搜档网
当前位置:搜档网 › 抽水蓄能机组调相工况简介

抽水蓄能机组调相工况简介

抽水蓄能机组调相工况简介
抽水蓄能机组调相工况简介

抽水蓄能机组调相工况简介

摘要:由于抽水蓄能机组在我国发展较晚,还有很多人,包括一些常规机组的建设者和运行人员都对抽水蓄能机组不太了解,本文简要的介绍抽水蓄能机组的特有工况:调相,以让更多的人增加对抽水蓄能机组了解。

关键词:抽水蓄能调相简介

1、抽水蓄能机组发展简介

在国外从最早的原始装置算起,抽水蓄能电站已有上百年的历史,但是具有近代工程意义的设施,则是近四五十年才出现的。

抽水蓄能建设早期是以蓄水为目的,在西欧的一些多山的国家里,利用工业多余电能把汛期的河水抽到山上的水库贮存起来,到枯水季节再放下来发电。这相当于是季调节的抽水蓄能工程。

从刚开始蓄能电站使用的单独工作的抽水机组和发电机组,到将水泵与水轮机和一台兼作电动机与发电机的电机连接在一起的而形成的三机式机组,1937年在巴西安装的佩德拉机组和1954年在美国安装的弗拉特昂机组则是可逆式机组的先声。从20世纪60年代起,可逆式机组就成为了主要的机型,开始得到广泛应用。

当时间进入到21世纪,无论是技术还是运营模式,抽水蓄能机组都得到的相当的发展。

2、抽水蓄能机组简介

抽水蓄能机组由可逆式水泵式轮机和发电电动机,配以常规的辅助设备,如调速器、球阀、尾水事故闸门、上库检修闸门、下库检修闸门、励磁系统等。

另外,抽水蓄能机组还有其特有的、区别于常规机组的设备:(参见图1)

换相开关或换相闸刀:由于水泵水轮机二种运行工况的水流方向相反,所以发电电动机二种运行工况旋转方向必须相反。为此应使电动机运行时其旋转磁场的旋转方向与发电机运行时的旋转磁场方面相反,这就需改变三相绕组相序排列,所以发电电动机需加装相应的换相开关或换相闸刀SFC:变频启动装置,用于机组抽水调相工况启动,相当于抽水调相启动过程中的调速器;

拖动闸刀和被拖动闸刀、启动母线:为了满足抽水调相启动而专设的电气连接;

调相压水气系统:在机组抽水调相启动过程中和机组调相运行过程中,利用高压气将转轮室的水圧下去,使转轮在空气在旋转,即可以减少有功消耗,又可以减小机组的振动、噪音,减少对机组的损伤;

监控系统:为了适应抽水蓄能机组的各种工况,监控增设了抽水、抽水调相、发电调相等工况及相互转换程序。

目前抽水蓄能电站中广泛使用的混流可逆式水泵水轮机是以一个离心泵或混流泵的叶轮为基础,配以近似水轮机的活动导叶和固定导叶而形成的。为了同时满足水泵和水轮机两种工况的良好性能,它和常规水轮机有以下不同:1、转轮较矮;2、直径大;3叶片数目少,如华东天荒坪300MW 机组和华东宜兴250MW机组的转轮都只有9 个叶片;4、由离心泵转化而来,流道长,离心力大,流量下降快;5、水泵工况效率高。

3、抽水蓄能机组的工况简介

由于抽水蓄能机组同时具有抽水和发电两种功能,所以也就具有较常规水轮机组更多的工况: 机组顺序控制中出现的各种状态可分为稳态、特殊状态、特定的暂态、暂态四种。稳态可由操作员或成组控制逻辑进行选择,并可不受时间限制运行下去,它包括停机(ST)、发电(GO)、发电调

图1 典型的抽水蓄能电站电气接线简图

相(SCT)、抽水调相(SCP)、水泵(PO)五种;特殊状态也可由操作员或成组控制逻辑选择,可以维持顺序所需的一段时间,包括水泵拖动(PL)和线路充电(LC);特定的暂态和暂态有停机转换(STST)、热备用(HSB)、溅水泵状态,均不能作为操作员选择目标,而是工况转换的过渡状态。

其中发电方向运行的工况有:发电、发电调相、线路充电、水泵拖动;

抽水方向运行的工况有:抽水、抽水调相。

其工况转换程序如图2所示。线路充电多用于试验,它能很好的控制发电电动机的出口电压、电流,更好的满足实验要求。

黑启动(BS )则是用于电网系统发电大的事故,整个电网停电,则具有黑启动能力的电站,利用柴油发电机和蓄电池为抽水蓄能机组创造启动条件,启动机组恢复本电站厂用电,并带动相邻无自启动能力的发电机组,逐渐扩大电网的恢复范围,最终实现整个电网的恢复。在2005年9月,孤立运行的海南电网遭遇台风“达维”,电力设施相继遭到严重破坏,最终引发电厂连续跳机,电网解列。事故后,南丰水电站中、大广坝电厂、洋浦电厂等电厂相继“黑启动”成功,为电网恢复打下了坚实的基础,这也是我国首次电网黑启动。

一般来说,抽水蓄能电站都配置有直流蓄电池组和柴油发电机等辅助设备,具有黑启动能力,但日调节纯抽水蓄能电站的上库水量一般都很有限,所以抽水蓄能机组的黑启动在电网事故时一般只作为一个火花石,恢复相邻大的水电或火电机组运行后即可以退出运行。尤其是在以火电为主的江苏电网来说,江苏宜兴抽水蓄能电站的建设,则是为江苏电网提供了这种火花石,使得江苏电网内的火电站运行方式更为灵活。

目前在国内一些抽水蓄能电站,还设有抽水转发电流程转换,唯一的理由是为了更好的响应事故处理速度。但考虑到从抽水到发电,两个转向,若在短时间内转换,则水轮机轴将会承受很大的扭矩,可能导致水轮机轴的损伤,减少其运行寿命;另外蓄能机组抽水停机和发电开机要比火电站快得多,一般在3、5分钟内即能成功,在事故时,机组完全可以手动先从抽水到停机(若机组正在抽水),然后再启动到发电。所以设置这种转换似乎已经变得不必要了。

4、调相工况简介

图2:机组顺序控制状态转换流程简图

表示稳态、特殊状态 表示特定的暂态、暂态

调相可以满足系统无功需求,稳定及调节电压,改善电网品质;可以快速负荷响应,以满足系统负荷要求;抽水启动时,为了减小有功消耗,减小机组振动,一般都先将机组启动到抽水调相工况,然后再由抽水调相转换到抽水工况。虽然常规水轮机也可以进行调相,但由于其受泾流量限制,一般都是以丰水期作发电运行,枯水期机组轮流检修,加上国内现有的电价制度,所以出于经济性考虑,常规水电站一般都不做调相运行。

另外,抽水蓄能机组调相也具有其优势:一般来说,日调节的纯抽水蓄能电站上、下库的水量有很,只能用于一般的调峰填谷和紧急事故备用,而其本来就配备有变频启动装置,可以很方便的将机组启动到抽水调相工况,并且不会消耗本来就有很的水资源,所以,抽水蓄能机组较常规机组更适合调相运行。

4.1 发电调相的启动方式

发电调相的启动相对来说比较简单,按照发电的流程,先将机组启动,并上电网,然后将机组有功设置为0,球阀、调速器、励磁都进入调相模式运行,执行关导叶,关球阀,调相压水气系统往转轮室注入高压气体,把转轮室水位压低到并保持在调相水位,同时给转轮上下迷宫和主轴密封注入冷却水,以防止干磨擦,损坏密封,等到了预设的稳态后即是发电调相工况了。

4.2 发电转发电调相

发电转发电调相和发电调相启动的区别在于:发电调相启动是从发电启动到并网,但还没有到发电稳态就开始转发电调相,而发电转发电调相是从发电稳稳转发电调相。

4.3 抽水调相的启动方式

目前广泛应用的抽水调相启动方式以SFC变频启动为主,辅以背靠背启动。

SFC变频启动:利用SFC变频启动装置,将主变低压侧电源转变为从零到额定值的变频电源,同步地将机组拖动起来。

背靠背启动:让两台机组通过电气联系在一起,其中一台作发电机启动,称拖动机;另一台作抽水调相启动,称被拖动机。两台机组都加上励磁,同时启动,即利用拖动机将被拖动机组同步地拖动起来。等被拖动机并网后,拖动机要立刻断开与被拖动机的电气联系,然后可以转为发电、发电调相运行,或者转为停机。

为了减小启动时的阻力,一般在转速升高到10%-20%,监控发令给调相压水气系统,开始往转轮室注入高压气,在第一次将转轮室水位压到调相水位后,调相压水气系统通过其控制系统和水位信号反馈,自动调节补气和停止补气,在整个调相过程中维持转轮室水位在调相水位。

4.4 抽水调相转抽水

抽水转抽水调相是从抽水稳态开始,调速器、球阀、励磁进入调相模式,关闭球阀、导叶,调相压水投入运行,转轮上下迷宫和主轴密封冷却水投入,等到了稳态即可。

4.5 结束调相运行

在发电调相转发电,抽水调相转抽水的时候,都要先排尽转轮室的空气,蜗壳建压,再打开导叶、球阀,待机组的出力或入力达到额定,就达到相应的发电或抽水工况了。

发电调相停机和抽水调相停机都是先将机组从电网解列,然后走相应的停机流程,调相压水气系统先将进气阀关上,再将排气阀打开,经过一段时间(这段时间应充分考虑转轮室内的气体已排完),在到达停机转换前关上即可。

4.6 溅水泵

在抽水调相转抽水过程中,由于在排气时,转轮室的水位缓慢上升,加上转轮的高速旋转,因此压力变化比较严重,所以不能利用压力计或水位计来测量水位。同时因为水位上升,增加了转轮转动的阻力,为了维持机组的额定转速,机组从电网吸收的有功也就随之增加,因此可以在机组安装调试时就通过实验测定当转轮室的空气排尽时,机组吸收的有功有多少,于是就将这个有功称为

溅水功率,将其作为转轮室空气已排尽的判断条件,为流程的执行提供依据。

对应的在流程中专门设置了一个暂态:溅水泵,它的几个判据是:

①球阀全关;

②调速器调相模式;

③励磁调相模式;

④溅水功率满足;

⑤发电机出口开关合上

⑥换相开关或闸刀合上抽水方向;

在抽水转抽水调相时也要经过溅水泵这个暂态,在发电转发电调相时用到溅水功率作为转轮室内气体已排尽的判据。

5、结束语

抽水蓄能电站在国外发展已相当成熟,在我国也有了一定的发展,但还有很多人对之不甚了解,本方作者希望通过自己微薄的能力,将抽水蓄能电站区别于常规电站的地方作一简单介绍,希望有更多的人对抽水蓄能电站增加了解。

参考文献

梅祖彦. 抽水蓄能发电技术. 机械工业出版社2000

抽水蓄能电站的运行方式与及常规水电机组的不同知识讲解

抽水蓄能电站的运行方式与及常规水电机组的不同 抽水蓄能电站有发电和抽水两种主要运行方式,在两种运行方式之间又有多种从一个工况转到另一工况的运行转换方式。正常的运行方式具有以下功能: (1) 发电功能。常规水电站最主要的功能是发电,即向电力系统提供电能,通常的年利用时数较高,一般情况下为3000-5000h。 蓄能电站本身不能向电力系统供应电能,它只是将系统中其他电站的低谷电能和多余电能,通过抽水将水流的机械能变为势能,存蓄于上水库中,待到电网需要时放水发电。蓄能机组发电的年利用时数一般在800~1000h 之间。蓄能电站的作用是实现电能在时间上的转换。经过抽水和发电两种环节,它的综合效率为75%左右。 (2) 调峰功能。具有日调节以上功能的常规水电站,通常在夜间负荷低谷时不发电,而将水量储存于水库中,待尖峰负荷时集中发电,即通常所谓带尖峰运行。而蓄能电站是利用夜间低谷时其他电源(包括火电站、核电站和水电站)的多余电能,抽水至上水库储存起来,待尖峰负荷时发电。因此,蓄能电站抽水时相当于一个用电大户,其作用是把日负荷曲线的低谷填平了,即实现“填谷”。“填谷”的作用使火电出力平衡,可降低煤耗,从而获得节煤效益。蓄能电站同时可以使径流式水电站原来要弃水的电能得到利用。 (3) 调频功能。调频功能又称旋转备用或负荷自动跟随功能。常规水电站和蓄能电站都有调频功能,但在负荷跟踪速度(爬坡速度)和调频容量变化幅度上蓄能电站更为有利。 常规水电站自起动到满载一般需数分钟。而抽水蓄能机组在设计上就考虑了快速起动和快速负荷跟踪的能力。现代大型蓄能机组可以在一两分钟之内从静止达到满载,增加出力的速度可达每秒1 万kW,并能频繁转换工况。最突出的例子是英国的迪诺威克蓄能电站,其6 台300MW 机组设计能力为每天起动3~6 次;每天工况转换40 次;6 台机处于旋转备用时可在10s达到全厂出力1320MW。 (4) 调相功能。调相运行的目的是为稳定电网电压,包括发出无功的调相运行方式和吸收无功的进相运行方式。常规水电机组的发电机功率因数为0.85~0.9,机组可以降低功率因数运行,多发无功,实现调相功能。 抽水蓄能机组在设计上有更强的调相功能,无论在发电工况或在抽水工况,都可以实现调相和进相运行,并且可以在水轮机和水泵两种旋转方向进行,故其灵活性更大。另外,蓄能电站通常比常规水电站更靠近负荷中心,故其对稳定系统电压的作用要比常规水电机组更好。 (5) 事故备用功能。有较大库容的常规水电站都有事故备用功能。 抽水蓄能电站在设计上也考虑有事故备用的库容,但蓄能电站的库容相对于同容量常规水电站要小,所以其事故备用的持续时间没有常规水电站长。在事故备用操作后,机组需抽水将水库库容恢复。同时,抽水蓄能机组由于其水力设计的特点,在作旋转备用时所消耗电功率较少,并能在发电和抽水两个旋转方向空转,故其事故备用的反应时间更短。 此外,蓄能机组如果在抽水时遇电网发生重大事故,则可以由抽水工况快速转换为发电工况,即在一两分钟内,停止抽水并以同样容量转为发电。所以有人说,蓄能机组有两倍装机容量的能力来做为事故备用。当然这种功能是在一定条件下才能产生的。 (6) 黑启动功能。黑启动是指出现系统解列事故后,要求机组在无电源的情况下迅速起动。常规水电站一般不具备这种功能。现代抽水蓄能电站在设计时都要求有此功能。 抽水蓄能机组的正常运行和工况转换可能有下列的多种操作方式。可见蓄能机组的运行方式是相当复杂的,同时也说明蓄能机组的功能是很完善的。 水轮机工况发电及停机2种操作方式

抽水蓄能电站水泵调相工况转水泵工况控制流程优化

抽水蓄能电站水泵调相工况转水泵工况控制流程优化 发表时间:2018-03-15T16:04:19.830Z 来源:《防护工程》2017年第31期作者:朱益鹏 [导读] 随着我国电力系统的逐渐完善,对于电力设备的使用也需要不断的全面。 江苏国信溧阳抽水蓄能发电有限公司江苏 213334 摘要:随着我国电力系统的逐渐完善,对于电力设备的使用也需要不断的全面。水泵调相工况转水泵工况是抽水蓄能电站重要而常见的工况转换,本文介绍了在抽水蓄能电站该过程调试中遇到的问题,并对其进行分析,在此基础上优化了控制流程,满足了机组控制要求。关键字:抽水蓄能电站;水泵调相工况;转水泵工况;控制流程优化 引言 抽水蓄能电站的主要作用是对电网进行用电负荷的调峰填谷,以缓解峰谷差所带来的用电矛盾。与常规水电厂相比,抽水蓄能电站一个最大的不同就是具有发电和抽水可逆式运行的特点,因此机组工况转换非常频繁。要想让这些工况转换快捷有序,安全可靠地进行,就必须对监控系统控制进行科学设计,以实现监控系统对机组的有效科学控制。 1水泵调相工况转水泵工况的过程分析 水泵调相工况转水泵工况是抽水蓄能机组一种常见的工况转换过程。抽水蓄能机组必须被SFC或拖动机组从静止状态拖动至水泵调相工况后才能继而转换至水泵工况。因此水泵调相工况转水泵工况是机组转轮由在空气中转动变为在水中转动,并带满负荷抽水的过渡过程,其中关键问题是机组排气回水的过程与主进水阀、水泵水轮机导叶的打开时间以及励磁和调速器等分系统工作模式转换的配合。机组在水泵调相工况时,主进水阀、导叶处于全关状态,尾水水位被高压压缩空气压至水泵水轮机转轮以下,转轮在空气中向水泵方向旋转。当工况转换开始以后,机组监控系统首先调用排气回水流程,停止向转轮内充入压缩空气,关闭充气阀和补气阀,然后关闭蜗壳平衡阀。在上述过程完成后打开排气阀,使转轮内的空气排出,尾水锥管内的水位逐渐上升,当水位上升至与转轮相接触后,机组便进入造压阶段。当造压至满足抽水工况条件时,打开导叶,水泵水轮机将下库来水泵至上库,机组转至水泵工况运行。 2水泵水轮机的性能和结构特点 2.1效率 水轮机工况的最高效率已接近模型推算值,水泵」一况效率偏低,我们认为主要是水泵工况的试验扬程较低所致。因测量范围有限和测量误差,我们不能全面判断最高效率和加权平均效率能否达到模型试验的推算结果,但从多年来的抽水电量与发电电量统计表明,全厂的综合效率接近80%,由此可反映机组的效率比较高。 2.2汽蚀 合同要求水泵水轮机汽蚀量为机组运行3000小时转轮材料的失重量不大于2公斤。据统计,目前失重最多的一台机组运行12000小时,汽蚀补焊焊条约4.0公斤,汽蚀性能优于合同规定。我们现场检查发现,汽蚀一般发生在转轮叶片的水泵工况进口,且多发生在正压面,由此推断汽蚀多由水泵工况运行产生,说明水泵工况的汽蚀性能比水轮机工况要差。 2.3振动 合同要求水泵水轮机的大轴相对振动(即大轴摆度)不大于150um,顶盖垂直振动不大于1.8mm/so据运行资料,1#水泵水轮机大轴摆度较大,发电工况约为240um,抽水约为160um,3#,4#水泵水轮机发电工况次之,约为170um,其余机组、工况均小于150um。最新的《水轮发电机组安装技术规范GB/T8564-2003》规定大轴运行摆度应小于导轴承总间隙的75%。天荒坪电站水导轴承的总间隙为0.40、0.50mm 左右,照此标准,只要大轴运行摆度小于300um即符合规范要求。顶盖垂直振动基本小于合同要求。 3调试过程问题分析 如上所述,抽水蓄能电站水泵调相工况转水泵工况的初始流程设计中“停止充气压水”和“调用排气回水”两步分别对充气压水和排气回水两个子流程进行操作,在此工况转换过程中主要用到的排气回水子流程。在现场试验过程中,排气回水子流程被开始调用后便按初始设计顺序执行,对充气、排气执行过程中的相关设备进行操作,并在各设备正确动作后将“排气回水成功”状态变量返回给主流程。排气回水初始流程中考虑造压阶段的机组特性,造压成功判据设定为机组有功功率小于-40MW或转轮与导叶之间的压力大于25Bar。但在试验过程中,排气阀打开瞬间,转轮与导叶之间的压力迅速上升至33Bar,造压成功条件满足,子流程延时10s后关闭排气阀,并向主流程发送“排气回水成功”状态变量。主流程收到“排气回水成功”标志以后打开主进水阀,并在开度达到40%时打开水泵水轮机导叶。但导叶打开后,机组负功率没有明显增大,且上位机功率显示及转轮以下磁翻板水位计均出现水位大幅波动现象,机组振动显著增大,工况转换失败。工况转换失败的原因是排气进水子流程中造压条件不正确,排气过程时间过短,在排气回水试验中机组正常的排气时间大约需要60s,本次试验中排气时间明显不足,而造压成功时造压功率仅为-21MW。主进水阀和导叶打开以后,由于排气阀提前关闭,大量气体无法顺利排出,造成气混水现象,致使功率、水位及压力表现的极为不稳定,图中转轮与导叶之间压力、转轮与顶盖之间压力以及转轮以下水位等曲线均出现剧烈波动。由于转轮在气水混合物中转动,与水接触不充分,水泵水轮机无法将水泵至上库,负功率曲线也始终没有增大至水泵满负荷的趋势,工况转换失败。 4程序优化 由上述分析可知,排气进水子流程中造压成功条件去除了压力判断,只保留功率小于-40MW条件。另外为缩短流程时间,加快排气过程,考虑到主进水阀打开过程需要的过渡时间,在主流程中将主进水阀打开时间提前,增加充气阀、补气阀、平衡阀的位置判断,达到全关位置后便开启主进水阀,使主进水阀的开启与排气回水过程同时进行。迷宫环冷却水阀现场设计为电动阀,打开关闭执行时间较长。迷宫环冷却水阀打开是调相压水的必要条件,但排气回水时,因为管路安装有逆止阀,其关闭位置信号不必作为排气回水成功的必要条件,检查到其收到控制命后开始关闭,不在全开位即可。程序修改后重新进行试验,各参数曲线如图2所示,图中转轮与导叶之间压力、转轮与顶盖之间压力以及转轮以下水位等曲线趋势变化平稳,导叶打开后负功率增大至-306MW。工况转换时间较之以前也明显缩短,工况转换成功。根据抽水蓄能机组水泵调相工况转水泵工况的实际试验情况,对出现的问题和现象进行了分析研究,并进行了科学实用的优化改

抽水蓄能机组调相工况简介

抽水蓄能机组调相工况简介 摘要:由于抽水蓄能机组在我国发展较晚,还有很多人,包括一些常规机组的建设者和运行人员都对抽水蓄能机组不太了解,本文简要的介绍抽水蓄能机组的特有工况:调相,以让更多的人增加对抽水蓄能机组了解。 关键词:抽水蓄能调相简介 1、抽水蓄能机组发展简介 在国外从最早的原始装置算起,抽水蓄能电站已有上百年的历史,但是具有近代工程意义的设施,则是近四五十年才出现的。 抽水蓄能建设早期是以蓄水为目的,在西欧的一些多山的国家里,利用工业多余电能把汛期的河水抽到山上的水库贮存起来,到枯水季节再放下来发电。这相当于是季调节的抽水蓄能工程。 从刚开始蓄能电站使用的单独工作的抽水机组和发电机组,到将水泵与水轮机和一台兼作电动机与发电机的电机连接在一起的而形成的三机式机组,1937年在巴西安装的佩德拉机组和1954年在美国安装的弗拉特昂机组则是可逆式机组的先声。从20世纪60年代起,可逆式机组就成为了主要的机型,开始得到广泛应用。 当时间进入到21世纪,无论是技术还是运营模式,抽水蓄能机组都得到的相当的发展。 2、抽水蓄能机组简介 抽水蓄能机组由可逆式水泵式轮机和发电电动机,配以常规的辅助设备,如调速器、球阀、尾水事故闸门、上库检修闸门、下库检修闸门、励磁系统等。 另外,抽水蓄能机组还有其特有的、区别于常规机组的设备:(参见图1) 换相开关或换相闸刀:由于水泵水轮机二种运行工况的水流方向相反,所以发电电动机二种运行工况旋转方向必须相反。为此应使电动机运行时其旋转磁场的旋转方向与发电机运行时的旋转磁场方面相反,这就需改变三相绕组相序排列,所以发电电动机需加装相应的换相开关或换相闸刀SFC:变频启动装置,用于机组抽水调相工况启动,相当于抽水调相启动过程中的调速器; 拖动闸刀和被拖动闸刀、启动母线:为了满足抽水调相启动而专设的电气连接; 调相压水气系统:在机组抽水调相启动过程中和机组调相运行过程中,利用高压气将转轮室的水圧下去,使转轮在空气在旋转,即可以减少有功消耗,又可以减小机组的振动、噪音,减少对机组的损伤; 监控系统:为了适应抽水蓄能机组的各种工况,监控增设了抽水、抽水调相、发电调相等工况及相互转换程序。 目前抽水蓄能电站中广泛使用的混流可逆式水泵水轮机是以一个离心泵或混流泵的叶轮为基础,配以近似水轮机的活动导叶和固定导叶而形成的。为了同时满足水泵和水轮机两种工况的良好性能,它和常规水轮机有以下不同:1、转轮较矮;2、直径大;3叶片数目少,如华东天荒坪300MW 机组和华东宜兴250MW机组的转轮都只有9 个叶片;4、由离心泵转化而来,流道长,离心力大,流量下降快;5、水泵工况效率高。 3、抽水蓄能机组的工况简介 由于抽水蓄能机组同时具有抽水和发电两种功能,所以也就具有较常规水轮机组更多的工况: 机组顺序控制中出现的各种状态可分为稳态、特殊状态、特定的暂态、暂态四种。稳态可由操作员或成组控制逻辑进行选择,并可不受时间限制运行下去,它包括停机(ST)、发电(GO)、发电调

抽水蓄能机组水泵工况启动概述

抽水蓄能机组水泵工况启动概述 【摘要】近年来抽水蓄能电站在国内大量兴建,引发越来越多的人关注。但由浅入深介绍该型机组特点的文章为数不多,本文力求以浅显的原理介绍抽水蓄能机组的特点,以供非此专业人士快速熟悉抽水蓄能机组之用。由于作者水平有限,请各位专业人士不吝赐教,给予斧正。 【关键词】抽水蓄能机组;充气压水;变频启动装置;排气充水;排气造压 引言 抽水蓄能机组与常规水轮发电机组最大的区别就是不仅可以发电,还可以反向旋转以水泵的形式抽水。当电网电能超过负荷需求时,启动机组以水泵工况运行将下库水抽到上库暂时存放起来;当电网电能低于负荷需求时,启动机组以发电工况运行利用存储在上库的水能发电供给电网。机组将电能以水力势能的形式临时存储起来,实现了电能的存储,故而称为蓄能机组。抽水蓄能机组有效的均衡了电网负荷的峰谷差,确保电网的安全经济运行。 机组的水泵工况启动较发电工况启动更为复杂,以下将进行详细说明。 1、水泵启动方式 抽水蓄能机组水泵工况运行实质上是同步电动机运行。众所周知,同步电动机不可以直接启动,目前最为经济便捷的启动方式是变频启动方式。因此,抽水蓄能电站几乎均设置一台静止变频启动装置(SFC)。SFC拖动机组从零转速到额定转速,实现了同步电动机的平稳启动。这只是为启动机组提供了可能性,光有SFC还不能立即实现机组水泵方式启动。 为了尽量提高机组调节电网峰谷差能力,抽水蓄能机组容量被尽可能地增大。但受目前技术所制约,国内大型抽水蓄能机组单机容量最高已达300MW,即将向400MW,甚至更高的容量发展。然而就300MW容量机组来说,其转动惯量已达数百(kN·m)数量级。转动惯量越大,需要的启动转矩就越大,SFC 的容量也越大,而SFC的造价随着容量增加成倍增加。 因此,为尽量降低SFC的容量,人们想方设法减轻机组启动的阻力矩。水泵如能在空气中被启动,阻力矩的减少将是非常可观的。 2、充气压水 为实现水泵在空气中启动,在SFC拖动机组启动之前,需要将水泵轮暴露在空气中。这样就需要一套高压空气压缩系统,利用压缩空气将水位压低直到泵轮从水中完全脱离为止。这个过程就是抽水蓄能机组水泵工况启动的第一步:充气压水。

抽水蓄能发电技术思考题

抽水蓄能发电技术思考题 1 电力系统调峰主要有哪几种手段? 火电机组调峰、燃气轮机组调峰、内燃机组调峰、抽水蓄能机组调峰 2 什么就是抽水蓄能电站?抽水蓄能电站在电力系统中有什么作用 在电网用电高峰时,将海拔高得上水库水放至下水库,将水势能转化为电能输送电网;用电低谷时将下水库得水抽到上水库,将电能以势能形式存储下来,消纳电网中多余得电量。发挥“调峰填谷”作用得水电站。 1对改善电网运行得作用 (1)发电调峰一个供电系统得负荷每时每刻都在变化。一般电网在发电设备容量与用电负荷基本平衡得情况下,每天都会出现两个用电高峰,即早高峰与晚高峰。电网用电高峰时负荷上升速率较快,而火电等电源不能满足负荷上升速率要求,需要抽水蓄能电站进行发电调峰,以缓解电网供电之不足。抽水蓄能电站承担电网调峰运行得优势在于:与煤电相比,开、停机迅速、灵活,负荷跟踪性能好;可替代火电容量或降低火电机组得调峰深度,与油电(燃汽轮机)相比,它节省了燃料消耗,降低了运行费用,调峰能力强,能提高电网运行得可靠性与经济性;与常规水电相比,它不仅能调峰,而且能填谷。 (2)抽水填谷 在用电低谷时,电网内大量得富裕电能无法利用,而电能又不能储存,系统必须减少发电设备得出力,以保证电网内电能得供需平衡,同时还需保证电网得供电安全与供电质量。对于以火电为主得电网,火电机组因受机组技术最小出力得限制,一般最小负荷可降低到机组额定容量得50%~70%,如降低得幅度超过机组技术最小出力,就容易造成机组灭火停机事故,这就就是通常所说得火电机组压负荷调峰。对于以水电为主得电网,可停运部分水电机组。对于调节性能不好得 水电站,特别就是径流式水电站,就会造成大量得弃水。有了抽水蓄能电站就能以水作为载体将电网得富裕电能转化为势能。达到储存电能得目得,这样可减少火电机组压负荷调峰与水电站弃水。调峰得问题,减少火电机组因压负荷运行所增加得煤耗。当以水电站作为抽水电源时,可减少电站弃水,增加电站效益,还可使火电机组得运行状态大大改善。

抽水蓄能机组的调相步骤

抽水蓄能机组的调相步骤: 1、发电调相的启动 发电调相的启动相对来说比较简单,按照发电的流程,先将机组启动,并上电网,然后将机组有功设置为0,球阀、调速器、励磁都进入调相模式运行,执行关导叶,关球阀,调相压水气系统往转轮室注入高压气体,把转轮室水位压低到并保持在调相水位,同时给转轮上下迷宫和主轴密封注入冷却水,以防止干磨擦,损坏密封,等到了预设的稳态后即是发电调相工况了。 2、发电转发电调相 发电转发电调相和发电调相启动的区别在于:发电调相启动是从发电启动到并网,但还没有到发电稳态就开始转发电调相,而发电转发电调相是从发电稳稳转发电调相。 3、抽水调相的启动 目前广泛应用的抽水调相启动方式以SFC变频启动为主,辅以背靠背启动。 (1)SFC变频启动:利用SFC变频启动装置,将主变低压侧电源转变为从零到额定值的变频电源,同步地将机组拖动起来。 (2)背靠背启动:让两台机组通过电气联系在一起,其中一台作发电机启动,称拖动机;另一台作抽水调相启动,称被拖动机。两台机组都加上励磁,同时启动,即利用拖动机将被拖动机组同步地拖动起来。等被拖动机并网后,拖动机要立刻断开与被拖动机的电气联系,然后可以转为发电、发电调相运行,或者转为停机。 为了减小启动时的阻力,一般在转速升高到10%-20%,监控发令给调相压水气系统,开始往转轮室注入高压气,在第一次将转轮室水位压到调相水位后,调相压水气系统通过其控制系统和水位信号反馈,自动调节补气和停止补气,在整个调相过程中维持转轮室水位在调相水位。 4、抽水调相转抽水 抽水转抽水调相是从抽水稳态开始,调速器、球阀、励磁进入调相模式,关闭球阀、导叶,调相压水投入运行,转轮上下迷宫和主轴密封冷却水投入,等到了稳态即可。 5、结束调相运行 在发电调相转发电,抽水调相转抽水的时候,都要先排尽转轮室的空气,蜗壳建压,再打开导叶、球阀,待机组的出力或入力达到额定,就达到相应的发电或抽水工况了。 发电调相停机和抽水调相停机都是先将机组从电网解列,然后走相应的停机流程,调相压水气系统先将进气阀关上,再将排气阀打开,经过一段时间(这段时间应充分考虑转轮室内的气体已排完),在到达停机转换前关上即可。

抽水蓄能水电站

抽水蓄能电站 摘要:抽水蓄能电站,是一种具有启动快、负荷跟踪迅速和快速反应的特殊电源它既是一个电站又是一个电网管理工具,它有发电、调峰、调频、调相、事故备用、黑启动等诸多功能,同时还有节约能源和保护环境等特点。抽水蓄能电站有利于“全国电网”的稳定运行;有利于经济地进行“西电东送”;有利于节能减排,优化电源结构。 关键词:抽水蓄能电站、顶峰填谷、静态效益、动态效益 一、抽水蓄能电站概述 1、抽水蓄能电站定义 抽水蓄能电站是装设具有抽水及发电两种功能的机组,利用电力机组低谷负荷期间的剩余电能向上水库抽水储蓄水能,再在系统高峰负荷期间从水库放水发电的水电站。 2、抽水蓄能电站介绍 抽水蓄能电站不同于一般水力发电站。一般水力发电站只安装有发电机,将高水位的水一次使用后弃之东流,而抽水蓄能电站安装有抽水——发电可逆式机组,既能抽水,又能发电。在白天或前半夜,水库放水,高水位的水通过机组发电,将高水位的水的机械能转化为电能,向电网输送。缓解用电高峰时电力不足问题;到后半夜,电网处于低谷,电网中不能储存电能,这时机组作为抽水机,将低水位的水抽向高水位,注入上库。这样,用电低谷电网中多余的电能转化为水的机械能储存在水库中,解决了电能不能储存的问题。

抽水蓄能电站包括上水库、高压引水系统、主厂房、低压尾水系统和下水库。按电站有无天然径流分为纯抽水蓄能电站和混合式抽水蓄能电站。 (1)、纯抽水蓄能电站:没有或只有少量的天然来水进入上水库来补充蒸发、渗漏损失,而作为能量载体的水体基本保持一个定量,只是在一个周期内,在上、下水库之间往复利用;厂房内安装的全部是抽水蓄能机组,其主要功能是调峰填谷、承担系统事故备用等任务,而不承担常规发电和综合利用等任务。 (2)、混合式抽水蓄能电站:其上水库具有天然径流汇入,来水流量已达到能安装常规水轮发电机组来承担系统的负荷。因而其电站厂房内所安装的机组,一部分是常规水轮发电机组,另一部分是抽水蓄能机组。相应地这类电站的发电量也由两部分构成,一部分为抽水蓄能发电量,另一部分为天然径流发电量。所以这类水电站的功能,除了调峰填谷和承担系统事故备用等任务处,还有常规发电和满足综合利用要求等任务。 3、中国抽水蓄能电站的发展 1968年和1973年分别建成两座小型混合式抽水蓄能电站。我国抽水蓄能电站建设起步较晚,由于后发效应,起点较高,近几年建设的几座抽水蓄能电站技术已达到世界水平。至2005年底,全国(不计台湾)已建抽水蓄能电站总装机容量达到6122MW,装机容量跃居世界第五位,遍布全国14个省市。

抽水蓄能电站技术概况简介

抽水蓄能电站技术概况简介 安徽省电力试验研究所倪安华 1989年7月 1抽蓄能电站的作用 抽水蓄能电站是水力发电站的一种特殊形式。它兼具有发电及蓄能功能。抽水蓄能电站有上、下两个水库(池)。当上库的水流向下库时,就如常规的水力发电站,消耗水的位能转换为电能;相反,将下库的水输到上库时就是抽水蓄能,消耗电能转换为水的位能。由于机械效率和各种损耗的原因,在同样水位差和同样水流量的条件下,抽水时所消耗的电能总 是大于发电时产生的电能。那末,建设抽水 蓄能电站的经济效益表现在哪里呢? 众所周知,随着工业化水平的发展和 人民生活用电的增加,电网用电负荷的峰谷 差愈大。图1是典型的日负荷曲线。在上午 8:00左右开始和晚上19:00左右开始为两 个高峰负荷,此期间电网的发电出力必须满 足P max的要求;晚上23:00以后为低谷负荷, 电网的发电出力又必须限制在P min。 也就是说,发电出力必须满足调峰要求。随着电网的发展,大机组在电网中的比重将增加,用高压高温高效率的大机组来调节负荷不仅在经济上是不合算的,而且对设备的安全和寿命也有影响。今后核电机组更要求带固定负荷。因此,电网调峰将更为困难。抽水蓄能电站的作用就是在低谷负荷期间吸取电网中的电能将水抽至上库,积蓄能量;而在高峰负荷期间再将上库的水发电。亦即在图l中增加了“V”部分的用电负荷,使常规机组负荷不必降到P min。而在高峰负荷时,“P”部分的负荷由抽水蓄能机组承担,使常规机组的负荷不需要升高到P max塞。V的面积必然是大于P的面积,在电能平衡上是要亏损的,:然而却减小了大机组的调峰幅度,降低了大机组由于带峰荷而引起的额外的燃料消耗,提高了大机组的利用率。从全电网来衡量经济效益是显著的。 抽水蓄能电站的综合效率一般在65—75%,这—数字包括了抽水和发电时所损耗的机械效率。然而,大火电机组利用率的提高即意味着煤耗的降低。如火电厂在30—40%酌额定工况远行时,其煤耗约比额定工况增加35%,而且低负荷远行可能要用油助燃,厂用电率也要比正常增加1—2个百分点。煤耗和厂用电的减少也可认为是在同样的能耗时发电量的增加。 此外,常规水力发电站虽然也具备调峰功能,但其发电出力往往与灌溉、防洪等矛盾。因为常规水电站的水库调度是一个综合的系统工程。而抽水蓄能电站的发电量及蓄水量是可以按日调节的,可以做到按日平衡,不影响水库的中长期调度。 综上所述,抽水蓄能电站的优越性可以归纳为以下几点: (1)对电网起到调峰作用,降低火电机组的燃料消耗、厂用电和运行费用。 (2)提高火电机组的利用率,火电装机容量可有所降低。 (3)避免水电站发电与农业的矛盾,有条件按电网要求进行调度。

可逆式抽水蓄能机组与厂房

可逆式抽水蓄能机组与厂房Reversible Unit and Underground Hydropower House 本节介绍可逆式(两机式)抽水蓄能电站,二级可逆式水泵水轮机机组与抽水蓄能电站地下厂房。 二机可逆式水泵水轮机机组 可逆式(两机式)抽水蓄能电站由一台水泵水轮机与一台电动发电机组成,组成的机组称为二机可逆式水泵水轮机机组,电动发电机在上方,水泵水轮机在下方,二机轴通过联轴器连接,见图1。 图1 二机可逆式水泵水轮机机组

由于抽水蓄能电站基本都采用高水头(400m以上)工作方式,故水泵水轮机都是混流式水泵水轮机。图中水泵水轮机为单级,只有一个转轮,目前单级水泵水轮机的工作水头最高可达800m,一般混流式水泵水轮机工作范围在500m左右。 多级可逆水泵水轮机 对于超过800m的抽水蓄能电站的混流式水泵水轮机要采用多级水泵水轮机,多级水泵水轮机相当于多个单级水泵水轮机串联使用,相邻二级水泵水轮机之间用水道连接,所有转轮共用一根转轴,图2是二级水泵水轮机的结构示意图。 图2 二级可逆式水泵水轮机

两个转轮共用一根转轴,转轴下端安装在推力轴承上,推力轴承承担转轮的重量与水的推力,转轴上端有导轴承,防止转轴晃动。每个转轮有一套导水系统,由各自的接力器驱动。 多级水泵水轮机一般按每级200m至300m设计,目前已有4至6级的多级水泵水轮机工作水头达1000m至1400m。多级水泵水轮机很难在每级转轮安装导水机构,采用无导水机构结构,无导水机构结构对抽水无影响,但作水轮机运行时无法进行调节会使效率下降。 在图3中用浅蓝色箭头线表示在水轮机工况时的水流方向,在抽水工况时则相反。水轮机工况时顺时针旋转(顶视),抽水工况时反时针旋转(顶视)。 图3 二级可逆式水泵水轮机水流向图

抽水蓄能机组抽水转发电过程紧急频率控制策略

抽水蓄能机组抽水转发电过程紧急频率控制策略 发表时间:2019-01-16T10:34:45.990Z 来源:《电力设备》2018年第25期作者:徐晓坤张朋飞汪婷婷崔艺梦郑敏 [导读] 摘要:抽水蓄能机组具有抽水和发电有种典型的工况,在抽水工况下相当于负荷从电网吸收功率,在发电工况下相当于电源从电网输送功率。 (华北水利水电大学) 摘要:抽水蓄能机组具有抽水和发电有种典型的工况,在抽水工况下相当于负荷从电网吸收功率,在发电工况下相当于电源从电网输送功率。因此,当抽水蓄能机组处于抽水工况下,从抽水工况转换到发电工况具有双倍的调节能力。文章重点就抽水蓄能机组抽水转发电过程紧急频率控制策略进行研究分析,以供参考和借鉴。 关键词:抽水蓄能机组;抽水转发电;紧急频率;控制策略 引言 抽水蓄能电站具有发电、调峰、填谷、调频、调相、事故备用、旋转备用及黑启动等多种功能,既具备了电站的作用,又是一个能够用于电网管理的工具。从某种意义上来说,它还是一种特殊电源,能够集启动快、快速反应和负荷跟踪迅速于一身。抽水蓄能电站形象的说,是一种储存电的仓库,由上水库、下水库、输水道、厂房及开关站等部分组成。 1发电工况启动过程常见故障分析 第一,由于出现油回路堵塞、漏油、管路进气现象,导致调速器主油阀无法打开或开启后无法到达全开位置,由于主油阀位置开关故障,不能正确反映其实际位置,致使监控系统收不到反馈信号,也是导致启动失败的原因之一;第二,机械制动装置机构卡涩,会使风闸不能完全退出,特别是机组因启动失败导致程序故障停机及电气事故停机时,由于设计闭锁电气制动,而为缩短停机时间,机械制动在较低转速时投入时投入,这样易导致机械制动机构轻度错位,风闸落不下,使得机械制动在机组启动时无法完全退出。另外,由于位置开关故障,不能正确反映其实际位置,致使监控系统收不到反馈信号,也将导致顺控程序卡在此处,不再继续往下执行,使转换失败。为避免机械制动无法退出,目前多数电厂已取消20%转速投机械制动这一功能,改为5%额定转速投刹车,虽然事故停机时间加长了,但是提高了机组再次启动的成功率,实践证明是行之有效的;第三,在水头比较低的情况下开机时,导叶会打开到一个比较大的开度,转速到达额定转速时波动较大,同期装置同期困难,使得机组无法并网,导致超时跳机,这种情况虽然可以通过手动调节导叶开度使转速稳定并使机组并网,但并网后往往振动较大,也很容易在并网初期低功率保护动作跳机,使得开机成功率不高。一些电厂通过在对称的两个导叶上加装小导叶的措施,使其在低水头时可独立于其它导叶动作,独立调节开度,起到低水头启动时稳定转速的作用。实践证明,安装了小导叶后,机组发电方向成功率大幅提高,在低水头也可实现自动并网,但由于低水头机组振动较大,应尽可能避免低水头运行;第四,机组发电启动,在球阀工作旁通阀全开、工作密封退出情况下,球阀没有开启导致启动失败。球阀没有开启原因为,工作密封投退配压阀严重漏水,导致在工作密封退出情况下,投入腔因工作密封投退配压阀漏水而带压,并使作为开机流程的工作密封投入腔压力开关动作,导致球阀无法开启,更换漏水的工作密封投退配压阀后正常。由于配压阀漏水一般都会有一个从小到大的过程,只要平时加强巡视和维护,此类启动不成功一般可以避免;第五,球阀开启过程中因为尾闸全开信号丢失,导致球阀开启失败。由于码盘性能的不可靠(如抖动)和油压系统的脉动,偶尔会出现尾闸信号丢失,导致监控系统无法收到尾闸全开信号,致使开机失败。经在尾闸全开信号回路上又并联了一路闸门下降400mm接收信号,也即只有当锁锭不在投入状态及闸门下降400mm同时出现,且码盘无尾闸全开信号输入时,监控系统内闸门全开信号才会丢失,有效提高了启动成功率;第六,因同期回路端子松动、同期回路继电器松动或接点接触不良,导致出现同期条件满足但不能自动合闸的现象,往往是由于长时间机组振动引起部分元器件的松动,平时疏于对相关回路的维护引起。通过反措加强对相关二次回路的维护后该类事件得到有效控制。另外,由于低水头或系统频率波动较大导致同期时间超时,可采取重新启动同期装置的方法避免启动不成功。 2抽水调相工况启动常见故障分析 2.1SFC拖动工况 第一,与发电启动一样,调速器、球阀、机械制动、同期装置等设备故障引起的开机不成功也同样影响着泵开机;第二,启动母线上闸刀状态不对应,导致机组无法正常拖动,出现此类情况一般由于闸刀辅接点故障,不能反映闸刀实际位置。通过加强对辅助接点的定期维护,该类启动失败能得到较好的避免;第三,在SFC拖动过程中,常见故障表现在转子初始位置传感器安装位置不佳;SFC中间继电器故障;SFC控制PLC/PNC逻辑不完善;SFC控制芯线屏蔽不好,受到干扰;SFC冷却系统故障;SFC控制卡件松动等。经采取一定措施后,SFC运行情况得到很大的改善,相应的启动成功率也得到很大提高;第四,尾水水位浮子运行环境恶劣,浮子开关本身质量也不好,导致机组在抽水调相启动及运行过程中,常因尾水水位浮子开关误动作而高跳机,大部分电厂已将浮子开关更换为渐进式的电磁开关,从运行情况看可靠性得到较大的提高;第五,机组同期困难造成顺控超时转停机。机组同期投入准备机组并网时,因系统原因或由于SFC收到同期装置调节信号后调幅太大,导致机组无法在顺控规定的时间内完成机组并网而自动转停机。通过调整SFC的相关参数以及延长顺控时间,该类问题得到了很好的解决;第六,机组自身、励磁系统、同期装置与SFC的配合问题。这种情况一般发生在机组快要并网的时候,往往在并网时励磁没有收到同期装置送来的信号,还有可能是SFC该送的信号没有送出,而引起机组并网不成功转停机。该类问题一般通过逐步调整各系统的相关参数来解决;第七,水环排水阀、蜗壳排气减压阀等阀门均安装在机组蜗壳层,由于蜗壳层工作环境比较潮湿,其控制回路受潮严重,导致频繁出现控制电磁阀烧毁以及回路不通等异常情况,通过加强对该类阀门回路的定期维护以及对环境的改善,目前因为位置开关故障而导致的启动失败次数已大为减少。 2.2背靠背拖动工况 第一,与SFC拖动一样,启动母线上闸刀状态不对应,同期超时等也将会导致机组启动不成功;第二,启动过程中两台机转速差较大,造成频差大保护动作。低水头时因为机组转速不稳定,容易出现频差大的情况,尽可能避免在低水头时使用该启动方式。 3从抽水调相至抽水工况常见故障分析 第一,与发电启动一样,球阀无法开启或开启的过程中无法收到相关位置开关的反馈也将使机组转抽水不成功;第二,回水排气时各液压阀状态不对应,特别是水环排水阀因控制回路端子松动、电磁阀线圈故障,或位置开关故障等原因,导致水环排水阀关不上或无法正确反馈阀门状态,如处理不及时,当球阀打开后,由于收不到水环排水阀关闭信号,导叶将无法开启。此时机组低功率保护检测到输入功

抽水蓄能的价值与功能作用

抽水蓄能的价值与功能作用 一抽水蓄能的资源价值 抽水蓄能是一种经济资源。抽水蓄能可以把低价值能源转换成高价值能源,可以优化系统能源资源的利用,实现对不同价值、不同质量电能的时空移动,可以产生比他消耗的能源多得多的经济价值。 抽水蓄能是系统中一种不可缺少的特殊生产资源,依托于电力系统的高可靠性、顶峰填谷、调频调相等客观需求而存在的。常规电源有其调节约束,不能完全满足系统在故障等运行工况下的调节需求,需要备有一定容量的抽水蓄能,以备系统可以动态的随时的调用以应对其客观特性。 抽水蓄能站址资源本身是一种稀缺资源。抽水蓄能站址选择受制于外部环境因素,对水头、地质等要求较高,地理位置、自然条件优良的站址有限。如同煤炭、石油及常规水电资源一样,抽水蓄能站址资源本身是一个国家的稀缺资源。 二抽水蓄能电站功能作用 1.保障电力系统安全稳定运行和电力有序供应 (1)充当事故应急电源,保障系统安全稳定运行。系统发生大功率缺失后,为了保障频率稳定、控制潮流在运行限额内,需要及时增加发电出力。相比煤电、气电,抽水蓄能机组启动时间短、调节速率快,可在一分钟左右从停机开至满发;相比常规水电,抽水蓄能电站更靠近负荷中心,大幅增发不影响系统稳定,且支撑系统电压的作用更强。因此,抽水蓄能已经成为电力系统中最优先调用的应急电源,在多次重大事故处理时紧急开机满发,有力地保障了系统安全稳定运行,是安全保底电力系统的重要组成部分。 抽水蓄能机组在应对北京“5.29”燃气机组大规模停机事件中,为保障首都电网安全稳定运行发挥重要作用。2019年5月29日,北京地区燃气机组因燃气压力低发生大规模停机事件,北京电网受电比例及各分区主变负载率迅速上升,网内电压支撑能力不足,系统安全稳定运行受到严重威胁。事故处置过程中,华北电力调控分中心迅速开启十三陵抽水蓄能机组,有效缓解功率缺额、主变负载率过快上升及电压支撑能力不足等问题,为保障首都电网安全稳定运行发挥重要作用。

抽水蓄能电站基本知识

抽水蓄能电站基本知识 摘要: 随着国家经济的高速发展,电网规模越来越大,抽水蓄能电站在电网中的作用与地位日趋显著,已从早期的调峰填谷改善电源品质逐步过渡到电力系统不可或缺的管理工具,得到了水电建设部门与运行管理机构的高度重视。抽水蓄能电站,是一种具有启动快、负荷跟踪迅速和快速反应的特殊电站。本文主要介绍抽水蓄能电站的一些基本知识,包括抽水蓄能电站的工作原理及其功能,适用的电力系统,还有它的静态效益和动态效益,以及电站的特点与组成。 关键词:抽水蓄能电站原理功能经济效益 Summary: With China's rapid economic development, increasingly large grid, pumped in the increasingly significant role of power and status, has been moved from the earlier peak to improve power quality and gradual transition to an essential aspect of electric power system management tools, get water and electricity construction sector and management body attaches.Pumped storage power station, is a quick startup, load following the rapid and special rapid reaction of power station.This article focuses on some basic knowledge of the pumped storage power station, including the principle and function of pumped-storage power station, for electric power system, as well as its static efficiency and dynamic efficiency, as well as the characteristics and composition of the power station. Keywords: Pumped storage power station ,Principle,Function,Economic benefits 一、抽水蓄能电站工作原理 电力的生产、输送和使用是同时发生的,一般情况下又不能储存,而电力负荷的需求却瞬息万变。一天之内,白天和前半夜的电力需求较高;下半夜大幅度地下跌,低谷有时只及

抽水蓄能知识

抽水蓄能的概念 抽水蓄能电站是为了解决电网高峰、低谷之间供需矛盾而产生的,是间接储存电能的一种方式。它在用电低谷时用过剩电力将水从下水库抽到上水库储存起来,然后在用电高峰时将水放出发电,并流入下水库。在整个运作过程中,虽然部分能量会在转化间流失,但相比之下,使用抽水蓄能电站仍然比增建煤电发电设备来满足高峰用电而在低谷压负荷、停机这种情况来的便宜,效益更佳。除此以外,抽水蓄能电站还能担负调频、调相和事故备用等动态功能。所以,抽水蓄能电站是电网运行管理的重要工具,是确保电网安全、经济、稳定生产的支柱,发展抽水蓄能电站是非常必要的。 有人说抽水蓄能是“用4度电换3度电”,是划不来的。这种看法有何不对? 发布时间:2013-05-09文章来源:null 有些人认为:抽水蓄能电站用4度电抽水,只发3度电,反而亏了1度电,是得不偿失的。事实上,抽水蓄能电站是利用了电网低谷运行时的电能,不仅提高了电网运行的经济性,而且也提高了电能的质量,当电网高峰运行时,抽水蓄能电站发电,也解决了电网高峰需电的问题。因而“用4度电换3度电”是协调电网供需矛盾的过程,可比喻为“废铁炼好钢”的过程。 实际上,出现这样的言论并不奇怪,由于一部分人对抽水蓄能电站的认识还停留在表面,没有进行全面的分析。因为抽水蓄能电站效益不体现在其本身的发电量上,而主要反映在电网和火电站或其它电站的运行效益之中,需要从全网的角度来分析、评价、核算抽水蓄能的经济效益。抽水蓄能电站灵活的调峰功能和抽水时的填谷作用,可以改善火电或其它电机组的运行条件,使其能为均匀的出力在最优状况下运行,即可提高设备利用率和运转效率,延长机组寿命,又能减少运行维护费用,尤其是可降低火电站的发电煤耗。 太原工业大学唐英彪等学者提出了抽水蓄能电站系统效率的概念和相应的计算模型,从理论上分析了它在电力系统中的作用。抽水蓄能电站的系统效率,就是因其投入运行而使系统产生的能耗变化率。系统效率作为一个量化指标,可用输入与输出能量的比值来表示,输入能量是以相应标煤耗量表示的由蓄能电站吸收的低谷电量;而输出能量包括以等效煤耗量表示的由蓄能电站发出的峰荷电量和因蓄能电站投入运行而使系统减少的能耗。系统减少的能耗可用有、无抽水蓄能电站的两种情况下电力系统能耗的差来表示。系统效率一般

海南电网抽水蓄能机组调节系统电压策略研究

海南电网抽水蓄能机组调节系统电压策略研究 摘要:本文对海南电网抽水蓄能机组的运行特性和调压能力进行了调研,对限 制抽蓄机组调压能力的因素进行了分析。对2020年海南电网夏大、夏小、冬大 和冬小4种典型方式下的220kV层面的无功平衡进行了量化分析,研究了抽蓄机 组在不同工况下对近区电网的220kV母线电压的提升和降低效果,并对不同工况 的提升效果进行了对比,最后提出了2020年夏大、夏小、冬大、冬小和春节节 假日期间抽蓄电站的调压策略。 关键词:抽水蓄能机组;典型方式;无功平衡;调压策略 0 引言 抽水蓄能机组是一种具有四象限运行能力的水电机组,作为电力系统重要的 调压资源,在发电和抽水工况下可以进相或迟相运行[1]。当电网侧感性无功或容 性无功容量不足导致系统电压偏离目标范围时,能够及时调节系统电压在目标范 围内。具有调峰、调频、调相、事故备用等特点,且反应快捷、运行灵活[2]。 为充分发挥抽水蓄能机组的技术优势,开展抽水蓄能机组对电网电压调节能 力的研究工作具有重要意义。本文在详细说明了限制抽水蓄能机组调压能力的因 素的基础上,深入研究了抽蓄机组在不同工况下对近区电网的220kV母线电压的 提升和降低效果,并对不同工况的提升效果进行了对比,最后提出了2020年夏大、夏小、冬大、冬小和春节节假日期间抽蓄电站的调压策略,为海南电网在实 际运行中提供一定的技术支持。 1 抽蓄电站机组技术特性 海南琼中抽水蓄能电站总装机容量600MW,调节性能为完全日调节(6h),建设型式为1洞3机(3×200MW)。琼中抽蓄电站投产后可缓解海南由于昌江核 电机组投产带来的调峰问题,并承担海南电力系统的调频、调相、紧急事故备用 和黑启动等任务,提高系统可靠性[3]。 2 海南电网无功平衡分析 2.1 抽蓄机组无功调节范围 对于机组的进相能力,本文依据之前的实验结果,得到1、3号机组的进相能力边界;对于机组的迟相能力,由于目前尚未开展完整的实验,暂考虑采用理论 迟相能力作为边界。 海南电网提供的抽蓄机组功率特性的理论值,当机组处于发电工况下,迟相 运行时功率因数高于0.95或进相运行时功率高于0.87,则机组有功和无功出力的 极限在圆上,若功率因数低于上述值,则需按照PQ曲线运行。当机组处于抽水 工况下,若机组有功为220MW时,则对应的最大进相和迟相能力都为63.5MVar。 2.2 2020年无功平衡分析 (1)容性无功平衡分析 本文对海南电网2020年夏大与冬大两种典型方式220kV层面的无功平衡进行分析,得到在电厂不进行迟相时的容性无功裕度。 夏大方式下,220kV主变下送无功需求相对偏大,不考虑电厂迟相能力时, 各区域都不能实现220kV层面的无功平衡,存在较大容性无功缺口,但电厂总迟 相能力可以满足系统的容性无功缺额。冬大方式下,负荷水平较夏大水平有所降低,且110kV水电厂处于汛期,发电水平较高,主变下送无功水平较夏大方式有 所降低,系统容性无功缺口有所降低。 (2)感性无功平衡分析

相关主题