搜档网
当前位置:搜档网 › 直流双闭环调速系统(课程设计)[1]

直流双闭环调速系统(课程设计)[1]

直流双闭环调速系统(课程设计)[1]
直流双闭环调速系统(课程设计)[1]

目录

第一章绪论 (2)

第二章直流调速系统的方案设计 (3)

2.1设计技术指标要求 (3)

2.2现行方案的讨论与比较 (3)

2.3选择PWM控制调速系统的理由 (4)

2.4采用转速、电流双闭环的理由 (4)

第三章 PWM控制直流调速系统主电路设计 (5)

3.1主电路结构设计 (5)

3.1.1 PWM变换器介绍 (5)

3.1.2泵升电路 (10)

3.2参数设计 (11)

3.2.1 IGBT管的参数 (11)

3.2.2缓冲电路参数 (11)

3.2.3泵升电路参数 (12)

第四章 PWM控制直流调速系统控制电路设计 (12)

4.1检测环节 (12)

4.1.1电流检测环节 (12)

4.1.2电压检测环节 (16)

4.2调节器的选择与调整 (17)

4.2.1调节器限幅 (17)

4.2.2调节器锁零 (17)

4.3 系统的给定电源、给定积分器 (17)

4.3.1给定电源GS (17)

4.3.2给定积分器 (18)

4.4 触发电路的确定 (18)

4.4.1选用触发电路时须考虑的因素 (18)

4.4.2触发电路同步电压的选取 (19)

第五章课程设计原始数据 (21)

第六章参数计算 (21)

6.1电流调节器的设计 (21)

6.2速度调节器设计 (22)

课程设计总结

参考文献

第一章绪论

在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。

本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。首先描述了变频器的发展历程,提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。在此基础上,本文将做出SG3525单片机控制的H型PWM变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的系统性能。

关键词:直流调速;双闭环;PWM;SG3525;直流电机

第二章 直流调速系统的方案设计

2.1 设计技术指标要求

1.直流电动机:

型号:DJ15

功率:485W

电枢电压:220V

电枢电流:1.2A

额定转数:1600rpm

2.调速范围:1:1200

3.起动时超调量:电流超调量:%5≤i σ;转速超调量: %5≤n σ

2.2 现行方案的讨论与比较

直流电动机的调速方法有三种:

(1)调节电枢供电电压U 。改变电枢电压主要是从额定电压往下降低电枢

电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内

无级平滑调速的系统来说,这种方法最好。a I 变化遇到的时间常数较小,能快速

响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通Φ。改变磁通可以实现无级平滑调速,但只能减弱

磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

f I 变化时间遇到的时间常数同a I 变化遇到的相比要大得多,响应速度较慢,但

所需电源容量小。

(3)改变电枢回路电阻R 。在电动机电枢回路外串电阻进行调速的方法,

设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;

空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。因此,自动控制的直流调速系统往往以调压调速为主速。

改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压需要有专门的可控直流电源,常用的可控直流电源有以下三种:

(1)旋转变流机组。用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止可控整流器。用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。

(3)直流斩波器或脉宽调制变换器。用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。

2.3 选择PWM控制系统的理由

脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

PWM系统在很多方面具有较大的优越性:

1) PWM调速系统主电路线路简单,需用的功率器件少。

2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。

3)低速性能好,稳速精度高,调速范围广,可达到1:10000左右。

4)如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。

5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。

6)直流电源采用不可控整流时,电网功率因数比相控整流器高。

变频调速很快为广大电动机用户所接受,成为了一种最受欢迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。由此可

见,变频调速是非常值得自动化工作者去研究的。在变频调速方式中,PWM调速方式尤为大家所重视,这是我们选取它作为研究对象的重要原因。

2.4 采用转速电流双闭环的理由

同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。

单闭环速度反馈调速系统,采用PI控制器时,可以保证系统稳态速度误差为零。但是如果对系统的动态性能要求较高,如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生,因此动态误差较大。

在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动;二是能够快速克服负载、电网等干扰。通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后电枢电流立即降至负载电流值。如果要求快速克服电网的干扰,必须对电枢电流进行调节。

以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。

第三章PWM控制直流调速系统主电路设计

3.1 主电路结构设计

3.1.1 PWM变换器介绍

脉宽调速系统的主要电路采用脉宽调制式变换器,简称PWM 变换器。PWM 变换器有不可逆和可逆两类,可逆变换器又有双极式、单极式和受限单极式等多种电路。下面分别对各种形式的PWM 变换器做一下简单的介绍和分析。

不可逆PWM 变换器分为无制动作用和有制动作用两种。图2-1(a )所示为无制动作用的简单不可逆PWM 变换器主电路原理图,其开关器件采用全控型的电力电子器件。电源电压s U 一般由交流电网经不可控整流电路提供。电容C 的作用是滤波,二极管VD 在电力晶体管VT 关断时为电动机电枢回路提供释放电储能的续流回路。

图2-1 简单的不可逆PWM 变换器电路

(a )原理图 (b )电压和电流波型

电力晶体管VT 的基极由频率为f ,其脉冲宽度可调的脉冲电压b U 驱动。在一个开关周期T 内,当on t t ≤≤0时,b U 为正,VT 饱和导通,电源电压通过VT 加到电动机电枢两端;当T t t on ≤≤时,b U 为负,VT 截止,电枢失去电源,经二极管VD 续流。电动机电枢两端的平均电压为s s on d U U T t U ρ==

式中,T

t U U on d ==5ρ——PWM 电压的占空比,又称负载电压系数。ρ的变化范围在0~1之间,改变,ρ即可以实现对电动机转速的调节。

图2-1(b )绘出了稳态时电动机电枢的脉冲端电压d u 、平均电压d u 和电枢电流d i 的波型。由图可见,电流是d i 脉动的,其平均值等于负载电流m L dl C T I /=(L T ——负载转矩, m C ——直流电动机在额定磁通下的转矩电流比)。

由于VT 在一个周期内具有开关两种状态,电路电压平衡方程式也分为两阶段,即

在on t t ≤≤0期间 E dt

di L

Ri U d d ++=5 在T t t on ≤≤期间 E dt di L Ri d d ++=0 式中,R ,L ——电动机电枢回路的总电阻和总电感;E ——电动机的反电动势。

PWM 调速系统的开关频率都较高,至少是1~4kHz ,因此电流的脉动幅值不会很大,再影响到转速n 和反电动势E 的波动就更小,在分析时可以忽略不计,视 n 和E 为恒值。

这种简单不可逆PWM 电路中电动机的电枢电流D i 不能反向,因此系统没有制动作用,只能做单向限运行,这种电路又称为“受限式”不可逆PWM 电路。这种PWM 调速系统,空载或轻载下可能出现电流断续现象,系统的静、动态性能均差。

图2-2(a )所示为具有制动作用的不可逆PWM 变换电路,该电路设置了两个电力晶体管VT1和VT2,形成两者交替开关的电路,提供了反向电流的d i -通路。这种电路组成的PWM 调速系统可在第I 、II 两个象限中运行。

VT1和VT2的基极驱动信号电压大小相等,极性相反,即2b b U U -=。当电动机工作在电动状态时,在一个周期内平均电流就为正值,电流d i 分为两段变化。 在on t t ≤≤0期间,1b U 为正,VT1饱和导通;2b U 为负,VT2截止。此时,电源电压5U 加到电动机电枢两端,电流d i 沿图中的回路1流通。在T t t on ≤≤期间,1b U 和2b U 改变极性,VT1截止,原方向的电流d i 沿回路2经二极管VD2续流,在VD2两端产生的压降给VT2施加反压,使VT2不可能导通。因此,电动机工作在电动状态时,一般情况下实际上是电力晶体管VT1和续流二极管VD2交替导通,而VT2则始终不导通,其电压、电流波型如图2-2(b )所示,与图2-1没有VT2的情况完全一样。

如果电动机在电动运行中要降低转速,可将控制电压减小,使1b U 的正脉冲变窄,负脉冲变宽,从而使电动机电枢两端的平均电压d U 降低。但是由于惯性,

电动机的转速n 和反电动势E 来不及立刻变化,因而出现E U d <的情况。这时电力晶体管VT2能在电动机制动中起作用。在T t t on ≤≤期间,VT2在正的2b U 和反电动势E 的作用下饱和导通,由E -d U 产生的反向电流d i -沿回路3通过VT2流通,产生能耗制动,一部分能量消耗在回路电阻上,一部分转化为磁场能存储在回路电感中,直到t=T 为止。在on t t T ≤≤(也就是on t t ≤≤0)期间,因2b U 变负,VT2截止,d i -只能沿回路4经二极管VD1续流,对电源回馈制动,同时在VD1上产生的压降使VT1承受反压而不能导通。在整个制动状态中,VT2和VD1轮流导通,VT1始终截止,此时电动机处于发电状态,电压和电流波型图2-2(c )。反向电流的制动作用使电动机转速下降,直到新的稳态。

图2-2 具有制动作用的不可逆PWM 变换电路

这种电路构成的调速系统还存在一种特殊情况,即在电动机的轻载电动状态中,负载电流很小,在VT1关断后(即T t t on ≤≤期间)沿回路2径VD2的续流电流d i 很快衰减到零,如在图2-2(d )中的T t on ~期间的2t 时刻。这时VD2两

端的压降也降为零,而此时由于2b U 为正,使VT2得以导通,反电动势E 经VT2沿回路3流过反向电流d i -,产生局部时间的能耗制动作用。到了on t t ≤≤0期间,VT2关断,d i -又沿回路4经VD1续流,到4t t =时d i -衰减到零,VT1在1b U 作用下因不存在而反压而导通,电枢电流再次改变方向为d i 沿回路1经VT1流通。在一个开关周期内,VT1、VD1、VT2、VD1四个电力电子开关器件轮流导通,其电流波形示图2-2(d )。

综上所述,具有制动作用的不可逆PWM 变换器构成的调速系统,电动机电枢回路中的电流始终是连续的;而且,由于电流可以反向,系统可以实现二象限运行,有较好的静、动态性能。

可逆PWM 变换器主电路的结构形式有T 型和H 型两种,其基本电路如图2-3所示,图中(a )为T 型PWM 变换器电路,(b )为H 型PWM 变换器电路。

图2-3 可逆PWM 变换器电路

(a )T 型 (b )H 型

T 型电路由两个可控电力电子器件和与两个续流二极管组成,所用元件少,线路简单,构成系统时便于引出反馈,适用于作为电压低于50V 的电动机的可控电压源;但是T 型电路需要正负对称的双极性直流电源,电路中的电力电子器

件要求承受两倍的电源电压,在相同的直流电源电压下,其输出电压的幅值为H 型电路的一半。H型电路是实际上广泛应用的可逆PWM变换器电路,它由四个可控电力电子器件(以下以电力晶体管为例)和四个续流二极管组成的桥式电路,这种电路只需要单极性电源,所需电力电子器件的耐压相对较低,但是构成调速系统的电动机电枢两端浮地。

H型变换器电路在控制方式上分为双极式、单极式和受限单极式三种,本次设计我们选择双极式H型可逆PWM变换器。主电路如图2-5所示。

图2-5 H桥主电路

3.1.2 泵升电路

当脉宽调速系统的电动机转速由高变低时(减速或者停车),储存在电动机和负载转动部分的动能将变成电能,并通过PWM变换器回馈给直流电源。当直流电源功率二极管整流器供电时,不能将这部分能量回馈给电网,只能对整流器输出端的滤波电容器充电而使电源电压升高,称作“泵升电压”。过高的泵升电压会损坏元器件,因此必须采取预防措施,防止过高的泵升电压出现。可以采用由分流电阻R和开关元件(电力电子器件)VT组成的泵升电压限制电路,如图2-6所示。

图2-6 泵升电压限制电路

当滤波电容器C两端的电压超过规定的泵升电压允许数值时,VT导通,将回馈能量的一部分消耗在分流电阻R上。这种办法简单实用,但能量有损失,且会使分流电阻R发热,因此对于功率较大的系统,为了提高效率,可以在分流电路中接入逆变,把一部分能量回馈到电网中去。但这样系统就比较复杂了,我们就不选择这种方式了。

3.2 参数设计

3.2.1 IGBT管的参数

IGBT(Insulated Gate Bipolor Transistor)叫做绝缘栅极双极晶体管。这种器件具有MOS门极的高速开关性能和双极动作的高耐压、大电流容量的两种特点。其开关速度可达1mS,额定电流密度100A/cm2,电压驱动,自身损耗小。其符号和波形图如图2-6所示。设计中选的IGBT管的型号是IRGPC50U,它的参数如下:

管子类型:NMOS场效应管

极限电压Vm:600V

极限电流Im:27 A

耗散功率P:200 W

额定电压U:220V

额定电流I:1.2A

图2-7 IGBT 信号及波形图

3.2.2 缓冲电路参数

如图2-3(b)所示,H 桥电路中采用了缓冲电路,由电阻和电容组成。 IGBT 的缓冲电路功能侧重于开关过程中过电压的吸收与抑制,这是由于IGBT 的工作频率可以高达30-50kHz ;因此很小的电路电感就可能引起颇大的dt

di L c ,从而产生过电压,危及IGBT 的安全。逆变器中IGBT 开通时出现尖峰电流,其原因是由于在刚导通的IGBT 负载电流上叠加了桥臂中互补管上反并联的续流二极管的反向恢复电流,所以在此二极管恢复阻断前,刚导通的IGBT 上形成逆变桥臂的瞬时贯穿短路,使c i 出现尖峰,为此需要串入抑流电感,即串联缓冲电路,或放大IGBT 的容量。

缓冲电路参数:经实验得出缓冲电路电阻R=10K Ω;电容0.75C F μ=。

3.2.3 泵升电路参数

如图2-6所示,泵升电路由一个电容量大的电解电容、一个电阻和一个VT 组成。

泵升电路中电解电容选取C=2000F μ;电压U=450V ;VT 选取IRGPC50U 型号的IGBT 管;电阻选取R=20Ω。

第四章PWM 控制直流调速系统控制电路设计

4.1 检测环节

4.1.1电流检测环节

电流反馈环节的输入信号是主电路的电流量,经变换后获得输出为直流电压的反馈量i U ,根据电流反馈环节的组成,常用的电流反馈方式和检测元件有下面几种:

1.利用整流桥直流侧的电阻作检测元件

在主电路直流侧串接低阻值电阻c R 以取得电流检测信号,如图4-1所示。这种电流检测方法,在电阻上会产生压降或损耗。有时可利用电动机的换向绕组和补偿绕组上的压降作为电流信号。上述方法主电路与控制电路在电路上需接入电流隔离器。将i U 作为隔离输入信号,隔离器的输出再作为电流反馈信号。

2.以交流电流互感器作为检测元件

对于整流电路而言,输出的直流电流d I 与交流侧的输入电流~I 有一定的关系,即 d KI I 2

VTH i 图4-1 利用直流侧电阻的电流检测线路

式中,K 为与整流电路型式有关的比例关系,如三相桥式电路,861.0 K 。

所以可以采用交流电流互感器检测2I ,然后经整流后获得i U ,以反映直流电流d I 的大小,但不反映电流极性。这种检测方式线路简单、经济、隔离性好,得到广泛应用。 电流互感器的联接方法,在单相电路中其联接比较简单在三相电路中,一般有两种,Y 形(用三台电流互感器)和V 形(用两台)联结,线路见图4-2。

对于定型生产的电流互感器,额定容量是10(或15)VA ,二次电流是5A ,允许负载电阻很小,得不到一般控制系统所需10V 以上的电压,故应采用LZK-1系列控制专用电流互感器。在200A 以上的大容量系统中,常采用在标准互感器后面再加一级5A :0.1A 的互感器,以扩大互感器变压比,使二次电流减小,负载电阻可达200Ω以上,可满足系统对反馈信号电压较大的要求。线路见图4-3。使用交流互感器应注意下面几点:

1)交流互感器一次电流应根据整流装置输出最大电流dm I 来选择。

2)工作时二次绕组不允许开路,以防人身和设备事故。

3)二次绕组一端应接地.

4)带负载情况下,拆除二次绕组时,首先应将其短路.

5)具有续流二极管的半控桥式整流电路不能采用交流检测.

6)交流互感器正常工作时不允许饱和。如在三相零式整流电路中采用交流侧检测方案,则电流互感器应改为曲折联接,以免引起交流互感器的直流磁化而无法工作。

3.以直流电流互感器作为检测元件

直流电流互感器实际上是一个由交、直流同时控制的磁性元件,直流电流d I 变化时,磁路中的磁化状态发生变化,从而使其二次侧交流输出量发生改变,然后经整流后得到反馈信号i U 。图4-5是其两种形式的联结方式。

采用直流互感器检测比交流互感器复杂,快速性稍差.但它用一台直流互感器取代三台交流互感器,使检测装置大为简化,且输出信号功率大,具有电气隔离.目前国内定型生产的BLZ 系列产品已被广泛应用。

4.以霍尔效应电流变换器作为检测元件

霍尔变换器的线性度好、无惯性、装

置简单,但是输出电压一般为mV 级,使用时须附加电压放大器。此外由于霍尔元件薄而脆,安装和使用时须特别小心,并应采取措施防止外界电磁干扰。其线路原理可参阅有关专业书刊。

由此可见,系统对于电流反馈环节的基本要求是:

1)电流反馈信号i U 要保证10V 左右。i U 信号大小取决于转速调节器ASR 输出限幅值

*im

U 的整定,即N dm im im I I U U βλβ===* 。 2)对电流反馈信号要求进行滤波,滤掉交流分量。但滤波时间常数oi oi C R T 04

1=不得过大,否则将使电流环的等效时间常数i T ∑过大,限制了电流环频带的展宽,影响电流响应的快速性.为抵消电流反馈通道滤波惯性的影响,在电流调节器给定通道需设置给定滤波环节。并使两者时间常数大小相等。见图4-6。

4.1.2电压检测环节

在调速系统中常用整流装置主回路的直流电压作为电压反馈信号,最简单的方法是在尽量靠近电动机电枢两端的位置(主回路平波电抗器之后),直接引出直流电压反馈信号,但其输入与输出之间没有电气隔离,容易造成事故。这种方法只适用于小容量系统中。

在较大容量系统中,主回路直流电压都在数百伏以上,而控制回路电压一般都在±15v 左右,故必须设置直流电压隔离器。利用直流电压隔离器,将输入的直流电压U_调制成方波,通过变压器的磁耦合,再将交流方波解调成较小的直流反馈信号u U ,如图4-7所示。

直流电压隔离器常用的有二极管开关型、三极管开关型和利用晶闸管(1A 以下)的反向开关特性组成的晶闸管型电压隔离器。前两种,不仅能反映直流电压大小,又能反映电压方向,故既可用于不可逆调速系统,也适用于可逆系统;而后者仅能反映电压大小,故只能用于不可逆系统。由于后者具有电路简单、调整方便、线性度好等特点,故在不可逆系统中得到了广泛的应用。

4.2 调节器的选择与调整

作为系统校正环节的调节器,是控制电路的关键部件,在系统中使用各种类型的调节器可实现输入输出的P 、I 、D 、PI 、PD 、PID 等多种运算关系。调节器的选择与参数整定是系统设计中极其重要的一环,它对系统静、动态性能指标的优劣起着决定作用。调速系统对调节器的一般要求是:

1) 节器须能够调零,如果调节器在比例状态下不能调零,当输入为零时,输出较大,则应更换器件。

2) 过调整消振电路参数,能消除高频振荡。

3) 节器的正、负输出电压不能过小,一般要求输出电压接近直流稳压电源电压(±15v)。对于PI 调节器一般都要求输出限幅。

4) 调速系统中具有积分作用的电流和转速调节器,必须设置调节器锁零环节。

5) 节器的工作电源为直流稳压电源(±15v 或±12v )。

4.2.1 调节器限幅

调速系统中,为了保护电气设备和机械设备的安全,须限制电动机的最大电流、最大电压以及晶闸管变流装置的min α和min β角等,一般都要求对调节器输出限幅。调节器输出限

幅值的计算与整定是系统设计和调试工作中十分重要的环节。实现限幅的方法大体有两类,

即外限幅和内限幅,电路图如图4-10所示。图4-9就是利用二极管箝位的内限幅电路。4.2.2调节器锁零

前已述及,系统中引入PI调节器,即使系统在停车期间,未加给定信号,由于其积分作用,调节器在干扰信号作用下也会有较大的输出电压。这个输出信号送给触发装置,就会

α90o)前移而使电动机起动,这在控制上是不允许的。所以在系使触发脉冲从初始相位(=

统给出起动指令之前,必须对具有积分作用的调节器锁零,即把它的输出锁到零电位上。4.3 系统的给定电源、给定积分器

4.3.1给定电源GS

在闭环调速系统中,转速总是紧紧地跟随给定量而变化。给定电源的质量在保证系统正常工作中是十分重要的,因此高精度的调速系统必绩要有更高精度的给定稳压电源作保证。所以,设计系统控制方案、拟定控制电路时,必须十分注意对稳压电源的设计与选择。由三端集成稳压器件所组成的稳压电源,线路简单、性能稳定、工作可靠、调整方便,已逐渐取代分立元件,在生产实际中应用越来越广泛。系统中应尽量采用这种集成稳压源,以保证系统的可靠工作.为防止大幅度电网电压波动给稳压电源工作带来的困难,目前已普遍采用恒压变压器作为稳压电源的电源变压器。这些在设计时都需引起注意。

4.3.2给定积分器

在VTH直流调速系统中,突加转速给定信号时,电动机在最大允许电流下实现恒流起动,转速以最大加速度上升,满足最短时间控制。但一般直流电动机不允许过大的电流上升率;有些生产设备本身不能承受过大的机械冲击,或生产工艺过程要求系统起、制动平稳,超调量小。所以这时系统不能采用阶跃给定方法,而采用给定积分器作为给定装置,利用其输出得到不同斜率的斜坡速度给定信号,满足系统的要求。

典型的给定积分器线路在控制系统中是一个通用的控制单元插件。图4-13是一种给定积分器的典型线路。

转速给定信号u0的上升率有三种方法:改变电阻R;改变电容C;调节电压u2。调整时,通过调节电位器RP或改变N1的输出限幅(调整RP l、RP2)的方法改变u2比较方便灵活,故应用时多采用这种方法。当系统处于稳态时,给定积分器的输出信号与输入信号大小相等。

为防止给定积分器输出电压出现超调,可在反馈回路引入R1、C1组成的微分负反馈。

4.4 触发电路的确定

在晶闸管直流调速系统中,触发装置是十分重要的控制单元。目前触发装置的种类很多,具体电路各式各样,设计者必须根据系统实际需要合理地选择触发电路。

4.4.1 选用触发电路时须考虑的因素。

系统对触发电路的要求是设计和选择触发电路的依据,我们在选用时应考虑下列一些问题:

1)触发电路的工作一定要十分可靠。这一点对可逆系统来说尤为重要

2)移相范围应满足系统要求。对于不同整流型式,不同负载性质,其移相范围要求也不同。晶闸管直流调速系统,电感性负载(电流连续),若采用三相零式或三相全控桥线路,对不可逆系统,要求α=0~900;对可逆系统,则要求α=0~1800。实际系统中,因有αmin和βmin角的限制,故移相范围小于1800。

同步信号为锯齿波的触发电路,移相范围可超过1800;同步信号为正弦波的触发电路,其移相范围小于1800;单结晶体管触发电路的移相范围只有1500左右。

3)不同整流电路对脉冲宽度的要求不同。对单相、三相半波和三相桥式半控整流电路,应选择单脉冲触发电路;对于三相桥式全控整流电路,应选择双窄脉冲或宽脉冲触发电路。对于一些容量不大、对触发要求不高的系统,选用结构简单的触发电路;一般情况下可使用由分立元件组成的触发电路或集成移相触发电路;必要时可采用微机触发电路。

4)触发电路输入输出特性线性度要好,以提高系统的静态和动态性能。同步信号为锯齿波的触发电路线性度好,适用于要求调速范周宽的系统;同步信号为正弦波的触发电路线性度稍差;单结晶体管触发电路,其线性度更差,且有一段死区,一般用于小容量单相晶闸管系统中。

5)要求触发器工作对电网电压敏感。同步信号为锯齿波的触发电路和同步信号为正弦波的触发电路相比较,前者较后者好。

6)触发脉冲信号应有足够的功率(电压、电流)和一定的宽度。

7)在大功率装置中,当晶闸管采用串、并联时,应采用强触发,提高脉冲前沿陡度,保证同臂元件导通的同时性。

8)最好采用集成电路触发装置,使元件、焊点、接插件、走线数量减少,简化控制线路,提高系统可靠性。

9)在实际应用中一般应采取防止误触发的具体措施。

10)对于共阴极接法的零式(半波)整流电路或半控桥式整流电路,可采用一套触发装置对所有的晶闸管同时进行触发控制。其余的整流电路形式,一个触发脉冲只能触发一个晶闸管。

4.4.2 触发电路同步电压的选取

为了让变流器按规律正确工作,同步电压的相位极为重要,它应能准确提供自然换相点,保证在移相范围内对晶闸管元件进行移相控制,从而可对输出电压进行连续控制。

在已知整流变压器的接线组别,选择同步变压器时的定相步骤如下:

1)据整流变压器的接线组别,绘制主电路变压器次级电压的向量图,有VT1的移相范围和触发电路移相控制原理,确定触发电路需要的同步信号u s2的相位。

2)选取超前u s2相位π/3或π/6的电压为同步电压u s1,确定阻容滤波器;由相控触发电路同步方式确定同步变压器次级相数;由主电路电压向量图及对u s1的相位要求确定同步变压器的接线组别。

3)按相位关系选取其他元件的同步电压。当为三相桥式全控变流电路且为按元件独立同步时,各元件的同步电压应按顺序滞后π/3,从而可以确定其他各元件的同步电压u s1。总体设计方案图:

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

双闭环直流调速系统

双 闭 环 直 流 调 速 系 统 姓名: 学号: 专业:电气工程及其自动化 日期:2015年12月23日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 关键词:双闭环,转速调节器,电流调节器 双闭环直流调速系统的设计 双闭环直流调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。 两者之间实行嵌套连接,且都带有输出限幅电路。转速调节器 ASR 的输出限幅电压*im U 决定了电流给定电压的最大值;电流调节器 ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。 由于调速系统的主要被控量是转速, 故把转速负反馈组成的环作为外环, 以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为内环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE ,这就形成了转速、电流双闭环调速系统。

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

直流双闭环调速

目录 第一章绪论 (2) 第二章直流调速系统的方案设计 (3) 2.1设计技术指标要求 (3) 2.2现行方案的讨论与比较 (3) 2.3选择PWM控制调速系统的理由 (4) 2.4采用转速、电流双闭环的理由 (4) 第三章 PWM控制直流调速系统主电路设计 (5) 3.1主电路结构设计 (5) 3.1.1 PWM变换器介绍 (5) 3.1.2泵升电路 (10) 3.2参数设计 (11) 3.2.1 IGBT管的参数 (11) 3.2.2缓冲电路参数 (11) 3.2.3泵升电路参数 (12) 第四章 PWM控制直流调速系统控制电路设计 (12) 4.1检测环节 (12) 4.1.1电流检测环节 (12) 4.1.2电压检测环节 (16) 4.2调节器的选择与调整 (17) 4.2.1调节器限幅 (17) 4.2.2调节器锁零 (17) 4.3 系统的给定电源、给定积分器 (17) 4.3.1给定电源GS (17) 4.3.2给定积分器 (18) 4.4 触发电路的确定 (18) 4.4.1选用触发电路时须考虑的因素 (18) 4.4.2触发电路同步电压的选取 (19) 第五章课程设计原始数据 (21) 第六章参数计算 (21) 6.1电流调节器的设计 (21) 6.2速度调节器设计 (22) 课程设计总结 参考文献

第一章绪论 在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。 本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。首先描述了变频器的发展历程,提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。在此基础上,本文将做出SG3525单片机控制的H型PWM变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的系统性能。

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

VM双闭环直流调速系统课程设计报告

V M双闭环直流调速系统 课程设计报告 This model paper was revised by LINDA on December 15, 2012.

实训报告课程名称:专业实训 专业:班级: 学号:姓名: 指导教师:成绩: 完成日期: 2015 年 1月15 日

任务书

1 单闭环直流调速系统 主电路设计 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。 图 单闭环直流调速系统原理框图 直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。 整流变压器额定参数的计算 为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压 U 2 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。 (1)二次侧相电流和一次侧相电流 在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。 表 几种整流线路变压器电压计算系统

电路模式 单相全波 单相桥式 三相半波 三相桥式 A C 所以变压器二次侧相电压为:2 1.35200.930U V =?÷= 变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。 表 几种整流线路变压器电流Id/I2 电路模式 电阻性负载 电感性负载 单相全控桥 1 三相全控桥 查表得, 1A =。 变压器的二次侧电流:2 7d I I A == 变压器的一次侧电流I 1的计算公式: 一次侧电流:2112/7302200.95I I U U A =*=?÷= (2)变压器容量

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

双闭环直流调速系统开题报告 (1)

基于V-M的双闭环直流运动控制系统的设计和校正 学生:黄觉鸿 指导教师:曾孟雄 教学单位:机械与材料学院 1 绪论 1.1 课题的来源、研究背景及意义 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。 直流电动机因具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统)。采用速度、电流双闭环直流调速系统,可以充分利用电动机的过载能力获得最快的动态过程,调速范围广,精度高,和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性,动态和静态性能均好,且系统易于控制。双闭环系统的转速环用来控制电动机的转速,电流环控制输出电流;该系统可以自动限制最大电流,能有效抑制电网电压波动的影响;且采用双闭环控制提高了系统的阻尼比,因而较之单闭环控制具有更好的控制特性。 尽当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中V-M 系统的应用还是有相当的比重。所以以此为课题进行研究具有一定的实用价值。 1.2 相关课题的发展历史 控制系统其实从20世纪40年代就开始使用了,早期的现场基地式仪表和后期的继电器构成了控制系统的前身。现在所说的控制系统,多指采用电脑或微处

VM双闭环不可逆直流调速系统设计

VM双闭环不可逆直流调速系统设计

运动控制系统 课程设计 题目:某V-M双闭环不可逆直流调速系统设计 专业班级: 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

目录 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的与意义 (1) 2 课程设计概述与要求 (2) 2.1 课程设计概述 (2) 2.2课程设计要求............................................... 错误!未定义书签。 3 转速、电流双闭环直流调速系统的组成 (3) 4 调速系统主电路元部件的确定及其参数计算4 4.1变压器参数选取 (4) 4.1.1变压器二次侧电压U2的计算 (4) 4.1.2一次、二次侧相电流I1、I2的计算 (4) 4.1.3 变压器容量S的计算5 4.2 平波电抗器参数计算5 4.2.1电流连续的临界电感量L1的计算5 4.2.2限制输出电流脉动的临界电感量L2的计算5 4.2.3电动机电感量L D的计算6 4.2.4实际串入平波电抗器的电感量L的计算6 4.3可控晶闸管参数计算6 4.3.1晶闸管的额定电压计算6 4.3.2晶闸管的额定电流计算7 4.3.3三相桥式全控整流电路原理7

4.3.4 整流电路及晶闸管保护电路设计8 4.4 过电压保护和du/dt限制9 4.5 过电流保护和di/dt限制10 5 控制系统设计10 5.1 双闭环调速系统的动态结构10 5.2 电流调节器的设计11 5.2.1 电流环结构框图的化简11 5.2.2 电流环结构框图小惯性环节近似处理12 5.2.3 电流调节器结构的选择12 5.2.4 电流调节器的实现13 5.2.5 电流调节器的参数计算13 5.3转速调节器的设计15 5.3.1 转速环结构框图的化简15 5.3.2转速调节器结构的选择1 6 5.3.3转速调节器的实现17 5.3.4 转速调节器的参数计算17 6 触发电路的选择与原理图19 7 双闭环直流调速系统MATLAB仿真22 8 设计总结23 9参考文献24附录V-M双闭环不可逆直流调速系统电气原理图25

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

运动控制系统双闭环直流调速系统

运动控制课程设计任务书 题目:双闭环直流调速系统设计 使用班级:电气081、082 设计内容 已知电机参数为:PN=500kW,UN=750V,IN=760AΩ,允许过载倍数λ=,触发整流环节Ks=75,Tl=,Tm=,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。 主要设计内容包括:1、ACR、ASR调节器类型选择与参数计算。2、系统建模与仿真。3、调节器电路设计。4、主电路设计。5、反馈电路设计。6、触发电路设计。7、故障处理电路设计。 设计步骤 一、总体方案设计 二、参数初步计算。 三、控制系统的建模和MALAB仿真 四、根据仿真结果调整参数 五、主电路及控制电路设计 六、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。 课程设计说明书要求 1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。 2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。 3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。 4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识

摘要 双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。换向器是直流电机的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。 关键词: 双闭环,晶闸管,转速调节器,电流调节器,MALAB仿真

vm双闭环直流调速系统资料

目录 1课程设计目的........................................................... - 1 - 2课程设计题目描述和要求................................................. - 1 - 2.1设计要求..................................................................................................................... - 1 - 2.2设计内容..................................................................................................................... - 1 - 2.3设计数据..................................................................................................................... - 1 -3课程设计报告内容....................................................... - 1 - 3.1转速、电流双闭环直流调速系统的组成................................................................. - 1 - 3.2主电路结构形式......................................................................................................... - 1 - 3.3变压器的选择............................................................................................................. - 1 - 3.4双闭环直流调速系统调节器的设计......................................................................... - 1 - 3.5 整流元件晶闸管的选型............................................................................................ - 1 - 3.6快速熔断器的选择..................................................................................................... - 1 - 3.7平波和均衡电抗器的设计......................................................................................... - 1 - 3.8直流稳压稳压电源设计............................................................................................. - 1 - 3.9调节器的限幅............................................................................................................. - 1 - 3.10电流互感器............................................................................................................... - 1 - 3.11 保护电路的设计...................................................................................................... - 1 - 3.12 晶闸管触发电路的设计.......................................................................................... - 1 -4设计体会.............................................................. - 18 - 5参考书目.............................................................. - 18 - 6附表.................................................................. - 18 -

相关主题