搜档网
当前位置:搜档网 › 勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型
勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型

利用勾股定理求线段长

1 ?如图,在等腰直角三角形ABC中,/ ABC = 90° D为AC边的中点,过D点作DE丄DF, 交AB于E,交BC于F,若AE = 4, FC = 3,求EF的长.

(注:直角三角形斜边上的中线等于斜边的一半

利用勾股定理求面积

2?如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D'处,BC交AD'于点E,AB = 6 cm, BC = 8 cm,求阴影部分的面积.

利用勾股定理逆定理判断三角形的形状

3. 在△ ABC中,D为BC的中点,AB = 5, AD = 6, AC = 13,判断△ ABD的形状.

利用勾股定理解决几何体表面的最短路径问题

4. (中考青岛)如图,圆柱形玻璃杯的高为12 cm,底面周长为18 cm在杯内离杯底4 cm的点C处有一

滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短

距离为 _________ .

利用勾股定理解决实际问题

65如图,某港口位于东西方向的海岸线上,

A ,

B 两军舰同时离开港口 0,各自沿一固定方向航 行,A 舰每小时航行32 n mile, B 舰每小时航行24 n mile ,它们离开港口一个小时后,相距40 nmile ,

几种常见的热门考点

勾股定理及其应用

1 .直角二角形两直角边长分别为6和8,则连接这两条直角边中点的线段长为(

A . 3

B . 4

C . 5

D . 10 2.如图,长方形ABCD 沿着直线BD 折叠,使点C 落在点C'处,BC'交AD 于点

E ,AD = 8,

AB = 4,贝U DE 的长为 _________ .

3.如图,已知/ C = 90° BC = 3 cm ,BD = 12 cm ,AD = 13 cm.A ABC 的面积是 6 cm 2 求:

(1)AB 的长度; ⑵△ ABD 的面积.

(第3题)

勾股定理的验证

已知A 舰沿东北方向航行,则 B 舰沿哪个方向航行

?

4?如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90得厶DAE,所以/ BAE =90°且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt A BAE和Rt A BFE的面积之和,根据图形写出一种证明勾股定理的方法.

(第4 题)

冷感总直角三角形的判别

5. 在△ ABC中,AB = 12 cm, AC = 9 cm, BC = 15 cm,下列关系式成立的是()

A.Z B+Z C> / A

B.Z B +Z C=Z A

C.Z B+Z C

6. _______________________________________________________________________ 已知|x—12+ |z—13和(y —5)2互为相反数,则以x,y,z为边长的三角形为 ______________________ 角形.

7 .在4X 4的正方形网格中,每个小正方形的边长都是1,线段AB,EA分别是图中1X 3的两个长方形的对角线,请你说明:AB丄EA.

?考点仏利用勾股定理求最短距离

8?如图,圆柱形无盖玻璃容器高18 cm,底面周长为60 cm,在外侧距下底1 cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的外侧距上口 1 cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛

所走的最短路线的长度.

利用勾股定理解决实际问题

9. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捕鱼”的问题?小溪边长着两棵棕榈,恰好隔 岸相望?一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的 距离是50肘尺?每棵树的树顶上都停着一只鸟?忽然,两只鸟同时看到棕榈树间的水面上游出一条 鱼,它们立刻以相同的速度飞去抓鱼, 并且同时到达目标.问这条鱼出现的地方离比较高的棕榈树的 树根有多远? 思想方法

a .方程思想

10. 如图,四边形 ABCD 是长方形,把△ ACD 沿AC 折叠得到厶ACD ,AD'与BC 交于点E ,

b .分类讨论思想

11. 在△ ABC 中,若 AB = 20,AC = 15, AD 是BC 边上的高,AD = 12,试求△ ABC 的面积

.<

C.转化思想

12?如图,△ ABC是等腰直角三角形,AB = AC, D是斜边BC的中点,E, F分别是AB , AC 边上的点,且AE = CF,若BE = 14, CF= 2,求线段DF的长.

勾股定理的逆定理专题练习

勾股定理的逆定理 专题训练 1.给出下列几组数:①111,,345 ;②8,15,16;③n 2-1,2n ,n 2+1;④m 2-n 2,2mn ,m 2+n 2(m>n>0).其中—定能组成直角三角形三边长的是( ). A .①② B .③④ C .①③④ D .④ 2.下列各组数能构成直角三角形三边长的是( ).A .1,2,3 B .4,5,6 C .12,13,14 D .9,40,41 3.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).A .8 B .10 C .11 个D .12个 4.如果一个三角形一边的平方为2(m 2+1),其余两边分别为m -1,m + l ,那么 这个三角形是( ); A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5.ABC ?的两边分别为5,12,另—边c 为奇数,且a + b + c 是3的倍数,则c 应为_________,此三角形为________. 6.三角形中两条较短的边为a + b ,a - b (a>b ),则当第三条边为_______时,此三角形为直角三角形. 7.若A B C ?的三边a ,b ,c 满足a 2+b 2+c 2+50=6a +8b +l0c ,则此三角形是_______三角形,面积为______. 8.已知在ABC ?中,BC =6,BC 边上的高为7,若AC =5,则AC 边上的高为 _________. 9.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为______,理由是_______. 10.一个三角形的三边分别为7cm ,24 cm ,25 cm ,则此三角形的面积为_________。 11.如图18-2-5,在ABC ?中,D 为BC 上的一点,若AC =l7,AD =8,CD=15,AB =10,求ABC ?的周长和面积. 12.已知ABC ?中,AB =17 cm ,BC =30 cm ,BC 上的中线AD =8 cm ,请你判断ABC ?的形状,并说明理由 .

勾股定理常见题型

专题一:勾股定理与面积 知识点精讲: 类型一“勾股树”及其拓展类型求面积 典型例题: 1.如图(16),大正方形的面积可以表示为,又可以表示为,由此可得等量关系______________________,整理后可得:___________. 2.图中字母所代表的正方形的面积为144的选项为( ) 3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是() A.9 B.36 C.27 D.34 4.如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=________. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=() A.25 B.31 C.32 D.40 6.如图,已知在Rt ABC △中,? = ∠90 ACB,4 AB=,分别以AC,BC为直径作半圆,面积分别记为1S,2S, 则 12 S S +的值等于________ 7.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是________.8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( ) A.2 B.4 C.8 D.16 a a a a b b b b c c c c 图(16) 8 6 C B A

《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》: 3.2 勾股定理的逆定理 填空题 1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长. (第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm. 3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米. (第4题)(第5题)(第6题) 5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号) 6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)

(第7题)(第8题)(第9题) 8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3) 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是. 10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米. (第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸. 13.观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= ,c= . 解答题 14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论; (2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

勾股定理的应用教学设计20

勾股定理在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理理解:决实际问题的方法分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,有服务于生活的道理。 教学重点 如何利用勾股地理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 —,温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读了非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (二)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析---------画图---------解答 (RTΔ)(勾股定理) 三、探究提升 (一)出示课件4(思考题)

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理常见题型

1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为 专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题: 3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角 边的长分别是3和6,则大正方形与小正方形的面积差是 ( ) 4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形 正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ . 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( ) A. 25 B . 31 C . 32 D . 40 7?如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________ 8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积 _________________________ ,整理后可得: _______________ C 6 .如图,已知在Rt A ABC 中, C 6 8 ①

勾股定理及其逆定理 一

勾股定理及其逆定理 一、知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2 ,那么这个三角形是直角三角形。 3、满足2 22c b a =+的三个正整数,称为勾股数。 二、典型题型 1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法. 例1已知 △ABC 中,∠ACB =90°,AB =5㎝.BC =3㎝,CD ⊥AB 于点D ,求CD 的长. (2)构造法.例8、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积. (3)分类讨论思想.(易错题) 例3在Rt △ABC 中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC 中,AB=15,AC=20,BC 边上的高线AD=12。试求BC 的长。 例5、在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 . 练习: 1、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

(5)方程思想. 例6如图4,AB 为一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐苹果,一只猴子从D 往上爬到树顶A 又沿滑绳AC 滑到C 处,另一只猴子从D 滑到B ,再由B 跑到C .已知两只猴子所经路程都是15米.试求大树AB 的高度. 例题7、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 例9. 如图,在Rt △ABC 中,CD 是斜边AB 上的高线,且AB=10,BC=8,求CD 的长。 练习: 1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。 C ' F E O D C B A 图4 C A

勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型 利用勾股定理求线段长 1.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长. (注:直角三角形斜边上的中线等于斜边的一半) 利用勾股定理求面积 2.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6 cm,BC=8 cm,求阴影部分的面积. 利用勾股定理逆定理判断三角形的形状 3.在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,判断△ABD的形状.

利用勾股定理解决几何体表面的最短路径问题 4.(中考·青岛)如图,圆柱形玻璃杯的高为12 cm,底面周长为18 cm.在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________. 利用勾股定理解决实际问题 65如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口O,各自沿一固定方向航行,A舰每小时航行32 n mile,B舰每小时航行24 n mile,它们离开港口一个小时后,相距40 n mile,已知A舰沿东北方向航行,则B舰沿哪个方向航行? (第6题)

几种常见的热门考点 勾股定理及其应用 1.直角三角形两直角边长分别为6和8,则连接这两条直角边中点的线段长为() A.3 B.4 C.5 D.10 (第2题) 2.如图,长方形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为________. 3.如图,已知∠C=90°,BC=3 cm,BD=12 cm,AD=13 cm.△ABC的面积是6 cm2.求: (1)AB的长度; (2)△ABD的面积. (第3题) 勾股定理的验证 4.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE =90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计 Y qzx Bmm 【内容和教材分析】 内容教材第31-33页,17.2勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

勾股定理及其应用

勾股定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。 重点知识勾股定理的验证

(美)伽菲尔德总统拼图 如右图,直角梯形的面积等于三个直角三角形的面积之和,所以 ()()22121221 c ab b a b a +?=+? +,即222c b a =+ 赵爽弦图 如右图,用四个全等的直角三角形可得到一个以()a b -为边长的小正方形和一个边长为c 的大正方形,因为大正方形的边长为c ,所以面积为2c ,又因为大正方形被分割成了四个全等的直角边长分别为b a ,的直角三角形和一个边长为()a b -的正方形,所以其面积为 ()2 2 14a b ab -+?所以()2 22 14a b ab c -+?=,从而222b a c +=. 刘徽:青朱出入图 如右图,通过拼图,以c 为边长的正方形面积等于分别以b a ,为边长的两个正方形的面积之和 名师提示 用拼图法验证勾股定理的思路:①图形经过割补拼接后,只 要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理 重点知识 确定几何体上的最短路线 描述 示意图 9 E D B A C F 7 D A E B C F 展开 5 甲 F D E F

最新勾股定理知识点与常见题型总结(1)

《勾股定理分类练习》 题型一:直接考查勾股定理:直角三角形中,若a, b 分别为直角边,c 为斜边,那么直角三 角形三边的关系为 a 2 +b 2 =c 2 注意:直角三角形中,最长的边为斜边,较短的两边为直角边 1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是 2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的 边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。 3、在Rt △ABC 中,斜边AB 2 =3,则AB 2+BC 2+AC 2的值是______ “知二求一”的题,可以直接利用勾股定理! 4、在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 5、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7 D .7或25 1、已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 2、已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 3、已知△ABC ,∠A=90 °, ∠B=30°,AB=5,求AC,BC 的值. 题型三:勾股定理的逆定理: 1、以下列各组数为边长,能组成直角三角形的是( ) A .2,3,4 B .10,8,4 C .7,25,24 D .7,15,12 2、分别有下列几组数据:①6、8、10 ②12、1 3、5 ③ 17、8 、15 ④ 4、11、9其中能构成直角三形的有: ( ) A、4组 B、3组 C、2组 D、1组 3、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角形 4、请写出“对顶角相等”和“垂直平分线上的点到线段两端距离相等”的逆命题 题型四、与直角三角形面积相关

最新勾股定理常见题型总结

典型题型 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴10AB = ⑵8BC = 题型二:应用勾股定理建立方程 例2. ⑴在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解: ⑴4AC , 2.4AC BC CD AB ?= = D B A C ⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S = ⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得 60ab =1302S ab ∴==2cm 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 2 1 D C B A 分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=? ∴ 1.5DE CD == 在BDE ?中

90,2BED BE ∠=?= Rt ACD Rt AED ??? AC AE ∴= 在Rt ABC ?中,90C ∠=? 222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴= 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 答案:6 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m A B C D E 分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m 在Rt ADE ? 中,由勾股定理得10AD == 答案:10m 题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a ,b ,c ,判定ABC ?是否为Rt ? ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ?是直角三角形且90C ∠=? ②22139b c +=,22516 a =,222 b c a +≠ABC ∴?不是直角三角形

勾股定理知识点与常见题型总结(1)

勾股定理知识点与常见题型总 结(1) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《勾股定理分类练习》 题型一:直接考查勾股定理:直角三角形中,若a, b 分别为直角边,c 为斜边,那么直角三角形三边的关系为 a 2 +b 2 =c 2 注意:直角三角形中,最长的边为斜边,较短的两边为直角边 1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是 2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。 3、在Rt △ABC 中,斜边AB 2 =3,则AB 2+BC 2+AC 2的值是______ “知二求一”的题,可以直接利用勾股定理! 4、在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 5、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7 D .7或25 题型二:应用勾股定理建立方程(“知一求二”的题,应设未知数) 3:4152、已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 3、已知△ABC ,∠A=90 °, ∠B=30°,AB=5,求AC,BC 的值. 题型三:勾股定理的逆定理: 1、以下列各组数为边长,能组成直角三角形的是( ) A .2,3,4 B .10,8,4 C .7,25,24 D .7,15,12 2、分别有下列几组数据:①6、8、10 ②12、1 3、5 ③ 17、8 、15 ④ 4、11、9其中能构成直 角三形的有:( ) A、4组 B、3组 C、2组 D、1组 3、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角形 4、请写出“对顶角相等”和“垂直平分线上的点到线段两端距离相等”的逆命题 题型四、与直角三角形面积相关 A B C D 7cm

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例 一、利用勾股定理解决立体图形问题 勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。 一、长方体问题 例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是() A、41cm B、34cm C、50cm D、75cm 分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD 是Rt△BCD 的斜边,BD 是Rt△ BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。 解:在Rt△ABC 中,AB=5 ,AC=4,根据勾股定理, 得BC= AB2 AC2 = 41 , 在Rt△BCD 中,CD=3,BC= 41 , 22 BD= BC2 CD2 = 50 。所以选C。说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。二、圆柱问题 例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?

分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。由题意可知,S、 F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3 的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。 解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16 (cm),在Rt△SBF 中,∠SBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34(cm),所以蜘蛛所走的最短路线的长度是34cm。 说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想转化思想。 二、利用勾股定理确定最短问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1(恩施自治州)如图 1 ,长方体的长为15,宽为10 ,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是() 图1 ①

勾股定理知识点常见题型总结

勾股定理复习 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明,常见的是拼图的方法 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用:勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. ①已知直角三角形的任意两边长,求第三边。在ABC ?中,90C ∠=? ,则c ,b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 常见图形: A B C 30°D C B A A D B C C B D A c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

《勾股定理的逆定理》word版 公开课一等奖教案 (7)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 《18.2勾股定理的逆定理》 教学目标 1.掌握直角三角形的判别条件. 2.熟记一些勾股数. 3.掌握勾股定理的逆定理的探究方法. 教学方法 1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想. 2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神. 教学重点难点: 教学重点:探究勾股定理的逆定理. 教学难点:勾股定理的逆定理的应用. 教学过程: 一、创设问属情境,引入新课 活动1:(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力. 师生行为:学生分组讨论,交流总结;教师引导学生回忆. 这一活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”. 生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短. 21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度

相关主题