b )2

∴?????

-a -6

1+b

=-2,-a -12+ab (1+b )

2

=-1

2,

解得?

????

a =2,

b =3.

∴f (x )=2x -6

x 2+3

.

11.如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .

(1)求直线l 1的方程; (2)求△ABD 的面积S 1.

解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点. ∵y ′=4x ,∴直线l 1的斜率k =-4. 所以直线l 1的方程为y -2=-4(x +1), 即4x +y +2=0.

(2)点A 的坐标为(-1,2),

由条件可求得点B 的坐标为(a,2a 2), 点D 的坐标为(a ,-4a -2),

∴△ABD 的面积为S 1=1

2×|2a 2-(-4a -2)|×

|-1-a |=|(a +1)3|=-(a +1)3.

12.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).

(1)试求x k 与x k -1的关系(k =2,…,n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解:(1)设点P k -1的坐标是(x k -1,0), ∵y =e x ,∴y ′=e x ,

∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k -1),令y =0,则

x k =x k -1-1(k =2,…,n ). (2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1), ∴|P k Q k |=e x k =e -(k -1),

于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e -(n -1) =1-e -n 1-e -1=e -e 1-n e -1

, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=

e -e 1-n e -1

.

1.设函数f (x )在x 0处可导,则lim Δx →0 f (x 0-Δx )-f (x 0)

Δx

等于( )

A .f ′(x 0)

B .-f ′(x 0)

C .f (x 0)

D .-f (x 0)

解析:选B lim Δx →0 f (x 0-Δx )-f (x 0)

Δx

=-lim Δx →0

f [x 0+(-Δx )]-f (x 0)

(-Δx )

=-f ′(x 0).

2.求下列各函数的导数: (1)(x )′=12x 1

2

-;

(2)(a x )′=a 2ln x ;

(3)(x cos x )′=cos x +x sin x ; (4)????x x +1′=1x +1, 其中正确的有( ) A .0个 B .1个 C .2个

D .3个

解析:选B 根据函数的求导公式知只有(1)正确.

3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.

解析:∵y ′=2x ,∴点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交

点为(a k +1,0),

∴a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =1

2.∴a 3=4,a 5=1.∴a 1+

a 3+a 5=21.

答案:21

4.设函数f (x )=ax -b

x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.

(1)求f (x )的解析式;

(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.

解:(1)方程7x -4y -12=0可化为y =7

4x -3.

当x =2时,y =1

2.

又f ′(x )=a +b

x

2,

于是???

2a -b 2=12

a +

b 4=7

4,

解得?

????

a =1,

b =3.

故f (x )=x -3x

.

(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3

x 2知曲线在点P (x 0,y 0)处的切线方程为y

-y 0=???

?1+3

x 20

(x -x 0), 即y -?

???x 0-3x 0

=????1+3

x 20

(x -x 0). 令x =0得y =-6

x 0,从而得切线与直线x =0的交点坐标为????0,-6x 0. 令y =x 得y =x =2x 0.从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).

所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为1

2???

?-6x 0|2x 0|=6.

故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.

高中数学导数之变化率问题

冷世平之教案设计【高二下】 选修2-2第一章导数及其应用第1课时 1 课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34 ()3 V r r π=,如果将半径r 表示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0)0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平均膨胀率为(2)(1)0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()()r V r V V V -- 【探究2】高台跳水

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

高中数学 3.1变化率与导数教案 新人教A版选修1-1

与导数教案 新人教A 版选修1-1 [教学目的] 1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义; 2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法 3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。 [教学重点和难点]导数的概念是本节的重点和难点 [教学方法]讲授启发,自学演练。 [授课类型]:新授课 [课时安排]:1课时 [教 具]:多媒体、实物投影仪 [教学过程] 一、复习提问(导数定义的引入) 1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度? 在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42 ++-=t t t h ,那么我们就会计算 任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?

表格1 表格2 0?t 时,在[]t ?+2,2这段时间内 ()()()1 .139.41.139.422222-?-=?-?+?= ?+-?+-=t t t t t t h h v ()()()1 .139.41.139.422222-?-=??-?-= -?+-?+=t t t t t h t h v 当-=?t 0.01时,-=v 13.051; 当=?t 0.01时,-=v 13.149; 当-=?t 0.001时,-=v 13.095 1; 当=?t 0.001时,-=v 13.104 9; 当-=?t 0.000 1时,-=v 13.099 51; 当=?t 0.000 1时,-=v 13.100 49; 当-=?t 0.000 01时,-=v 13.099 951; 当=?t 0.000 01时,-=v 13.100 049; 当-=?t 0.000 001时,-=v 13.099 995 1; 当=?t 0.000 001时,-=v 13.100 004 9; 。。。。。。 。。。。。。 问题:1你能描述一下你算得的这些数据的变化规律吗?(表格2) 关于这些数据,下面的判断对吗? 2.当t ?趋近于0时,即无论t 从小于2的一边,还是t 从大于2的一边趋近于2时,

课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算 一抓基础,多练小题做到眼疾手快 1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3) 解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0 D .x +y -1=0 解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,∴f ′(0)=1. 所以所求切线方程为y +1=x , 即x -y -1=0. 3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017 D .2 0182 017 解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017 .故选D. 4.若曲线f (x )=x sin x +1在x =π2 处的切线与直线ax +2y +1=0 相互垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2 =1.又直线ax +2y +1=0的斜率为-a 2 ,所以1×????-a 2=-1,解得a =2. 答案:2 5.(2018·杭州模拟)已知函数f (x )=x 33-b 2 x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________. 解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

高中数学-变化率与导数_提高

变化率与导数 【学习目标】 (1)理解平均变化率的概念; (2)了解瞬时速度、瞬时变化率的概念; (3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】 知识点一:平均变化率问题 1.变化率 事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率 一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121 ()() f x f x x x -- 要点诠释: ① 本质:如果函数的自变量的“增量”为x ?,且21x x x ?=-,相应的函数值的“增量”为 y ?,21()()y f x f x ?=-,则函数()f x 从1x 到2x 的平均变化率为 2121 ()()f x f x y x x x -?=?- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。 对于不同的实际问题,平均变化率富于不同的实际意义。如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。 高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。 3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法: ①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即2121 ()()f x f x y x x x -?=?-。 要点诠释: 1. x ?是1x 的一个“增量”,可用1x x +?代替2x ,同样21()()y f x f x ?=-。 2. x V 是一个整体符号,而不是V 与x 相乘。 3. 求函数平均变化率时注意,x y V V ,两者都可正、可负,但x V 的值不能为零,y V 的值可以为零。若

第1讲 变化率与导数、导数的计算

第1讲变化率与导数、导数的计算 [学生用书P39] 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 一般地,称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x= x0,即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数 称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数 f(x)=c(c为常数)f′(x)=0 f(x)=x n(n∈Q*)f′(x)=nx n-1 f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x

3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、习题改编 1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.(选修2-2P18A 组T6改编)曲线y =1-2 x +2在点(-1,-1)处的切线方程为________. 解析:因为y ′= 2 (x +2) 2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3 t (t 是时间,s 是位移),则该 机器人在t =2时的瞬时速度为________.

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

(完整版)变化率与导数、导数的运算

让青春之光闪耀在为梦想奋斗的道路上。 1 第十节变化率与导数、导数的运算 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义: 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). (3)函数f (x )的导函数: 称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

高中数学-变化率与导数、导数的计算

高中数学-变化率与导数、导数的计算 一、选择题(每小题5分,共35分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为( ) A.0 B.3 C.4 D.- 【解析】选B.因为f(x)=x3+2x+1, 所以f′(x)=x2+2. 所以f′(-1)=3. 2.已知函数f(x)=cos x,则f(π)+f′= ( ) A.- B.- C.- D.- 【解析】选C.因为f′(x)=-cos x+(-sin x), 所以f(π)+f′=-+·(-1)=-. 3.(·吉林模拟)已知曲线y=ln x的切线过原点,则此切线的斜率 为( ) A.e B.-e C. D.- 【解析】选C.y=ln x的定义域为(0,+∞),且y′=,设切点为(x0,ln x0),则y′=,切线方程为 y-ln x0=(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为. 【变式备选】曲线y=e x在点A(0,1)处的切线斜率为( )

A.1 B.2 C.e D. 【解析】选A.由题意知y′=e x,故所求切线斜率k=e x=e0=1. 4.(·沈阳模拟)若曲线y=x3+ax在坐标原点处的切线方程是2x-y=0,则实数a= ( ) A.1 B.-1 C.2 D.-1 【解析】选C.导数的几何意义即为切线的斜率,由y′=3x2+a得在x=0处的切线斜率为a,所以a=2. 【变式备选】直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值 为( ) A.2 B.ln 2+1 C.ln 2-1 D.ln 2 【解析】选C.y=ln x的导数为y′=,由=,解得x=2,所以切点为(2,ln 2).将其代入直线方程y=x+b,可得b=ln 2-1. 5.已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为( ) A.y=0 B.y=2x C.y=x D.y=-2x 【解析】选B.因为f(x)=2e x sin x,所以f(0)=0,f′(x)=2e x·(sin x+cos x),所以f′(0)=2,所以曲线f(x)在点(0,f(0))处的切线方程为y=2x. 6.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等 于( ) A.-1 B. C.-2 D.2 【解析】选A.因为y′=,所以y′=-1, 由条件知=-1,所以a=-1. 7.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于 ( ) A.2 B.-1 C.1 D.-2 【解析】选C.依题意知,y′=3x2+a, 则由此解得 所以2a+b=1. 二、填空题(每小题5分,共15分) 8.若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为________________.

变化率问题 导数的概念

1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率.(重点) 3.会利用导数的定义求函数在某点处的导数.(重点、难点) 4.理解函数的平均变化率,瞬时变化率及导数的概念.(易混点) [基础·初探] 教材整理1函数的平均变化率 阅读教材P2~P4“思考”以上部分,完成下列问题. 1.函数的平均变化率 (1)对于函数y=f(x),给定自变量的两个值x1,x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子____________称为函数y=f(x)从x1到x2的平均变化率. (2)习惯上用Δx表示x2-x1,即Δx=________,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=________.于是,平均变化率可表示为________.

2.平均变化率的几何意义 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1) Δx 为割线AB 的______,如图1-1-1 所示. 图1-1-1 【答案】 1.(1)f (x 2)-f (x 1)x 2-x 1 (2)x 2-x 1 f (x 2)-f (x 1) Δy Δx 2.斜率 判断(正确的打“√”,错误的打“×”) (1)由Δx =x 2-x 1,知Δx 可以为0.( ) (2)Δy =f (x 2)-f (x 1)是Δx =x 2-x 1相应的改变量,Δy 的值可正,可负,也可为零,因此平均变化率可正,可负,可为零.( ) (3)对山坡的上、下两点A ,B 中,Δy Δx =y 2-y 1 x 2-x 1可以近似刻画山坡的陡峭程 度.( ) 【答案】 (1)× (2)√ (3)√ 教材整理2 瞬时速度、导数的概念 阅读教材P 4~P 6“例1”以上部分,完成下列问题. 1.瞬时速度 (1)物体在__________的速度称为瞬时速度. (2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为Δs Δt =s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时, Δs Δt 无限趋近于某个常数v ,我们就说当Δt 趋向于0时,Δs Δt 的________是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt .

相关主题